SUN Xiyun, WANG Jingwen, TIAN Sihui, et al. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080268.
Citation: SUN Xiyun, WANG Jingwen, TIAN Sihui, et al. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080268.

Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols

More Information
  • Received Date: August 26, 2020
  • Available Online: August 31, 2021
  • Phenolic compounds are important components in plant food, and they have various functional activities. However, due to their low bioavailability, they cannot fully exert their biological activities in vivo. Therefore, it is necessary to find an effective way to improve its bioavailability. This article reviews the effects of three food matrices, polysaccharides, proteins, and lipids, and different processing methods on the bioavailability of polyphenols, in order to provide references and considerations for improving the bioavailability of polyphenols in food processing.
  • [1]
    Alain-Michel B. Evolution and current status of research in phenolic compounds[J]. Phytochemistry,2007,68(22-24):2722−2735. doi: 10.1016/j.phytochem.2007.06.012
    [2]
    Claudine M, Augustin S, Christine M, et al. Polyphenols: Food sources and bioavailability[J]. The American Journal of Clinical Nutrition,2004,79(5):727−747. doi: 10.1093/ajcn/79.5.727
    [3]
    Massimo D’A, Carmela F, Rosaria V, et al. Bioavailability of the polyphenols: Status and controversies[J]. International Journal of Molecular Sciences,2010,11(4):1321−1342. doi: 10.3390/ijms11041321
    [4]
    Francesco V, Catalina A L, Cristina A L, et al. Polyphenols and human health: Aprospectus[J]. Critical Reviews in Food Science and Nutrition,2011,51(6):524−546. doi: 10.1080/10408391003698677
    [5]
    Nagendran B, Kalyana S, Samir S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses[J]. Food Chemistry,2006,99(1):191−203. doi: 10.1016/j.foodchem.2005.07.042
    [6]
    Fereidoon S, Priyatharini A. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-a review[J]. Journal of Functional Foods,2015,18:820−897. doi: 10.1016/j.jff.2015.06.018
    [7]
    Kalidas S. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: A review[J]. Process Biochemistry,2004,39(7):789−804. doi: 10.1016/S0032-9592(03)00088-8
    [8]
    Takanori T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies[J]. Molecular Nutrition & Food Research,2012,56(1):159−170.
    [9]
    Ahmed E F, Yi Hsu J. Feruloylesterases as biotechnological tools: Current and future perspectives[J]. Acta Biochimica et Biophysica Sinica,2007,39(11):811−828. doi: 10.1111/j.1745-7270.2007.00348.x
    [10]
    Shashank K, Abhay K P. Chemistry and biological activities of flavonoids: An overview[J]. The Scientific World Journal,2013,2013:1−16.
    [11]
    Anna P, Rosa Maria V, Sara F C, et al. Polyphenol-rich foods exhibit DNA antioxidative properties and protect the glutathione system in healthy subjects[J]. Molecular Nutrition & Food Research,2012,56(7):1025−1033.
    [12]
    Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition,2005,81(1Suppl):230S−242S.
    [13]
    Jiao X Y, Li B, Zhang Q, et al. Effect of in vitro-simulated gastrointestinal digestion on the stability and antioxidant activity of blueberry polyphenols and their cellular antioxidant activity towards HepG2 cells[J]. International Journal of Food Science & Technology,2018,53:61−71.
    [14]
    Heaney R P. Factors influencing the measurement of bioavailability, taking calcium as a model[J]. Journal of Nutrition,2001,131(4):1344S−8S. doi: 10.1093/jn/131.4.1344S
    [15]
    Holst B, Williamson G. Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants[J]. Current Opinion in Biotechnology,2008,19(2):73−82. doi: 10.1016/j.copbio.2008.03.003
    [16]
    Aida S, Alba M, Maria-Paz R, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in vitro and in vivo models[J]. British Journal of Nutrition,2010,103(7):944−952. doi: 10.1017/S0007114509992741
    [17]
    Hugo P C, Jesús Fernando Ayala-Zavala, Gustavo A González-Aguilar. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants[J]. Journal of Food Science,2011,76(1):6−15. doi: 10.1111/j.1750-3841.2010.01957.x
    [18]
    Deisy H, Isabel G. Dietary polyphenols and human gut microbiota: A review[J]. Food Reviews International,2011,27(2):154−169. doi: 10.1080/87559129.2010.535233
    [19]
    Olivier A, Virgile D, Sylvain G, et al. Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats[J]. Journal of Nutrition,2003,133(6):1860−1865. doi: 10.1093/jn/133.6.1860
    [20]
    Tomohiko N, Kunihisa I, Yasuo S, et al. Chronic ingestion of apple pectin can enhance the absorption of quercetin[J]. Journal of Agricultural and Food Chemistry,2009,57(6):2583−2587. doi: 10.1021/jf803547h
    [21]
    Tomohiko N, Yoshiki T, Yasuo S, et al. Simultaneous ingestion of high-methoxy pectin from apple can enhance absorption of quercetin in human subjects[J]. The British Journal of Nutrition,2015,113(10):1−8.
