YIN Haiyang, LIU Zhenchun, ZHANG Shikang, et al. Optimization of Ultrasonic-assisted Enzymatic Extraction of ACE Inhibitory Peptides from Cyperus esculentus by Response Surface Method[J]. Science and Technology of Food Industry, 2021, 42(14): 182−187. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100130.
Citation: YIN Haiyang, LIU Zhenchun, ZHANG Shikang, et al. Optimization of Ultrasonic-assisted Enzymatic Extraction of ACE Inhibitory Peptides from Cyperus esculentus by Response Surface Method[J]. Science and Technology of Food Industry, 2021, 42(14): 182−187. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100130.

Optimization of Ultrasonic-assisted Enzymatic Extraction of ACE Inhibitory Peptides from Cyperus esculentus by Response Surface Method

More Information
  • Received Date: October 19, 2020
  • Available Online: May 19, 2021
  • In this paper, based on the single-factor experiment, the response surface method was used to optimize the ultrasonic-assisted enzyme extraction process of Cyperus esculentus ACE inhibitory peptide, and the best auxiliary enzyme was selected through the inhibition experiment of angiotensin converting enzyme. The results showed that the optimal process conditions for the ultrasonic-assisted enzymatic extraction of Cyperus esculentus ACE inhibitory peptides were: Substrate concentration 3%, ultrasonic treatment time 20 min, enzymolysis temperature 45 ℃, enzyme addition 5000 U/g, ultrasonic power 180 W, enzymolysis time 3 h, the best auxiliary enzyme-alkaline protease, under this condition, the ACE inhibition rate was 74.16%. This study would provide a theoretical basis for the extraction of Cyperus esculentus ACE inhibitory peptides, which laid a foundation for further research on Cyperus esculentus ACE inhibitory peptide.
  • [1]
    于红, 敬思群. 油莎豆化学成分及应用研究进展[J]. 食品工业,2015,36(6):242−245.
    [2]
    阳振乐. 油莎豆的特性及其研究进展[J]. 北方园艺,2017,17(392):199−208.
    [3]
    Rahul V Manek, Philip F Builders, William M Kolling, et al. Physicochemical and binder properties of starch obtained from Cyperus esculentus[J]. AAPS Pharm Sci Tech,2012,13(2):379−388. doi: 10.1208/s12249-012-9761-z
    [4]
    Moonjung Kim, Siwon No, Suk Hoo Yoon. Stereospecific analysis of fatty acid composition of Chufa (Cyperus esculentus L.) tuber oil[J]. Journal of the American Oil Chemists' Society,2007,84(11):1079−1080. doi: 10.1007/s11746-007-1131-8
    [5]
    陈星, 陈滴, 刘蕾. 油莎豆全成分分析[J]. 食品科技,2009,34(3):165−168.
    [6]
    杨帆, 朱文学. 油莎豆研究现状及展望[J]. 粮食与油脂,2020,33(7):4−6.
    [7]
    Hankins C N, Shannon L M. Physical and enzymatic properties of a phytohemagglutinin from mung beans[J]. Journal of Biological Chemistry,1978,253(21):7791−7797. doi: 10.1016/S0021-9258(17)34439-3
    [8]
    Wei-Liang W, Guo-Jie W, Dao-Shuang L, et al. The physiological function and research progress of angiotensin-i-converting enzyme inhibitory petides[J]. Modern Food Science and Technology,2006,22(3):251−254.
    [9]
    孙宁玲. 高血压领域的热点及思考[J]. 中华高血压杂志,2015,23(3):203−205.
    [10]
    罗鹏. 葵花籽ACE抑制肽的分离纯化、结构分析与稳态化研究[D]. 武汉: 华中农业大学, 2018.
    [11]
    Martin M, Deussen A. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension[J]. Critical Reviews in Food Science and Nutrition,2019,59(8):1264−1283. doi: 10.1080/10408398.2017.1402750
    [12]
    Fagyas M, Úri K, Siket I M, et al. New perspectives in the renin-angiotensin-aldosterone system (RAAS) I: Endogenous angiotensin converting enzyme (ACE) inhibition[J]. PLoS One, 2014, 9(4): e87843.
    [13]
    Ceren D D, Aysun Y, Funda K G, et al. Angiotensin-i-converting enzyme (ACE)-inhibitory peptides from plants[J]. Nutrients,2017,9(4):316. doi: 10.3390/nu9040316
    [14]
    Wei L W, Guo J W, Dao S L, et al. The physiological function and research progress of angiotensin-i-converting enzyme inhibitory petides[J]. Modern Food Science and Technology,2006(3):251−254.
    [15]
    韩飞, 于婷婷, 周孟良, 等. 酶法生产大豆蛋ACE抑制肽的研究[J]. 食品科学,2008,29(11):369−374. doi: 10.3321/j.issn:1002-6630.2008.11.084
    [16]
    胡炜东, 蔡永敏, 鲁富宽. 响应面法优化油莎豆粕蛋白抗氧化肽制备工艺[J]. 食品工业,2014,35(2):105−108.
    [17]
    胡炜东, 蔡永敏, 鲁富宽, 等. 响应面分析法优化油莎豆粕蛋白提取工艺[J]. 食品科技,2013,38(6):171−175, 184.
    [18]
    Cushman D W, Cheung H S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung[J]. Elsevier,1971,20(7):1637−1648.
    [19]
    杨叶波, 蔡培培, 何文森. 大豆蛋白质的提取技术的研究进展[J]. 广州化工,2015,43(9):26−27. doi: 10.3969/j.issn.1001-9677.2015.09.011
    [20]
    安传相. 核桃源蛋白ACE抑制肽制备及分离纯化的研究[D]. 贵阳: 贵州大学, 2018.
    [21]
    胡庆娟, 吴光杰, 牛庆川, 等. 响应面试验优化木瓜蛋白酶法脱马齿苋多糖蛋白工艺[J]. 食品科学,2018,39(20):246−252. doi: 10.7506/spkx1002-6630-201820036
    [22]
    周洁静, 侯银臣, 刘旺旺, 等. 羊胎盘提取残余物免疫肽制备工艺的优化[J]. 食品与发酵工业,2015,41(3):129−134.
    [23]
    韩扬. 超声辅助酶法制备燕麦ACE抑制肽的研究[D]. 北京: 北京工商大学, 2010.
    [24]
    麻成金, 黄伟, 黄群, 等. 复合酶法提取仿栗籽蛋白的工艺优化[J]. 食品科学,2012,33(20):27−32.
  • Cited by

