WU Tong, ZHOU Hongbing, WANG Jia, et al. Effect of Different Solvent Extracts of Amygdalus mongolica on Liver Fibrosis Rat Models Induced by Carbon Tetrachloride and Its Mechanisms[J]. Science and Technology of Food Industry, 2021, 42(14): 348−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090212.
Citation: WU Tong, ZHOU Hongbing, WANG Jia, et al. Effect of Different Solvent Extracts of Amygdalus mongolica on Liver Fibrosis Rat Models Induced by Carbon Tetrachloride and Its Mechanisms[J]. Science and Technology of Food Industry, 2021, 42(14): 348−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090212.

Effect of Different Solvent Extracts of Amygdalus mongolica on Liver Fibrosis Rat Models Induced by Carbon Tetrachloride and Its Mechanisms

More Information
  • Received Date: September 20, 2020
  • Available Online: May 25, 2021
  • To investigate the effects and possible mechanisms of different polarity positions of Amygdalus mongolica on carbon tetrachloride to hepatic fibrosis rats. Male SD rats were divided into 7 groups with 10 in each group. The rats were divided into model group, silymarin group (0.05 g/kg), positive drug group and Amygdalus mongolica petroleum ether, ethyl acetate, n-butanol and aqueous extract group. The rats in the same group were not given carbon tetrachloride as normal control group. After 8 weeks of treatment, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activity and malondialdehyde (MDA), superoxide dismutase (SOD), hyaluronic acid (HA), laminin (LN), type Ⅲ collagen (PC-Ⅲ) and type Ⅳ collagen (Col-Ⅳ) content were measureed, and the liver index and spleen index were calculated; The contents of MDA, SOD and Hydroxyproline(HYP) and the expressions of transforming growth factor β1 protein (TGF-β1), mothers against decapentaplegic homolog 3 (Smad3) and Smad7 mRNA in liver tissues were also measured. Compared with the model group, the body mass of the rats in various polar parts of Amygdalus mongolica significantly increased (P<0.05), MDA in serum and tissues significantly decreased (P<0.05), SOD in serum significantly increased (P<0.05), and liver index of the rats in petroleum ether and water parts significantly decreased (P<0.05). The results of pathological examination showed that the liver fibrosis of the rats in each part of the drug group was significantly improved. Amygdalus mongolica petroleum ether part and n-butanol part could significantly decrease in the serum AST, ALP, HA, PC-Ⅲ content (P<0.05), HYP, TGF-β1 and Smad3 levels in the organization (P<0.05). The n-butanol position of Amygdalus mongolica could significantly reduce the serum ALT level (P<0.05). Amygdalus mongolica herbs petroleum ether, n-butanol extract has improved markedly effect to liver fibrosis, which is the preferred active site for protection of liver fibrosis and its mechanism may be through adjusting abnormal collagen synthesis and TGF-β1 / Smad signaling pathways to work.
  • [1]
    夏海珊, 陈少茹, 钟月春, 等. 肝纤维化的发病机制和药物治疗现况[J]. 中国医药导报,2014,11(18):162−165, 168.
    [2]
    江远, 熊丽. 莪术治疗肝病的研究进展[J]. 中西医结合肝病杂志,2005(2):127−129. doi: 10.3969/j.issn.1005-0264.2005.02.032
    [3]
    Strader D B, Wright T, Thomas D L, et al. Diagnosis, management, and treatment of hepatitis C[J]. Hepatology,2004,39(4):1147−1171. doi: 10.1002/hep.20119
    [4]
    张可锋, 黄思茂, 陈毅飞, 等. 七味净肝灵对二甲基亚硝胺诱导肝纤维化大鼠的保护作用及其作用机制[J]. 中药材,2018,41(2):464−467.
    [5]
    Zhang Y, Miao H, Yan H, et al. Hepatoprotective effect of forsythiae fructus water extract against carbon tetrachloride-induced liver fibrosis in mice[J]. Journal of Ethnopharmacology,2018,23(218):27−34.