    [22]
    Seda Yildirim Elikoğlu, Yasar Kemal Erdem. Interactions between milk proteins and polyphenols: binding mechanisms, related changes and the future trends in dairy industry[J]. Food Reviews International,2017,34(7):665−697.
    [23]
    Derek D S, Malina K, Heather R S, et al. Food effects on the absorption and pharmacokinetics of cocoa flavanols[J]. Life Sciences,2003,73(7):857−869. doi: 10.1016/S0024-3205(03)00373-4
    [24]
    Van Het Hof K H, Kivits G A A, Weststrate J A, et al. Bioavailability of catechins from tea: the effect of milk[J]. European Journal of Clinical Nutrition,1998,52(5):356−359. doi: 10.1038/sj.ejcn.1600568
    [25]
    Giselle S D, Adriana F. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans[J]. Journal of Agricultural and Food Chemistry,2011,59(14):7925−7931. doi: 10.1021/jf201906p
    [26]
    David M R, Diana R, Alexander P, et al. Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice[J]. Nutrition,2014,30(7-8):S4−S10. doi: 10.1016/j.nut.2014.03.009
    [27]
    Avi S, Gal I, Yoav D L. Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocolloids,2010,24(8):735−743. doi: 10.1016/j.foodhyd.2010.03.015
    [28]
    Mariana von Staszewski, Federico Jara, Ana Lúcia T G Ruiz, et al. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity[J]. Journal of Functional Foods,2012,4(4):800−809. doi: 10.1016/j.jff.2012.05.008
    [29]
    Del Rio D, Borges G, Crozier A. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects[J]. The British Journal of Nutrition,2010,104(Suppl.3):S67−S90.
    [30]
    Nàdia O, Jordi R, Maria-Paz R, et al. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model[J]. Journal of Agricultural and Food Chemistry,2009,57(13):5743−5749. doi: 10.1021/jf900591q
    [31]
    Green R J, Murphy A S, Schulz B, et al. Common tea formulations modulate in vitro digestive recovery of green tea catechins[J]. Molecular Nutrition & Food Research,2007,51(9):1152−1162.
    [32]
    Phan M A T, Bucknall M P, Arcot J. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion[J]. Food Chemistry,2019,298:125040. doi: 10.1016/j.foodchem.2019.125040
    [33]
    Fale P L, AscensaoL, Serralheiro M L M. Effect of luteolin andapigenin on rosmarinicacid bioavailability in Caco-2 cell monolayers[J]. Food & Function,2013,4(3):426−431.
    [34]
    Arda S, Edoardo C, Vincenzo F, et al. A new procedure to measure the antioxidant activity of insoluble food components[J]. Journal of Agricultural and Food Chemistry,2007,55(19):7676−7681. doi: 10.1021/jf071291z
    [35]
    Youna H, Nuria Mateo A, Robert H, et al. Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions[J]. Food Research International,2010,43(5):1429−1438. doi: 10.1016/j.foodres.2010.04.013
    [36]
    Valerie Van Craeyveld, Ulla Holopainen, Emilia Selinheimo, et al. Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8467−8473. doi: 10.1021/jf901870r
    [37]
    Anouk K, Christelle M A, Yves-Jacques S, et al. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties[J]. Food Chemistry,2016,197(PtA):325−332.
