Citation: | JIN Shanfeng, WANG Dongxin, HUANG Junshi, et al. Online Evaluation System of Tea Quality Based on Computer Vision [J]. Science and Technology of Food Industry, 2021, 42(14): 219−225. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100152. |
[1] |
欧伊伶, 张娅楠, 覃丽, 等. 茶叶色香味品质评价方法研究进展[J]. 食品工业科技,2019,40(6):342−347, 360.
|
[2] |
温立香, 张芬, 何梅珍, 等. 茶叶品质评价技术的研究现状[J]. 食品研究与开发,2018,39(15):197−204. doi: 10.3969/j.issn.1005-6521.2018.15.038
|
[3] |
Liu C, Lu W, Gao B, et al. Rapid identification of chrysanthemum teas by computer vision and deep learning[J]. Food Science & Nutrition,2020,8(4):1968−1977.
|
[4] |
Bakhshipour A, Zareiforoush H, Bagheri I. Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features[J]. Journal of Food Measurement and Characterization,2020,14(9):1−15.
|
[5] |
董春旺, 朱宏凯, 周小芬, 等. 基于机器视觉和工艺参数的针芽形绿茶外形品质评价[J]. 农业机械学报,2017,48(9):38−45. doi: 10.6041/j.issn.1000-1298.2017.09.005
|
[6] |
Wang S H, Phillips P, Liu A J, et al. Tea category identification using computer vision andgeneralized eigenvalue proximal SVM[J]. Fundamenta Informaticae,2017,151(1-4):325−339. doi: 10.3233/FI-2017-1495
|
[7] |
Laddi A, Shashi S, Kumar A, et al. Classification of tea grains based upon image texture feature analysis under different illumination conditions[J]. Journal of Food Engineering,2013,115(2):226−231. doi: 10.1016/j.jfoodeng.2012.10.018
|
[8] |
董春旺, 梁高震, 安霆, 等. 红茶感官品质及成分近红外光谱快速检测模型建立[J]. 农业工程学报,2018,34(24):306−313. doi: 10.11975/j.issn.1002-6819.2018.24.037
|
[9] |
Ouyang Q, Liu Y, Chen Q S, et al. Intelligent evaluation ofcolor sensory quality of black tea by visible-near infraredspectroscopy technology: A comparison of spectra and colordata information[J]. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy,2017,180:91−96. doi: 10.1016/j.saa.2017.03.009
|
[10] |
Calixto R R, Neto L G P, Cavalcante T D S, et al. A computer vision model development for size and weight estimation of yellow melon in the Brazilian northeast[J]. Scientia Horticulturae,2019,256:108521. doi: 10.1016/j.scienta.2019.05.048
|
[11] |
Arthur Z da Costa, Hugo E H Figueroa, Juliana A Fracarolli. Computer vision based detection of external defects on tomatoes using deep learning[J]. Biosystems Engineering,2020,190:131−144. doi: 10.1016/j.biosystemseng.2019.12.003
|
[12] |
杨祖彬, 曾莉红. 脐橙分选包装表面损伤识别算法设计研究[J]. 食品工业科技,2014,35(1):264−269.
|
[13] |
魏文松, 邢瑶瑶, 李永玉, 等. 适于餐厅与家庭的叶菜外部品质在线检测与分级系统[J]. 农业工程学报,2018,34(5):264−273. doi: 10.11975/j.issn.1002-6819.2018.05.035
|
[14] |
Baneh N M, Navid H, Kafashan J. Mechatronic components in apple sorting machines with computer vision[J]. Journal of Food Measurement and Characterization,2018,12(2):1135−1155. doi: 10.1007/s11694-018-9728-1
|
[15] |
胡潇, 熊爱华, 黄俊士, 等. 计算机视觉结合引导滤波方法快速量化茶叶叶底品质[J]. 江西农业大学报,2019,41(3):601−609.
|
[16] |
余洪, 吴瑞梅, 艾施荣, 等. 基于PCA-PSO-LSSVM的茶叶品质计算机视觉分级研究[J]. 激光杂志,2017,38(1):51−54.
|
[17] |
刘鹏, 吴瑞梅, 杨普香, 等. 基于计算机视觉技术的茶叶品质随机森林感官评价方研究[J]. 光谱学与光谱分析,2019,39(1):193−198.
|
[18] |
赵改名, 焦阳阳, 祝超智, 等. 基于极差分析法与主成分分析法研究新型牛肉薄饼加工工艺[J]. 现代食品科技,2019,35(11):144−151.
|
[19] |
Zhang Y H, Deng X Y, Zhou X, et al. Yachine with kernel principal component analysis based on acoustic signals[J]. International Journal of Watermelon Ripeness Detection via Extreme Learning Mttern Recognition and Artificial Intelligence,2019,33(8):17.
|
[20] |
Song B , Baik D K. A facial expression recognition algorithm with supervised orthogonal locality preserving projection[J]. Journal of Computational and Theoretical Nanoscience,2016,13(11):8495−8504. doi: 10.1166/jctn.2016.6003
|
[21] |
郭金玉, 仲璐璐, 李元. 基于统计差分LPP的多模态间歇过程故障检测[J]. 计算机应用研究,2019,36(1):123−126.
|
[22] |
张善文, 张传雷, 程雷. 基于监督正交局部保持映射的植物叶片图像分类方法[J]. 农业工程学报,2013,29(5):125−131.
