LI Chao, ZHOU Bo. Detection of Moldy Rice by Self-made Electronic Nose [J]. Science and Technology of Food Industry, 2021, 42(12): 218−224. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090092.
Citation: LI Chao, ZHOU Bo. Detection of Moldy Rice by Self-made Electronic Nose [J]. Science and Technology of Food Industry, 2021, 42(12): 218−224. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090092.

Detection of Moldy Rice by Self-made Electronic Nose

More Information
  • Received Date: September 09, 2020
  • Available Online: April 19, 2021
  • In order to identify the moldy rice rapidly, an electronic nose system based on LabVIEW was developed. The volatiles of rice samples mixed with different proportions of moldy rice in different days were detected by the electronic nose system. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed on the collected data. Finally, back propagation (BP) neural network was used to establish the prediction model. The results showed that, there was significant difference in volatile matter between normal rice and moldy rice volatiles, and the LDA classification effect was better than PCA. The correlation between predicted value and actual value of the model was more than 0.953, the average relative error of training set and test set was 3.56% and 4.18%, and the recognition rate of training set and test set was 100% for normal rice samples. In conclusion, the electronic nose system could be used as an effective means of non-destructive detection of moldy rice, and had practical significance in rice quality identification.
  • [1]
    刘晓莉, 陈超, 单晓雪. 储藏稻谷品质变化研究进展[J]. 粮油仓储科技通讯,2018,34(6):31−33. doi: 10.3969/j.issn.1674-1943.2018.06.010
    [2]
    张红梅, 何玉静. 电子鼻技术在粮食质量检测中的应用[J]. 农机化研究,2009,31(3):180−182. doi: 10.3969/j.issn.1003-188X.2009.03.056
    [3]
    惠国华, 倪彧. 基于电子鼻系统的粮食霉变检测方法研究[J]. 中国食品学报,2011,11(5):162−168. doi: 10.3969/j.issn.1009-7848.2011.05.026
    [4]
    李佳楠. 近红外光谱技术在粮食检测中的应用进展[J]. 粮食科技与经济,2018,43(8):77−78, 102.
    [5]
    陈尚兵, 袁建, 鞠兴荣, 等. 机器视觉技术在粮食品质检测中的应用进展[J]. 粮食与饲料工业,2018(6):50−53, 57.
    [6]
    冯洁, 刘云宏, 王庆庆, 等. 基于高光谱成像技术的金银花霉变检测模型[J]. 食品与机械,2018,34(8):60−64, 78.
    [7]
    林振华, 姜水, 张红梅, 等. 基于金属氧化物传感器阵列的小麦霉变程度检测[J]. 传感技术学报,2018,31(7):1017−1023. doi: 10.3969/j.issn.1004-1699.2018.07.007
    [8]
    沈飞, 吴启芳, 姜大峰, 等. 基于电子鼻技术的糙米黄曲霉毒素污染快速检测方法研究[J]. 中国粮油学报,2017,32(6):146−151. doi: 10.3969/j.issn.1003-0174.2017.06.025
    [9]
    Gu Shuang, Wang Jun, Wang Yongwei. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using electronic nose[J]. Food Chemistry,2019,292:325−335. doi: 10.1016/j.foodchem.2019.04.054
    [10]
    Mma A, Nha C, Saaa C, et al. Principles and recent advances in electronic nose for quality inspection of agricultural and food products[J]. Trends in Food Science & Technology,2020,99:1−10.
    [11]
    Tan Juzhong, Xu Jie. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review[J]. Artificial Intelligence in Agriculture,2020,4:104−115. doi: 10.1016/j.aiia.2020.06.003