    [38]
    He Z Y, Tao Y D, Zeng M M, et al. High pressure homogenization processing, thermal treatment and milk matrix affectin vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents[J]. Food Chemistry,2016,200:107−116. doi: 10.1016/j.foodchem.2016.01.045
    [39]
    陶亚丹. 加工过程和配料对果汁多酚生物可及性的影响[D]. 无锡: 江南大学, 2015.

    Tao Y D. Effects of processing and ingredients on bio-accessibility of polyphenols in fruit juice[D]. Wuxi: Southern Yangtze University, 2015.
    [40]
    Gavirangappa H, Krishnapura S. Bioaccessibility of polyphenols from wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna radiata), and chickpea (Cicer arietinum) as influenced by domestic food processing[J]. Journal of Agricultural and Food Chemistry,2014,62(46):11170−11179. doi: 10.1021/jf503450u
    [41]
    Kamiloglu S, PasliAyca A, Ozcelik B, et al. Influence of different processing and storage conditions onin vitro bioaccessibility of polyphenols in black carrot jams and marmalades[J]. Food Chemistry,2015,186:74−82. doi: 10.1016/j.foodchem.2014.12.046
    [42]
    Kamilogllu S, Demirci M, Selen S, et al. Home processing of tomatoes (Solanum lycopersicum): Effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity[J]. Journal of the Science of Food and Agriculture,2014,94(11):2225−2233. doi: 10.1002/jsfa.6546
    [43]
    Francisca das C do A Souza a, Leonardo Gomes Sanders M a, Karina de Oliveira B a, et al. Thermosonication applied on camu-camu nectars processing: Effect on bioactive compounds and quality parameters[J]. Food and Bioprocess Technology,2019,116:212−218.
    [44]
    Tomas L, Isabel Ruiz-Aguirre, Maribel A, et al. Effect of thermosonication on the bioaccessibility of antioxidant compounds and the microbiological, physicochemical, and nutritional quality of an anthocyanin-enriched tomato juice[J]. Food and Bioprocess Technology,2019,12(1):147−157. doi: 10.1007/s11947-018-2191-5
    [45]
    Lucía C, Esteban G, Maria Moreira, et al. Influence of non-thermal processing and storage conditions on the release of health-related compounds after, in vitro, gastrointestinal digestion of fiber-enriched strawberry juices[J]. Journal of Functional Foods,2018,40:128−136. doi: 10.1016/j.jff.2017.11.005
    [46]
    Magdalena B, Juana M C-C, Ana F, et al. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana[J]. Food Chemistry,2017,221:1834−1842. doi: 10.1016/j.foodchem.2016.10.093
    [47]
    Esther R M, Quinatzin Yadira Z R, José Arias Rico, et al. Effect of ultrasound on microbiological load and antioxidant properties of blackberry juice[J]. Journal of Food Processing and Preservation,2018,42(2):e13489. doi: 10.1111/jfpp.13489
    [48]
    Thatyane F, Ana Karoline Ferreira L, Ana Raquel Araújo Silva, et al. Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds[J]. Ultrasonics Sonochemistry,2016,31:237−249. doi: 10.1016/j.ultsonch.2016.01.003
    [49]
    Margarita H A Q, Jaime C, Enrique B C, et al. Influence of olive leaf processing on the bioaccessibility of bioactive polyphenols[J]. Journal of Agricultural and Food Chemistry,2014,62(26):6190−6198. doi: 10.1021/jf501414h
    [50]
    Fanyi Ma, Alan Bell, Fred J D. Effects of high-hydrostatic pressure and pH treatments on the emulsification properties of gum Arabic[J]. Food Chemistry,2015,184:114−121. doi: 10.1016/j.foodchem.2015.03.075
    [51]
    María Janeth Rodríguez-Roque, Begoña De Ancos, Concepción Sánchez-Moreno, et al. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages[J]. Journal of Functional Foods,2015,14:33−43. doi: 10.1016/j.jff.2015.01.020
    [52]
    Antonio C, Amparo A, Begoña de A, et al. Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing[J]. Journal of Agricultural and Food Chemistry,2012,60(29):7282−7290. doi: 10.1021/jf301165r
    [53]
    Nicolas B, Bruce R H, Mario G F. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods[J]. Food & Function,2013,5(1):18−34.
    [54]
    Fang Z X, Bhesh B. Encapsulation of polyphenols-a review[J]. Trends in Food Science & Technology,2010,21(10):510−523.
