LU Na, YANG Ruili, WANG Zhiguang, et al. Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 40−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110024.
Citation: LU Na, YANG Ruili, WANG Zhiguang, et al. Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 40−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110024.

Degradation of Multi-Components Polycyclic Aromatic Hydrocarbons in Oyster by Photodynamic Technology

More Information
  • Received Date: November 03, 2020
  • Available Online: May 26, 2021
  • Objective: Finding an efficient, economic, safe and reliable method for degradation of organic pollutants in food. Methods: By comparing the effects of three photosensitizers (curcumin, riboflavin and hypericin) on the appearance quality of oyster meat and the degradation effect of photodynamic technology (PDT) on polycyclic aromatic hydrocarbons (PAHs) in aqueous solution, the process conditions were optimized, and the degradation effect of photodynamic on PAHs in oysters was explored under the optimal conditions. Results: When the concentration of photosensitizer was 10 μmol/L, the accumulation was up to 89.68%~92.22%, and the color of oyster meat was normal milky white without any change. However, when the concentration was 20 µmol/L, the accumulation was only 71.90%~78.62%, and the color of oyster meat changed significantly from white to yellow. Compared with riboflavin and hypericin, the degradation effect of curcumin-mediated photodynamic on PAHs was the best, and the degradation rate was up to 91.08% under 15 min illumination. Therefore, the optimal conditions were determined as follows: The photosensitizer was curcumin, the concentration was 10 µmol/L, and the illumination time was 15 min. Compared with the blank control group, the degradation rate of PAHs in oysters in the PDT group reached 21.92%~88.46% under the optimal conditions. Conclusion: PDT could effectively degrade polycyclic aromatic hydrocarbons (PAHs) in oysters. This technology would be a feasible method for the degradation of residual PAHs in aquatic products and would have a broad application prospect.
  • [1]
    张辉. 太平洋牡蛎(Crassostrea gigas Thunberg)中氨基酸和寡肽的提取及活性初步研究[D]. 青岛: 中国海洋大学, 2005.
    [2]
    Gao Y, Wu J, Li Z, et al. Curcumin-mediated photodynamic inactivation (PDI) against DH5a contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters[J]. Photodiagnosis and Photodynamic Therapy,2019,26(JUN.):244−251.
    [3]
    Liu F, Li Z, Cao B, et al. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality[J]. Food Research International,2016,87(sep.):204−210.
    [4]
    戴文津, 杨小满, 陈华, 等. 水产品中主要化学污染物质的研究[J]. 湖北农业科学,2011,50(3):560−563. doi: 10.3969/j.issn.0439-8114.2011.03.040
    [5]
    慕俊泽, 张勇, 彭景吓. 多环芳烃光降解研究进展[J]. 安全与环境学报,2005(3):69−74. doi: 10.3969/j.issn.1009-6094.2005.03.020
    [6]
    刘芸, 于维森, 吕晓静, 等. 青岛市市售贝类中多环芳烃与多氯联苯的含量水平、组成特征及居民健康影响风险评估[J]. 现代预防医学,2018,45(23):4269−4272.
    [7]
    徐香. 海洋环境中有机污染物降解机理及构效关系的理论研究[D]. 青岛: 中国海洋大学, 2012.
    [8]
    Yi W, Xiao H J, Jian Y H, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, north China[J]. Environmental Science & Technology,2007,41(9):3109−3114.
    [9]
    Baumard P, Budzinski H, Garrigues P, et al. Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level[J]. Marine Pollution Bulletin,1998,36(12):951−960. doi: 10.1016/S0025-326X(98)00088-5
    [10]
    Piccardo M T, Coradeghini R, Valerio F. Polycyclic aromatic hydrocarbon pollution in native and caged mussels[J]. Marine Pollution Bulletin,2001,42(10):951−956. doi: 10.1016/S0025-326X(01)00057-1
    [11]
    江锦花, 董官真. 海洋环境中多环芳烃的污染状况及源解析[J]. 水资源保护,2008(5):48−54. doi: 10.3969/j.issn.1004-6933.2008.05.012
    [12]
    马虹. 油田采出水中多环芳烃的光催化氧化处理方法研究[D]. 北京: 华北电力大学, 2012.
