LIU Xuanxuan, ZHANG Haoyu, MA Yueling, et al. Analysis of Volatile Components on Champagne Peppermint and Japanese Peppermint Stem and Leaf Tissues[J]. Science and Technology of Food Industry, 2021, 42(17): 270−277. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100234.
Citation: LIU Xuanxuan, ZHANG Haoyu, MA Yueling, et al. Analysis of Volatile Components on Champagne Peppermint and Japanese Peppermint Stem and Leaf Tissues[J]. Science and Technology of Food Industry, 2021, 42(17): 270−277. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100234.

Analysis of Volatile Components on Champagne Peppermint and Japanese Peppermint Stem and Leaf Tissues

More Information
  • Received Date: October 28, 2020
  • Available Online: July 06, 2021
  • The purpose of this research was to distinguish the differences in volatile components on champagne peppermint and Japanese peppermint stem and leaf tissues. In this research, the volatile components were isolated and identified by the gas chromatography-ion mobility spectrometry (GC-IMS) technology. By performing the principal components analysis, the result of the experiment suggested that 172 volatile components were detected and 41 volatile components were identified in the two kinds of peppermint, mainly including alcohols, ketones, aldehydes, furans, esters and terpenes. In the champagne peppermint, 113 volatile components of stems and leaves were detected and 30 volatile components were identified. The characteristic components in the leaves of champagne peppermint were 3-Octanol, 18-Cineole, linalool, E-2-hexen-1-ol, 2-Heptanone, etc, while those in the stems of champagne peppermint were Butan-2, 3-dione, etc. In the Japanese peppermint, 137 volatile components were detected, and 38 volatile components were identified. The characteristic components in the leaves of Japanese peppermint were 3-Octanol, 1-Octen-3-ol, 3-Octanone, Ethyl 2-methylpropanoate, linalool, butanal, α-Pinene, 1-pentanol, etc, while those in the leaves of Japanese peppermint were ethyl acetate, 2-Pentylfuran, amyl acetate, 2-nonanone, isobutyl acetate, etc. Comparing the leaves and stems of two kinds of peppermint, it was found that the Butan-2, 3-dione was the unique component in the leaves of champagne peppermint and 2-Nonanone, 2-Pentylfuran, Ethyl hexanoate and butyl acetate were unique components in the stems of Japanese peppermint, but not in champagne peppermint. The result suggested that the characteristic components in the stem and leaf tissue of each peppermint could be clearly distinguished. Thus, the result can provide a theoretical basis for the application of peppermint in the extraction of essential oils, flavors and fragrances, condiments, tea beverages and other processing raw materials in the future. Moreover, it can also accurately locate the use of volatile components in different parts of peppermint, and identify the peppermint varieties.
  • [1]
    中国科学院中国植物志编辑委员会编. 中国植物志[M]. 北京: 科学出版社, 1977: 260−276.

    Compilation by the Chinese Botany Editorial Committee of the Chinese Academy of Sciences.Flora of the People's Republic of China [M]. Beijing: Science Press, 1977: 260−276.
    [2]
    彭蕴茹, 钱士辉, 石磊, 等. 薄荷非挥发性提取部位的药理活性研究[J]. 中药材,2008(1):104−107. [Peng Yunru, Qian Shihui, Shi Lei, et al. The pharmacological activity study of nonvolatile extraction sites of mint[J]. Journal of Chinese Medical Materials,2008(1):104−107. doi: 10.3321/j.issn:1001-4454.2008.01.038
    [3]
    Enck P, Junne F, Klosterhalfen S, et al. Therapy options in irritable bowel syndrome[J]. Eur J Gastroenterol Hepatol,2010,22(12):1402−1411.
    [4]
    韩永胜, 武松, 袁晓, 等. 复方薄荷酊治疗瘙痒性皮肤病 600 例疗效观察[J]. 中医外治杂志,2003,12(3):46. [Han Yongsheng, Wu Song, Yuan Xiao, et al. Compound mint tincture on 600 cases of itching skin diseases[J]. Journal of External Therapy of Traditional Chinese Medicine,2003,12(3):46. doi: 10.3969/j.issn.1006-978X.2003.03.053
    [5]
    李祥, 邢文峰.薄荷的化学成分及临床应用研究进展[J]. 中南药学, 2011, 9(5): 362−365.

