LU Na, YANG Ruili, WANG Zhiguang, et al. Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 40−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110024.
Citation: LU Na, YANG Ruili, WANG Zhiguang, et al. Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 40−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110024.

Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology

  • Objective: Finding an efficient, economic, safe and reliable method for degradation of organic pollutants in food. Methods: By comparing the effects of three photosensitizers (curcumin, riboflavin and hypericin) on the appearance quality of oyster meat and the degradation effect of photodynamic technology (PDT) on polycyclic aromatic hydrocarbons (PAHs) in aqueous solution, the process conditions were optimized, and the degradation effect of photodynamic on PAHs in oysters was explored under the optimal conditions. Results: When the concentration of photosensitizer was 10 μmol/L, the accumulation was up to 89.68%~92.22%, and the color of oyster meat was normal milky white without any change. However, when the concentration was 20 µmol/L, the accumulation was only 71.90%~78.62%, and the color of oyster meat changed significantly from white to yellow. Compared with riboflavin and hypericin, the degradation effect of curcumin-mediated photodynamic on PAHs was the best, and the degradation rate was up to 91.08% under 15 min illumination. Therefore, the optimal conditions were determined as follows: The photosensitizer was curcumin, the concentration was 10 µmol/L, and the illumination time was 15 min. Compared with the blank control group, the degradation rate of PAHs in oysters in the PDT group reached 21.92%~88.46% under the optimal conditions. Conclusion: PDT could effectively degrade polycyclic aromatic hydrocarbons (PAHs) in oysters. This technology would be a feasible method for the degradation of residual PAHs in aquatic products and would have a broad application prospect.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return