    [12]
    任二芳, 牛德宝, 温立香, 等. 电子鼻和电子舌在水果检测中的应用进展[J]. 食品工业,2019,40(10):261−264.
    [13]
    Jia Wenshen, Liang Gang, Tian Hui, et al. Electronic nose-based technique for rapid detection and recognition of moldy apples[J]. Sensors (Basel, Switzerland),2019,19(7):2−11.
    [14]
    丁庆行, 赵东杰, 刘军, 等. 一种仓储环境水果腐烂监测的电子鼻系统[J]. 电子器件,2019,42(3):781−787. doi: 10.3969/j.issn.1005-9490.2019.03.045
    [15]
    Mu Fanglin, Gu Yu, Zhang Jie, et al. Milk source identification and milk quality estimation using an electronic nose and machine learning techniques[J]. Sensors (Basel, Switzerland),2020,20(15):4238.
    [16]
    董福凯, 周秀丽, 查恩辉. 电子鼻在掺假牛肉卷识别中的应用[J]. 食品工业科技,2018,39(4):219−221, 227.
    [17]
    沈飞, 吴启芳, 魏颖琪, 等. 谷物霉菌挥发性物质的电子鼻GC-MS检测研究[J]. 中国粮油学报,2016,31(7):148−152, 156. doi: 10.3969/j.issn.1003-0174.2016.07.027
    [18]
    Federica Cheli, Luciano Pinotti, Matteo Ottoboni, et al. E-nose for real time and online quality and safety control and management[J]. Cereal Industry,2016,201(6):52−58.
    [19]
    Gu Shuang, Wang Jun, Wang Yongwei. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using electronic nose[J]. Food Chemistry,2019:292.
    [20]
    董画, 何雨, 薛桂新. 电子鼻技术对山葡萄酒酒龄的识别[J]. 中国酿造,2018,37(10):87−92. doi: 10.11882/j.issn.0254-5071.2018.10.017
    [21]
    刘芳, 杨康卓, 张建敏, 等. 基于电子鼻和气质联用技术的浓香型白酒分类[J]. 食品与发酵工业,2020,46(2):73−78.
    [22]
    Claudia Gonzalez Viejo, Sigfredo Fuentes, Amruta Godbole, et al. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality[J]. Sensors and Actuators B: Chemical,2020,308:1−7.
    [23]
    郭玉宝. 大米储藏陈化中蛋白质对其糊化特性的影响及其相关陈化机制研究[D]. 南京: 南京农业大学, 2012.
    [24]
    胡志全, 王海洋, 刘友明. 电子鼻识别大米挥发性物质的应用性研究[J]. 中国粮油学报,2013,28(7):93−98. doi: 10.3969/j.issn.1003-0174.2013.07.018
    [25]
    熊作周. 基于人工嗅觉系统稻米品种鉴定方法的研究[D]. 洛阳: 河南科技大学, 2012.
    [26]
    张红梅, 王俊, 叶盛, 等. 电子鼻传感器阵列优化与谷物霉变程度的检测[J]. 传感技术学报,2007(6):1207−1210. doi: 10.3969/j.issn.1004-1699.2007.06.002
    [27]
    Jiang S, Wang J, Wang Y, Cheng S. A novel framework for analyzing MOS E-nose data based on voting theory: Application to evaluate the internal quality of Chinese pecans[J]. Sensors & Actuators: B. Chemical,2016:511−521.
    [28]
    Liu Y, Sun X, Ouyang A. Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN[J]. LWT-Food Science and Technology,2010,43(4):602−607. doi: 10.1016/j.lwt.2009.10.008
    [29]
    肖立中, 陈洋洋, 田怀香, 等. 基于PCA-BP算法的鸡精风味质量模型研究[J]. 中国调味品,2016,41(11):78−82. doi: 10.3969/j.issn.1000-9973.2016.11.018
    [30]
    梁华正, 张燮, 饶军, 等. 微生物挥发性代谢产物的产生途径及其质谱检测技术[J]. 中国生物工程杂志,2008(1):124−133.
    [31]
    Capuano Rosamaria, Paba Emilia, Mansi Antonella, et al. Aspergillus species discrimination using a gas sensor array[J]. Sensors,2020,20(14):4−12.
  • Cited by

    Periodical cited type(1)

    1. 王芳,刘洪存,陆淑雯,杨立芳,黄盈,姜明国,孟娟. HPLC法测定云芝菌发酵茶中9种活性成分及抗氧化活性研究. 食品工业科技. 2024(18): 258-264 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return