    Li Xiang, Xing Wenfeng, the chemical composition and clinical application of mint research progress[J]. Central South Pharmacy, 2011, 9(5): 362−365.
    [6]
    沈梅芳, 李小萌, 单琪媛. 薄荷化学成分与药理作用研究新进展[J]. 中华中医药学刊,2012,30(7):1484−1487. [Shen Meifang, Li Xiaomeng, Shan Qiyuan. New progress in the chemical composition and pharmacological effects of mint[J]. Chinese Archives of Traditional Chinese Medicine,2012,30(7):1484−1487.
    [7]
    张荣发, 杨宗发, 江尚飞. 薄荷油的药理毒理作用研究进展[J]. 中国药业,2012,21(19):1−3. [Zhang Rongfang, Yang Zong, Jiang Shangfei. Progress in the pharmacological toxicology of mint oil[J]. China Pharmaceuticals,2012,21(19):1−3. doi: 10.3969/j.issn.1006-4931.2012.19.001
    [8]
    REYES L D, CASPAR G, CAPPON H J, et al. Model- based management strategy for resource efficient design and operation of an aquaponic system[J]. Aquacultural Engineering,2018,83:27−39. doi: 10.1016/j.aquaeng.2018.07.001
    [9]
    张明华, 丁永良, 杨菁, 等. 鱼菜共生技术及系统工程研究[J]. 现代渔业信息,2004,19(4):7−12. [Zhang Minghua, Ding Yongliang, Yang Jing, et al. Fish and vegetable symbiosis technology and system engineering research[J]. Modern Fishers Information,2004,19(4):7−12.
    [10]
    Diver S, Rinehart L. Aquaponics-integration of hydroponics with aquaculture[J]. ATTRA-Natl Sustain Agricultural Information Service,2010,28:1−28.
    [11]
    黄兴雨, 杨黎燕, 尤静. 薄荷挥发油研究进展[J]. 化工科技,2019,27(3):70−74. [Huang Xingyu, Yang Liyan, You Jing. Mint volatile oil research progress[J]. Science & Technology In Chemical Industry,2019,27(3):70−74. doi: 10.3969/j.issn.1008-0511.2019.03.015
    [12]
    魏亮, 方洪壮, 吴比, 等. 东北野生薄荷挥发油成分及抑菌活性研究[J]. 安徽农业科学,2019,47(10):170−172, 178. [Wei Liang, Fang Hongqiang, Wu Bi, et al. Northeast wild mint volatile oil composition and antibacterial activity research[J]. Journal of Anhui Agricultural Science,2019,47(10):170−172, 178. doi: 10.3969/j.issn.0517-6611.2019.10.052
    [13]
    束雅春, 段煜, 陈亚军, 等. 薄荷-荆芥药对与单味药挥发性成分分析及体外抑菌作用比较[J]. 中国实验方剂学杂志,2019,25(7):6−13. [Shu Yanchun, Duan Yu, Chen Yajun, et al. Comparison of volatile composition of mint-Jing mustard and antibacterial inhibition in vitro[J]. Chinese Journal of Experimental Traditional Medical Formulae,,2019,25(7):6−13.
    [14]
    安秋荣, 郭志峰. 用GC-MS 法分析春、秋季薄荷油成分[J]. 分析测试学报,2000(5):64−66. [An Xuerong, Guo Zhifeng. The spring and autumn mint oil components were analyzed by GC-MS method[J]. Journal of Instrumental Analysis,2000(5):64−66. doi: 10.3969/j.issn.1004-4957.2000.05.020
    [15]
    郭向阳. 6 种食用芳香植物挥发性成分的GC-MS/GC-O分析[J]. 农业工程学报,2019,35(18):299−307. [Guo Xiangyang. GC-MS/GC-O analysis of 6 volatile components of edible aromatic plants[J]. Transactions of the Chinese Society of Agricultural Engineering,,2019,35(18):299−307. doi: 10.11975/j.issn.1002-6819.2019.18.036
    [16]
    Cumeras R, Figueras E, Davisc E, et al. Review on ion mobility spectrometry. Part 1: current instrumentation[J]. The Analyst,2015,140(5):1376−1390. doi: 10.1039/C4AN01100G
    [17]
    Garrido-delgado R, Arce L, Guaman A V, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta,2011,84(2):471−479. doi: 10.1016/j.talanta.2011.01.044
    [18]
    程沙沙, 陈创, 王卫国, 等. 一种基于离子迁移谱的气相色谱检测器及其应用[J]. 色谱,2011,29(9):901−907. [Cheng Shasha, Chen Chuang, Wang Weiguo, et al. A gas chromatographic detector based on the ion migration spectrum and its applications[J]. Chinese Journal of Chromatography,2011,29(9):901−907.
    [19]
    Gerhard N, Birkenmeier M, Sanders D, et al. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling[J]. Analytical and Bioanalytical Chemistry,2017,409(16):3933−3942. doi: 10.1007/s00216-017-0338-2
    [20]
