DENG Yunbin, HUANG Dongqin, YUE Tianxiang. Purification Technology of Polysaccharides from Lophatherum gracile Brongn. by Macroporous Resin Adsorption and Its Effect on Athletic Endurance of Mice[J]. Science and Technology of Food Industry, 2021, 42(14): 169−174. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090194.
Citation: DENG Yunbin, HUANG Dongqin, YUE Tianxiang. Purification Technology of Polysaccharides from Lophatherum gracile Brongn. by Macroporous Resin Adsorption and Its Effect on Athletic Endurance of Mice[J]. Science and Technology of Food Industry, 2021, 42(14): 169−174. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090194.

Purification Technology of Polysaccharides from Lophatherum gracile Brongn. by Macroporous Resin Adsorption and Its Effect on Athletic Endurance of Mice

More Information
  • Received Date: September 20, 2020
  • Available Online: May 18, 2021
  • The purified technological parameters of polysaccharide extract from Lophatherum gracile Brongn was optimized, and its effect on athletic endurance was observed. The best type of macroporous resin was selected through performance comparison of static adsorption and elution experiments, then the effects of sample solution pH, sample concentration, loading speed, sample volume, volume fraction of eluent, dosage of eluent and flow rate of elution on the dynamic purification effect were analyzed. Meanwhile, purified product on the influence of athletic endurance of mice was investigated by loading swimming test and related biochemical index detection. The results showed that the optimum purification process parameters were as follows: The initial concentration of sample solution was 5 mg/mL, the sample volume was 60 mL with loading speed of 2.0 mL/min, the pH value of sample solution was 5.0, and the volume fraction of ethanol was 80%, the eluent volume was 160 mL with flow rate of 1.0 mL/min. The purity of polysaccharide in product increased from 16.39% to 57.35%. Compared with the blank control group, the purified product groups at middle and high doses significantly prolonged exhaustive swimming time (P<0.05, P<0.01), enhanced activity of lactic dehydrogenase(P<0.05, P<0.01), decreased lactic acid and urea nitrogen content (P<0.05, P<0.01) after exercise. Therefore, polysaccharide of Lophatherum gracile Brongn. could preferably improve athletic endurance in body.
  • [1]
    焦坤. 淡竹叶化学成分的分析方法研究进展[J]. 广州化工,2017,45(19):20−21. doi: 10.3969/j.issn.1001-9677.2017.19.008
    [2]
    刘崇万, 范业文, 刘世娟, 等. 运用正交设计及模糊综合评价法优化藿香淡竹叶饮料配方[J]. 食品工业,2017,38(6):128−131.
    [3]
    黄赛金, 尹爱武, 龚灯, 等. 淡竹叶多糖的抗衰老作用研究[J]. 现代食品科技,2015,31(11):51−55.
    [4]
    Ai S, Fan X, Fan L, et a1. Extraction and chemical characterization of Angelica sinensis polysaccharides and its antioxidant activity[J]. Carbohydr Polym,2013,94(2):731−736. doi: 10.1016/j.carbpol.2013.02.007
    [5]
    Xie Q, Sun Y T, Cao L L, et al. Antifatigue and antihypoxia activities of oligosaccharides and polysaccharides from Codonopsis pilosula in mice[J]. Food & Function,2020,11(7):6352−6362.
    [6]
    Zhang C J, Guo J Y, Cheng H, et al. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus[J]. International Journal of Biological Macromolecules,2020,151:855−860. doi: 10.1016/j.ijbiomac.2020.02.147
    [7]
    Teng Y S, Wu D. Anti-fatigue effect of green teapolyphenols (−)-epigallocatechin-3-gallate (EGCG)[J]. Pharmacogn Mag,2017,13(50):326−331. doi: 10.4103/0973-1296.204546
    [8]
    You L, Zhao M, Regenstein J M, et al. In vitro antioxidant activity and in vivo Anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion[J]. Food Chem,2011,124(1):188−194. doi: 10.1016/j.foodchem.2010.06.007
    [9]
    王晋, 杜华, 王鲁石. 淡竹叶多糖的超声提取及含量测定[J]. 中成药,2004,26(12):89−90.
    [10]
    李志洲. 淡竹叶多糖的提取及体外抗氧化性研究[J]. 中成药,2008(3):434−437. doi: 10.3969/j.issn.1001-1528.2008.03.038
    [11]
    王小明, 陈碧, 张鹏, 等. 甜茶叶中总黄酮大孔树脂纯化工艺及抗氧化活性研究[J]. 食品工业科技,2019,40(24):28−33.
    [12]
    王秋阳, 赵欣锐, 王超, 等. 大孔树脂纯化红松松仁膜衣黄酮的抗氧化活性研究[J]. 食品科技,2019,44(9):223−227.
    [13]
    张海容, 白娟, 魏增云, 等. 超声萃取-响应面法优化淡竹叶多糖提取方法研究[J]. 化学研究与应用,2013,25(3):303−310. doi: 10.3969/j.issn.1004-1656.2013.03.006
    [14]
    吴金松, 耿广威, 陈晓培, 等. 信阳毛尖茶末多糖的分离纯化和体外抗氧化活性研究[J]. 食品工业科技,2020,41(13):181−186.
    [15]
    张沛, 宋志军, 邰正福. 响应面法优化大孔树脂纯化黄精总皂苷提取物工艺[J]. 食品工业,2019,40(10):136−141.
    [16]
    刘旻昊, 齐娜, 邓红, 等. 新疆红肉苹果多酚的纯化、组成分析与抗氧化活性[J]. 食品工业科技,2019,40(12):38−44.
    [17]
    朱晓亚. 天门冬总皂苷提取物的纯化及体内抗疲劳作用研究[J]. 食品科技,2019,44(9):263−269.
    [18]
    王书全, 李丽. 螺旋藻多糖抗疲劳作用研究[J]. 食品工业科技,2013,34(22):328−330.
    [19]
    Tan W, Yu K Q, Liu Y Y, et al. Antifatigue activity of poly-saccharides extract from Radix Rehmanniae preparat[J]. Int J Biol Macromol,2012,50(1):59−62. doi: 10.1016/j.ijbiomac.2011.09.019
    [20]
    Wang J, Li S S, Fan Y Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. J Ethnopharmacol,2010,130(2):421−423. doi: 10.1016/j.jep.2010.05.027
    [21]
    Nie C Z P, Zhu P L, Ma S P, et al. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce[J]. Carbohydrate Polymers,2018,188:236−242. doi: 10.1016/j.carbpol.2018.02.009
    [22]
    陈琛, 李鑫鑫, 魏唯, 等. 大孔树脂纯化天麻多糖的工艺研究[J]. 四川大学学报(自然科学版),2018,55(5):1109−1115.
    [23]
    陈艳, 李美凤, 孟晓, 等. 大孔树脂法纯化松茸多糖的工艺研究[J]. 食品与发酵科技,2017,53(5):54−57.
    [24]
    刘宛玲, 肖建辉, 黄占旺, 等. 大孔树脂分离纯化麦胚黄酮研究[J]. 食品工业科技,2017,38(2):256−259.
    [25]
    Fenglai L, Wei Huan, Wang Lei, et al. Separation and purification of macranthoidin B and dipsacoside B from Flos lonicerae by HP-20 and HP-SS macroporous resin[J]. Agricultural Science & Technology,2016,17(4):765−768.
    [26]
    Ni W H, Gao T T, Wang H L, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants[J]. J Ethnopharmacol,2013,150(2):529−535. doi: 10.1016/j.jep.2013.08.055
    [27]
    Zhao X N, Liang J L, Chen H B, et al. Anti-fatigue and antioxidant activity of the polysaccharides isolated from Millettiae speciosae Champ. Leguminosae[J]. Nutrients,2015,7(10):8657−8669. doi: 10.3390/nu7105422
    [28]
    孙伟, 叶润, 蔡静, 等. 大孔树脂纯化桑白皮多糖的工艺研究[J]. 食品工业科技,2020,41(14):129−133.
    [29]
    张洪坤. 大孔树脂吸附纯化茯苓多糖工艺研究[J]. 食品研究与开发,2017,38(23):67−71. doi: 10.3969/j.issn.1005-6521.2017.23.012
    [30]
    焦迎春, 旷慧, 吴嘉南, 等. 柴达木大肥菇多糖对小鼠的抗疲劳作用[J]. 现代食品科技,2018,34(8):24−30.
  • Cited by