|
[23] |
卢维学, 吴和成, 万里洋. 基于融合随机森林算法的PLS对降水量的预测[J]. 统计与决策,2020,36(18):27−31.
|
[24] |
刘鹏, 艾施荣, 杨普香, 等. 非线性流形降维方法结合近红外光谱技术快速鉴别不同海拔的茶叶[J]. 茶叶科学,2019,39(6):715−722. doi: 10.3969/j.issn.1000-369X.2019.06.011
|
[25] |
Liu P, Wen Y, Huang J, et al. A novel strategy of near-infrared spectroscopy dimensionality reduction for discrimination of grades, varieties and origins of green tea[J]. Vibrational Spectroscopy,2019,105:102984. doi: 10.1016/j.vibspec.2019.102984
|
[1] | SUN Renjie, HE Qin, WU Dezhi. Visual Analysis of Dendrobium candidum Related Research Based on CiteSpace Knowledge Map and Patent Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(20): 322-330. DOI: 10.13386/j.issn1002-0306.2022120168 |
[2] | SU Qingyu, CHANG Xiaomin, LIU Yaran, XU Xiaoqing, LI Jiaze, ZHU Yuxuan, SONG Hao, ZHU Baoqing. Current Status Research of Projective Mapping in Food Research and Development[J]. Science and Technology of Food Industry, 2022, 43(16): 390-399. DOI: 10.13386/j.issn1002-0306.2021070202 |
[3] | YANG Xin, QIN Lina, JIANG Xianzhang. Analysis of Codon Usage Bias in the Genome of Trichoderma reesei[J]. Science and Technology of Food Industry, 2022, 43(6): 141-149. DOI: 10.13386/j.issn1002-0306.2021110338 |
[4] | WANG Zu-lian, CHEN Qing, GAO Jia, LUO Fang-yao, TANG Yue-ming, TIAN Yu-xiao, GUO Yun-jian. Effect of Packaging Film Permeability on the Quality of MAP Storage of Hotbed Chives during Cold Storage[J]. Science and Technology of Food Industry, 2021, 42(1): 304-311. DOI: 10.13386/j.issn1002-0306.2020030031 |
[5] | ZHOU Ting, HE Dan, HUANG Hui, HAO Shu-xian, LI Lai-hao, WEI Ya, CEN Jian-wei. Effect and analysis of MAP on volatile flavor compounds in sturgeon(Huso dauricused × sturger schrenckii) caviar[J]. Science and Technology of Food Industry, 2016, (15): 260-264. DOI: 10.13386/j.issn1002-0306.2016.15.042 |
[6] | WANG Dong, WANG Zhe- di, MA Yue, LI Qi. Impact of serving conditions on consumer preferences for Chinese rice wine[J]. Science and Technology of Food Industry, 2016, (03): 127-130. DOI: 10.13386/j.issn1002-0306.2016.03.018 |
[7] | JIANG Li-hong, ZHOU Ying-zhe, HONG Qing, LIU Xiao-ming, TIAN Feng-wei, ZHAO Jian-xin, ZHANG Hao, CHEN Wei. Flavor characteristics and consumer preference for the commercial aged Cheddar cheese[J]. Science and Technology of Food Industry, 2014, (23): 275-281. DOI: 10.13386/j.issn1002-0306.2014.23.050 |
[8] | CHANG Xiang-yang, HU Hao. Research of consumer behavior for food safety attributes in the view of choice experiment[J]. Science and Technology of Food Industry, 2014, (11): 273-277. DOI: 10.13386/j.issn1002-0306.2014.11.051 |
[9] | Research on preservation effect influence of pre-preparing method on fresh beef products packaged in MAP[J]. Science and Technology of Food Industry, 2013, (02): 310-314. DOI: 10.13386/j.issn1002-0306.2013.02.080 |
[10] | Research on quadric orthogonal regression experiment on MAP craft of waxberry[J]. Science and Technology of Food Industry, 2012, (19): 326-328. DOI: 10.13386/j.issn1002-0306.2012.19.066 |
1. |
杨蕾,冯洪涛,何雪峰,杨乾栩,蒋梦菲,张涛. 基于MFA的消费者与专家卷烟抽吸感知及风味感知分析. 中国市场. 2024(28): 99-102 .
![]() | |
2. |
常晓敏,赵慧敏,张悦,刘佳妮,李玄烨,李晓龙,初柏君,王翔宇,朱保庆. 桌布法结合极化投影地图法剖析葵花籽油香味特征. 食品安全质量检测学报. 2023(13): 184-192 .
![]() | |
3. |
侯姣靓. XLSTAT在感官评价数据分析中的应用. 上海轻工业. 2023(03): 130-133 .
![]() | |
4. |
单冰淇,刘松昱,王春光,游睿晗,宋昊,钟葵,史波林,朱保庆. 开放式提问调查在食品研究与开发中的研究现状. 食品工业科技. 2022(12): 468-474 .
![]() | |
5. |
陈亦新,兰义宾,问亚琴,刘雅冉,陈奎汛,宋昊,朱保庆. 自选特性排序剖面法在食品研究与开发中的应用及研究现状. 食品工业科技. 2022(13): 475-483 .
![]() | |
6. |
苏庆宇,常晓敏,刘雅冉,许晓青,李佳泽,朱雨萱,宋昊,朱保庆. 投影地图法在食品研究与开发中的研究现状. 食品工业科技. 2022(16): 390-399 .
![]() |