    陈通, 陆道礼, 陈斌. GC-IMS技术结合化学计量学方法在食用植物油分类中的应用[J]. 分析测试报,2017,36(10):1235−1239. [Chen Tong, Lu Daoli, Chen Bin. Application of GC-IMS technology combined with stoichiometry methods in the classification of edible vegetable oils[J]. Journal of Instrumental Analysis,2017,36(10):1235−1239.
    [21]
    李淑静, 赵婷, 葛含光, 张敏, 等. 气相色谱-离子迁移谱应用于橄榄油的掺假鉴别[J]. 食品研究与开发,2018,39(15):109−116. [Li Shuzhen, Zhao Ting, Ge H, Zhang Min, et al. Gas chromatography-ion migration spectrum used in adulteration identification of olive oil[J]. Food Research and Development,2018,39(15):109−116. doi: 10.3969/j.issn.1005-6521.2018.15.022
    [22]
    林若川, 邓榕, 许丽蓉. 基于GC-IMS技术的绿茶风味鉴别方法可行性的研究[J]. 广东化工,2017,44(23):19−21. [Lin Ruchuan, Deng Rong, Xu Lirong. Study on flavor identification of Green Tea based on GC-IMS[J]. Guangdong Chemical Industry,2017,44(23):19−21. doi: 10.3969/j.issn.1007-1865.2017.23.012
    [23]
    马云, 王尧尧, 管明瑞, 张玉, 等. 不同发育期忍冬花颜色与气味变化[J]. 中成药,2019,41(6):1349−1353. [Ma Yun, Wang Yao, Guan Mingrui, Zhang Yu, et al. The color and smell of honeysuckle flowers change during different developmental periods[J]. CHINESE TRADITIONAL PATENT MEDICINE,2019,41(6):1349−1353. doi: 10.3969/j.issn.1001-1528.2019.06.030
    [24]
    林史珍, 杜方敏, 林良静, 等. GC-IMS技术监测加速破坏条件下苦杏仁挥发性物质变化研究[J]. 广州中医药大学学报,2019,36(8):1247−1251. [Lin Shizhen, Du Fangmin, Lin Liangjing, et al. GC-IMS technology monitors the change of volatile substances under the condition of accelerated damage[J]. Journal of Guangzhou University of Traditional Chinese Medicine,2019,36(8):1247−1251.
    [25]
    刘莉. 花草茶的主要成分及功效[J]. 现代食品,2019(16):102−104. [Liu Li. the main ingredients and effect of herbal tea[J]. Modern Food,2019(16):102−104.
    [26]
    Vazquez-landaverde P A, Velazquez G, Torres J A, et al. Quantitative determination of thermally derived off-flavor compounds in milk using solid-phase microextraction and gas chromatography[J]. Journal of Dairy Science,2005,88(11):3764−3772. doi: 10.3168/jds.S0022-0302(05)73062-9
    [27]
    Pan D D, Wu Z, Peng T, etal. Volatile organic compounds profile during milk fermentation by lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism[J]. Journal of Dairy Science,2014,97(2):624−631. doi: 10.3168/jds.2013-7131
    [28]
    Mehinagic E, Prost C, Demaimay M. Optimization of extraction of apple by dynamic headspace and influence of saliva on extraction of volatiles[J]. Journal of Agricultural and Food Chemistry,2004,52(16):5175−5182. doi: 10.1021/jf049577g
    [29]
    ARROYO-MANZANARES N, MARTIN-GOMEZ A, JURADO-CAMPOS N, et al. Target vs spectral fingerprint data analysis of iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry[J]. Food Chemistry,2018,246:65−73. doi: 10.1016/j.foodchem.2017.11.008
    [30]
    姚文生, 蔡莹暄, 刘登勇, 等. 不同材料熏制鸡腿肉挥发性物质GC-IMS 指纹图谱分析[J]. 食品科学技术学报,2019,37(6):37−45. [Yao Wensheng, Cai Yixuan, Liu Dengyong, et al. Different materials smoked chicken leg meat volatile substance GC-IMS fingerprint map analysis[J]. Journal of Food Science and Technology,2019,37(6):37−45. doi: 10.3969/j.issn.2095-6002.2019.06.006
    [31]
    于夏, 刘超, 崔雪靖, 等. 3 种河南产薄荷挥发性成分分析[J]. 中国实验方剂学杂志,2014(21):87−90. [Yu Xia, Liu Chao, Cui Xuejing, et al. Analysis of the volatile components of 3 kinds of mint produced in Henan[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014(21):87−90.
    [32]
    刘红杰, 金若敏. 薄荷油研究进展[J]. 山东中医药大学学报,2006(6):502−505. [Liu Hongjie, Jin Ruomin. Mint oil research progress[J]. Journal of Shandong University of Traditional Chinese Medicine,2006(6):502−505. doi: 10.3969/j.issn.1007-659X.2006.06.029
    [33]
    李娟娟, 王羽梅, 薄荷精油成分和含量的影响因素综述[J]. 安徽农业科学, 2011(36): 22313−22316.