    Periodical cited type(14)

    1. 刘非凡,温纪平,展小彬,石松业,李柯新,唐浩洁. 冷等离子体处理在食品中的应用研究进展. 食品研究与开发. 2024(12): 181-188 .
    2. 闵照永. 等离子体活化水及微波协同处理对鲜湿面片特性的影响. 食品科技. 2024(06): 180-186 .
    3. 高婷,尹凯静,邵栋梁,赵丹丹,戴文娜. 低温等离子体技术杀灭食源性致病菌的研究进展. 农产品加工. 2024(14): 100-103 .
    4. 方镇洲,杨体园,赵玲艳,邓洁红. 低温等离子体处理对华容大叶芥菜贮藏品质的影响. 食品安全质量检测学报. 2024(20): 257-262 .
    5. 张腾,江昊. 超声渗透等离子活化水对香蕉切片鲜切品质的影响. 包装工程. 2023(05): 65-74 .
    6. 萧文宇,吴迅,黄显斌,李玲,何志平,郭俭. 低温等离子体活化水对蓝莓表面微生物抑制作用及其贮藏品质的影响. 食品工业科技. 2023(08): 359-365 . 本站查看
    7. 颜心怡,李锦晶,李赤翎,吴金鸿,俞健,王发祥,刘永乐,李向红. 冷等离子体技术对食品组分的影响及其作用机制. 食品工业科技. 2023(12): 445-454 . 本站查看
    8. 李芮,宋雅琪,周丹丹,屠康. 等离子体活化水对鲜切莲藕杀菌及保鲜的影响. 食品与生物技术学报. 2023(10): 30-40 .
    9. 田方,徐咏菁,孙志栋,周琦,王志远,华镇南,蔡路昀. 低温等离子体处理对鲜切猕猴桃片微观结构及理化特性的影响. 食品与发酵工业. 2023(21): 167-174 .
    10. 赵莹,严龙飞,严文静,章建浩. 低温等离子体活化水与介质阻挡放电联合处理对草莓冷杀菌效果及品质的影响. 食品科学. 2022(17): 105-116 .
    11. 韩扬,朱成志,李沁雨,李立,马新新,赵志军,包怡红. ε-聚赖氨酸复合保鲜剂对鸡毛菜品质及微生物的影响. 食品与发酵工业. 2022(18): 205-212 .
    12. 白亚龙,廖小艳,崔妍. 消除鲜食生菜中细菌污染的研究进展. 食品科学. 2022(19): 367-374 .
    13. 相启森,张嵘,杜桂红,王利敏,蒋爱民. 等离子体活化水对沙门氏菌的灭活作用及机制研究. 食品工业科技. 2021(08): 138-143 . 本站查看
    14. 翟娅菲,田佳丽,相启森,禹晓,申瑞玲,王章存. 非热加工技术在果蔬保鲜中的应用. 食品工业. 2021(05): 327-332 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (295) PDF downloads (22) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return