    [6]
    蒋征奎, 王学方. 茯苓皮水提物对四氯化碳诱导大鼠肝纤维化的改善作用[J]. 中国药房,2017,28(22):3065−3068. doi: 10.6039/j.issn.1001-0408.2017.22.11
    [7]
    吴鹏, 王亚东, 方颖, 等. 肝豆灵抑制Notch信号通路干预铜负荷致肝纤维化大鼠肝脏上皮-间质转化[J]. 安徽中医药大学学报,2018,37(6):79−84. doi: 10.3969/j.issn.2095-7246.2018.06.023
    [8]
    赵一之. 蒙古扁桃的植物区系地理分布研究[J]. 内蒙古大学学报(自然科学版),1995,26(6):713−715.
    [9]
    马毓泉. 内蒙古植物志(第三卷)[M]. 呼和浩特: 内蒙古人民出版社, 1989, 4(2): 519−522.
    [10]
    斯琴巴特尔. 蒙古扁桃[J]. 生物学通报,2003,38(8):23−24. doi: 10.3969/j.issn.0006-3193.2003.08.009
    [11]
    王斌. 黄河三角洲滨海湿地药用耐盐植物蒙古鸦葱和柽柳化学成分及生物活性研究[D]. 青岛: 中国海洋大学, 2007.
    [12]
    郝海梅, 石松利, 周红兵, 等. 蒙古扁桃油对肾纤维化大鼠的保护作用研究[J]. 中药药理与临床,2020,36(5):105−109.
    [13]
    尚立芝, 王付, 苗小玲, 等. 四逆散加味抗肝纤维化的作用及机制研究[J]. 中国实验方剂学杂志,2013,19(5):207−211.
    [14]
    方海涛, 李俊兰, 王黎元. 珍稀濒危植物蒙古扁桃研究进展[J]. 阴山学刊(自然科学版),2004,18(2):16−18.
    [15]
    Zheng Q N, Wang J, Zhou H B, et al. Effectiveness of Amygdalus mongolica oil in hyperlipidemic rats and underlying antioxidant processes[J]. Journal of Toxicology and Environmental Health A,2017,80(22):1193− 1198. doi: 10.1080/15287394.2017.1367124
    [16]
    郑倩男, 冯长梅, 吴桐, 等. 蒙古扁桃油对高脂血症大鼠肝脏保护作用[J]. 食品工业科技,2018,39(20):286−292.
    [17]
    郑倩男, 石松利, 周红兵, 等. 蒙古扁桃石油醚提取物对高脂血症大鼠血脂水平、肝功能及脂质过氧化的影响[J]. 中药药理与临床,2016,32(4):67−70.
    [18]
    贾小叶, 高晨, 刘庆, 等. 蒙古扁桃药材抗大鼠肾纤维化有效提取物部位的筛选[J]. 食品工业科技,2020,41(9):297−302, 308.
    [19]
    权博文, 吴桐, 刘庆, 等. 蒙古扁桃种仁不同极性部位对博来霉素致大鼠肺纤维化的保护作用[J]. 食品工业科技,2020,41(22):305−309.
    [20]
    吴培赛, 石松利, 周红兵, 等. 蒙古扁桃药材不同提取物对高脂血症大鼠血脂和肝功能的影响[J]. 中国实验方剂学志,2015,21(21):113−117.
    [21]
    金俊杰, 钟鸣, 余胜民, 等. 穿破石水提取物对四氯化碳致大鼠肝纤维化的治疗作用[J]. 中国实验方剂学杂志,2012,18(22):258−262.
    [22]
    任美萍, 刘艳, 李华, 等. 楤木皂苷抗四氯化碳致大鼠肝纤维化作用[J]. 沈阳药科大学学报,2013,30(12):958−960, 966.