    Li Juanjuan, Wang Yumei, mint essence oil composition and content of the influencing factors reviewed[J]. Journal of Anhui Agricultural Science, 2011(36): 22313−22316.
    [34]
    吴恒, 吴雨松, 朱玲超, 等. Needle trap-GC-MS法分析云南不同产地薄荷的挥发性成分[J]. 云南大学学报(自然科学版),2015(2):265−271. [Wu Heng, Wu Yusong, Zhu Lingchao, et al. Needle trap-GC-MS method analyzed the volatile components of mint in Yunnan[J]. Journal of Yunnan University(Natural Sciences Edition),2015(2):265−271.
    [35]
    叶兰荣, 姚雷, 徐勇, 等. 四种薄荷植物学性状和精油成分的比较[J]. 上海交通大学学报(农业科学版),2006(5):435−440. [Ye Lanrong, Yao Lei, Xu Yong, et al. Comparison of four mint botanical properties and essential oils[J]. Journal of Shanghai Jiaotong University,2006(5):435−440.
  • Cited by

    Periodical cited type(13)

    1. 宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
    2. 龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 . 本站查看
    3. 罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
    4. 武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
    5. 张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
    6. 窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
    7. 李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
    8. 黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
    9. 赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 . 本站查看
    10. 李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
    11. 陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
    12. 魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
    13. 袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (218) PDF downloads (23) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return