    [13]
    Wainwright M. Photodynamic antimicrobial chemotherapy (PACT)[J]. The Journal of antimicrobial chemotherapy,1998(1):13−28.
    [14]
    Miri K, Haw J, Hyun P. Topical PDT in the treatment of benign skin diseases: Principles and new applications[J]. International Journal of Molecular Sciences,2015,16(10):23259−23278. doi: 10.3390/ijms161023259
    [15]
    RobleroBartolón G V, RamónGallegos E. Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer[J]. Gaceta Médica De México,2015,151(1):85.
    [16]
    曹斌斌. 光动力非热力杀菌技术在生鲜牡蛎加工中的应用[D]. 青岛: 中国海洋大学, 2015.
    [17]
    于金珅, 张芳. 姜黄素介导的光动力技术对鲜切马铃薯的杀菌效果[J]. 食品工业科技,2020,42(4):259−263, 270.
    [18]
    王德选, 王万铁, 郑绿珍, 等. 金丝桃素介导的光动力学疗法对K562细胞活性与自噬的影响[J]. 温州医科大学学报,2020,50(4):285−289. doi: 10.3969/j.issn.2095-9400.2020.04.006
    [19]
    蒋丽金, 何玉英. 竹红菌素类光敏剂的光物理、光化学及光生物[J]. 科学通报,2000,45(19):2019−2032. doi: 10.3321/j.issn:0023-074X.2000.19.002
    [20]
    陆长元, 韩镇辉, 蔡喜臣, 等. 核黄素(维生素B2)的光物理和光化学性质[J]. 中国科学: 化学,2000,30(5):428−435.
    [21]
    Jiang Y, Leung A W, Hua H, et al. Photodynamic action of LED-activated curcumin against Staphylococcus aureus involving intracellular ROS increase and membrane damage[J]. International Journal of Photoenergy,2014(6):11054−11066.
    [22]
    邵文丽, 姚佳, 张雪青, 等. 金丝桃素介导的光动力学疗法在肿瘤治疗中的应用研究[J]. 安徽农业科学,2016(31):122−124. doi: 10.3969/j.issn.0517-6611.2016.31.044
    [23]
    Keshishyan E S, Zaporozhtseva Z V, Zenina O M, et al. Photodynamic inactivation of bacteria in vitro under the effect of blue light[J]. Bulletin of Experimental Biology & Medicine,2015,158(4):475−477.
    [24]
    Wu J, Hou W, Cao B, et al. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters[J]. Photodiagnosis & Photodynamic Therapy,2015,12(3):385−392.
    [25]
    Zhang X, Wu J, Xu C, et al. Inactivation of microbes on fruit surfaces using photodynamic therapy and its influence on the postharvest shelf-life of fruits[J]. Food Science and Technology International,2020:108201322092133. doi: 10.1177/1082013220921330
    [26]
    Gong C, Li Y, Gao R, et al. Inactivation of specific spoilage organism (Pseudomonas) of sturgeon by curcumin-mediated photodynamic inactivation[J]. Photodiagnosis and Photodynamic Therapy,2020:101827. doi: 10.1016/j.pdpdt.2020.101827
    [27]
    Wu J, Mou H, Xue C, et al. Photodynamic effect of curcumin on Vibrio parahaemolyticus[J]. Photodiagnosis & Photodynamics Therapy,2016(15):36−39.
    [28]
    Aponiene K, Paskeviciute E, Reklaitis I, et al. Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments[J]. Journal of Food Engineering,2015,144(Jan.):29−35.
    [29]
    曹斌斌, 武娟, 许川山, 等. 姜黄素介导的光动力冷杀菌方法对牡蛎杀菌的效果研究[J]. 食品科学,2016,37(5):46−49.
    [30]
    武娟. 生鲜牡蛎中大肠杆菌和诺如病毒的检测及光动力非热力杀菌相关研究[D]. 青岛: 中国海洋大学, 2015.