    [55]
    Liu R H, Yan X J, Liu Z G, et al. Fabrication and characterization of functional protein–polysaccharide–polyphenol complexes assembled from lactoferrin, hyaluronic acid and (-)-epigallocatechingallate[J]. Food & Function,2019,10:1098−1108.
    [56]
    Hu B, Liu X X, Zhang C L, et al. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols[J]. Journal of Food and Drug Analysis,2017,25(1):3−15. doi: 10.1016/j.jfda.2016.11.004
    [57]
    Zou L Q, Peng S F, Liu W, et al. A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (-)-epigallocatechingallate[J]. Food Research International,2015,69:114−120. doi: 10.1016/j.foodres.2014.12.015
    [58]
    Chen S, Sun C X, Wang Y Q, et al. Quercetagetin-loaded composite nanoparticles based on zein and hyaluronic acid: Formation, characterization and physicochemical stability[J]. Journal of Agricultural and Food Chemistry,2018,66(28):7441−7450. doi: 10.1021/acs.jafc.8b01046
    [59]
    Liu F G, Ma D, Luo X, et al. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol[J]. Food Hydrocolloids,2018,79:450−461. doi: 10.1016/j.foodhyd.2018.01.017
    [60]
    Xue J L, Zhang Y Q, Huang G R, et al. Zein-caseinate composite nanoparticles for bioactive delivery using curcumin as a probe compound[J]. Food Hydrocolloids,2018,83:25−35. doi: 10.1016/j.foodhyd.2018.04.037
    [61]
    贝琦. 燕麦发酵多酚释放与转化及生物活性增强的研究[D]. 广州: 华南理工大学, 2018.

    Bei Q. Studies on the release and transformation of polyphenols from oat fermentation and the enhancement of its bioactivity[D]. Guangzhou: South China University of Technology, 2018.
    [62]
    Estefanía Valero-Cases, Nallely Nuncio-J, MJ F. Influence of fermentation with different lactic acid bacteria and in vitro digestion on the biotransformation of phenolic compounds in fermented pomegranate juices[J]. Journal of Agricultural and Food Chemistry,2017,65(31):6488−6496. doi: 10.1021/acs.jafc.6b04854
    [63]
    Pasquale F, Bai Y P, Raffaela Di C, et al. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree[J]. Food Microbiology,2015,46:272−279. doi: 10.1016/j.fm.2014.08.018
    [64]
    Louise, S, Bonno S M, Daise Lopes Lutz, et al. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (sorghum bicolor (L.) moench)[J]. Journal of Agricultural and Food Chemistry,2010,58(16):9214−9220. doi: 10.1021/jf101504v
    [65]
    赖婷, 刘磊, 张名位, 等. 不同乳酸菌发酵对桂圆肉中酚类物质及抗氧化活性的影响[J]. 中国农业科学,2016,49(10):150−160. [Lai T, Liu L, Zhang M W, et al. Effect of lactic acid bacteria fermentation on phenolic profiles and antioxidant activity of dried longan flesh[J]. Agricultural Science of China,2016,49(10):150−160.
    [66]
    Albert R A, Olga M B, Robert S F, et al. Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds[J]. Journal of Functional Foods,2019,59:206−214. doi: 10.1016/j.jff.2019.05.041
    [67]
    Kamiloglu S. Effect of different freezing methods on the bioaccessibility of strawberry polyphenols[J]. International Journal of Food Science & Technology,2019,54:2652−2660.
    [68]
    Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin: Problems and promises.[J]. Molecular Pharmaceutics,2007,4(6):807−818. doi: 10.1021/mp700113r
  • Cited by

    Periodical cited type(3)

    1. 周法婷,李迪,李开凤,蒋忠桂,魏蝶,丛之慧,陈井生,顾欣,肖国生. 基于网络药理学及分子对接探讨猪胶原血管紧张素转换酶抑制肽的降压机制. 食品与发酵工业. 2024(18): 217-224 .
    2. 江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 . 本站查看
    3. 陈姣,肖静,陈林,刘隆臻. 基于新型冠状病毒3CL~(pro)结构的小肽抑制剂虚拟筛选. 江苏海洋大学学报(自然科学版). 2021(03): 69-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return