    Periodical cited type(6)

    1. 任书凝,宋永程,李缘,邢亚阁,毕秀芳. 超高压和热处理对沙棘-哈密瓜复合果汁品质的影响. 食品与发酵工业. 2023(02): 195-201 .
    2. 刘彩红,王雪,王静,王新宇,李慧,毕莹. 正丁醇对冷藏哈密瓜果实脯氨酸代谢的调控. 中国食品学报. 2023(05): 281-290 .
    3. 苏常红,寻雅雯,宋子豪. CaCl_2、甜菜碱、5-氨基乙酰丙酸提升番茄耐低温弱光研究. 山西大学学报(自然科学版). 2023(05): 1217-1226 .
    4. 毕莹,李慧,马鑫,王新宇,王雪,王富鑫,许文昌,王静. 不同品种哈密瓜果实采后品质与耐冷性关系分析. 食品科技. 2023(10): 27-34 .
    5. 杨慧,吴洪斌,贾文婷,刘战霞. 基于品质分析的哈密瓜真空冷冻-变温压差膨化联合干燥工艺研究. 保鲜与加工. 2022(05): 56-62 .
    6. 刘彩红,王雅琪,李乾,王雪,古丽丹·塔勒达吾,木合塔尔江·艾海提,冯作山,王静. 正丁醇对采后哈密瓜冷害及活性氧代谢的影响. 果树学报. 2021(11): 1984-1994 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (354) PDF downloads (24) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return