    [31]
    廖文崇, 朱长波, 张汉华. 体规格对香港巨牡蛎摄食和代谢的影响[J]. 中国渔业质量与标准,2011,1(3):41−46.
    [32]
    刘哲, 田华. 多环芳烃在风积沙土壤中的光降解研究[J]. 干旱区资源与环境,2015,29(9):193−197.
    [33]
    李万龙. 水体中菲的光降解途径与影响因素研究[D]. 沈阳: 辽宁大学, 2016.
    [34]
    章豪, 杨挺, 江潇潇, 等. 污泥中多环芳烃的光催化降解[J]. 浙江农业科学,2015,56(12):2039−2041.
    [35]
    武娟, 刘一鸣, 李夏, 等. 光敏化姜黄素的细胞毒理学检验[J]. 食品科学,2016,37(3):205−210. doi: 10.7506/spkx1002-6630-201603037
  • Cited by

    Periodical cited type(17)

    1. 吕欣然,王淑娟,张丹,朱婷婷,孙翔宇,马婷婷. 不同剂量电子束辐照杀菌处理对黑果腺肋花楸果汁品质的影响. 食品科学. 2025(05): 272-280 .
    2. 兰天,赵沁雨,王家琪,孙翔宇,马婷婷. 益生菌发酵猕猴桃果汁的贮藏特性及货架期预测. 食品工业科技. 2024(05): 301-308 . 本站查看
    3. 张海军,李媛媛,钟祥静. 超高压灭菌技术在食品加工中的应用探讨. 粮油与饲料科技. 2024(02): 10-12 .
    4. 李媛媛,张海军,钟祥静. 基于超高压灭菌技术的农产品加工过程质量控制研究. 南方农机. 2024(17): 170-173 .
    5. 赵佳宇,易宗伟,蔡文超,马佳佳,王玉荣,单春会,郭壮. 动态超高压微射流技术对红枣酒品质的影响. 中国酿造. 2024(09): 147-151 .
    6. 程婧祺,秦雪,邱月,关宁,廖江,余志宝,裴晓燕,杨鑫焱,姜毓君,满朝新. 预测微生物学模型在乳及乳制品中的应用. 中国乳品工业. 2024(09): 50-55 .
    7. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,李璐. 不同打浆及杀菌处理对荔枝浆品质的影响. 食品工业科技. 2023(07): 329-336 . 本站查看
    8. 朱卫芳,黄兰淇,张颂函,马琳,陈建波,方朝阳. 25%吡唑醚菌酯悬浮剂在蓝莓中的残留行为及膳食风险评估. 农药科学与管理. 2023(01): 47-53 .
    9. 马琳,赵颖,陈建波,赵莉. 基于胶体金免疫层析法快速检测蓝莓中的百菌清残留. 农药学学报. 2023(02): 435-443 .
    10. 高惠颖,宋娟,景缘,于泳渤,张瑞,刘静,胡雨晴,吕长鑫,马志恒. NFC冻梨苹果汁配方优化及其贮藏品质. 食品研究与开发. 2023(11): 93-99 .
    11. 武正芳,马意龙,金诺,胡飞,章建国,魏兆军. 臭氧对食品加工中多酚影响的研究进展. 农产品加工. 2023(18): 79-82+92 .
    12. 赵倩,谢彦纯,赵冲. 百香果红茶饮料的研制. 中国果菜. 2023(12): 7-13 .
    13. 马琳,朱卫芳,占绣萍,陈建波,赵莉. 嘧霉胺在蓝莓中的残留行为及膳食风险评估. 农药学学报. 2022(04): 884-889 .
    14. 任博文,董璇,何珊. 超高压技术在食品应用中的研究进展. 农产品加工. 2022(16): 61-63+67 .
    15. 黄丽萍,靳学远,谭演清,陈涛,王华民. 超高压微射流处理对火龙果汁微生物指标及理化特性的影响. 食品安全质量检测学报. 2022(20): 6563-6568 .
    16. 宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
    17. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,温靖,李璐. 枸杞原浆低氧打浆联合不同杀菌技术的比较分析. 现代食品科技. 2022(11): 158-165 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (304) PDF downloads (17) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return