    [23]
    赵松峰, 阚全程. 六味五灵片对四氯化碳致大鼠肝纤维化的保护作用[J]. 中国药理学通报,2011,27(6):872−875. doi: 10.3969/j.issn.1001-1978.2011.06.031
    [24]
    刘鸣昊. 芪珠方对肝纤维化大鼠TGF-β1/Smad信号传导通路的影响[D]. 南京: 南京中医药大学, 2013.
    [25]
    张继红, 邓为, 石孟琼, 等. 珠子参皂苷对四氯化碳致大鼠肝纤维化的保护作用[J]. 中药药理与临床,2014,30(5):73−78.
    [26]
    郭羽轩, 董惠娟, 刘涛, 等. 睡莲花总黄酮对四氯化碳诱导大鼠肝纤维化的防治作用[J]. 中草药,2020,51(19):4983−4990. doi: 10.7501/j.issn.0253-2670.2020.19.017
    [27]
    陈淳. 红背叶根醇提物的药效学及化学成分的初步研究[D]. 广州: 南方医科大学, 2015.
    [28]
    蒙明瑜. 剑叶耳草活性成分的筛选及其抗肝炎作用的实验研究[D]. 南宁: 广西医科大学, 2012.
    [29]
    冯欣. 藏药波棱瓜子抗肝纤维化作用及机理研究[D]. 北京: 北京中医药大学, 2018.
    [30]
    Doustimotlagh A H, Dehpour A R, Nourbakhsh M, et al. Alteration inmembrane protein, antioxidant status and hexokinase activity inerythrocytes of CCl4-induced cirrhotic rats[J]. Acta Med Iran,2014,52(11):795−803.
    [31]
    吴晓东, 张峰, 梁瑞峰. 大黄素与丹参素合用对四氯化碳诱导大鼠肝纤维化的保护作用[J]. 天津中医药,2018,35(2):143−146.
    [32]
    董红筠, 王敬, 李萍, 等. 软肝化纤丸抗慢性乙型肝炎肝纤维化60例临床观察[J]. 天津中医药,2013,30(5):266−268.
    [33]
    Wu J, Pan L, Jin X, et al. The role of oxymatrine in regulating TGF-β1 in rats with hepatic fibrosis[J]. Acta Cir Bras,2018,33(3):207−215. doi: 10.1590/s0102-865020180030000002
    [34]
    聂珍贵, 王姝, 王世全, 等. 和肝汤对四氯化碳致小鼠肝纤维化的防治作用[J]. 时珍国医国药,2018,29(8):1828−1830.
    [35]
    樊晓明, 俞富军. 肝纤维化前沿[M]. 上海: 复旦大学出版社, 2015.
    [36]
    Nakamura T, Sakata R, Ueno T, et al. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethyl nitrosamine-treated rats[J]. Hepatology,2000,32(2):247−255. doi: 10.1053/jhep.2000.9109
    [37]
    李书香, 王爱民. 肝纤维化与转化生长因子-β1关系的研究进展[J]. 中华实验外科杂志,2017,34(6):1079−1080. doi: 10.3760/cma.j.issn.1001-9030.2017.06.063
    [38]
    Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta smad signal in hepatic fibrogenesis[J]. Gut,2007,56(2):284−292. doi: 10.1136/gut.2005.088690
    [39]
    Moustakas A, Souchelnytskyi S, Heldin C H. Smad regulation in TGF-beta signal transduction[J]. Journal of Cell Science,2001,114(24):4359−4369. doi: 10.1242/jcs.114.24.4359
    [40]
    Derynck R, Zhang Y E. Smad-department and Smad-independent pathway in TGF-beta family signaling[J]. Nature,2003,425(6958):577−584. doi: 10.1038/nature02006
  • Cited by

    Periodical cited type(1)

    1. 张鹏,王延锋,史磊,闫水华,王金贺,刘姿彤,葛欣然,赵静. 蜜环菌菌种选育及多糖药理活性的研究进展. 食药用菌. 2024(02): 104-108+148 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (228) PDF downloads (16) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return