GAO Linxiao, MA Wensheng, SHI Huili, et al. Optimization of the Ultrasound Extraction Technology and Antioxidant Activity Analysis of the Total Flavonoids from Debregeasia orientalis Leaves by Box-Behnken Method[J]. Science and Technology of Food Industry, 2021, 42(12): 184−190. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080230.
Citation: GAO Linxiao, MA Wensheng, SHI Huili, et al. Optimization of the Ultrasound Extraction Technology and Antioxidant Activity Analysis of the Total Flavonoids from Debregeasia orientalis Leaves by Box-Behnken Method[J]. Science and Technology of Food Industry, 2021, 42(12): 184−190. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080230.

Optimization of the Ultrasound Extraction Technology and Antioxidant Activity Analysis of the Total Flavonoids from Debregeasia orientalis Leaves by Box-Behnken Method

More Information
  • Received Date: August 23, 2020
  • Available Online: March 31, 2021
  • Using Debregeasia orientalis leaves as raw materials, the Box-Behnken model was designed by single factor experiments and the optimal technological conditions for extracting total flavonoids from Debregeasia orientalis leaves were optimized, and the antioxidant activity in vitro was evaluated. The results showed that the ethanol concentration, liquid-material ratio, ultrasonic time and ultrasonic temperature were 35%, 42 mL/g, 47 min and 70 ℃, respectively, which were consistent with the predicted values of Box-Behnken model. The average extraction rate of total flavonoids from Debregeasia orientalis leaves was 3.15%±1.82%. Under these conditions, the total antioxidant capacity of extract was equivalent to 1.969 mmol/L (FeSO4 equivalent value), and the IC50 of DPPH free radical scavenging rate was 0.075 mg/mL, which indicated that the total flavonoids of the extract from Debregeasia orientalis leaves could exhibit good antioxidant activity, and provide certain theoretical data support for further research and development of wild resources of Debregeasia orientalis.
  • [1]
    中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1995: 394−395.
    [2]
    张应团, 易咏梅, 王贞. 水麻扦插的插穗类型与扦插时间效应分析[J]. 安徽农业科学,2013,41(13):5713−5715. doi: 10.3969/j.issn.0517-6611.2013.13.027
    [3]
    晁无疾, 陈志平. 野生果树水麻资源研究[J]. 中国野生植物,1992(4):1−4.
    [4]
    王坚. 水麻属植物研究现状及其开发价值[J]. 中国民族民间医药,2011,20(12):48−49. doi: 10.3969/j.issn.1007-8517.2011.12.034
    [5]
    王国良, 李建科, 吴晓霞, 等. 水麻果多酚的提取纯化及其抗氧化、抗肿瘤活性作用[J]. 天然产物研究与开发,2019(31):1−9.
    [6]
    Ullah S, Ibrar M, Barkatullah, et al. Antinociceptive and anti-diarrheal activities of Debregeasia salicifolia[J]. J Chem Soc Pakistan,2014,36:1129−1132.
    [7]
    肖艳华, 曹辉, 张国林. 水麻的化学成分研究[J]. 天然产物研究与开发,2008,20(1):52−55. doi: 10.3969/j.issn.1001-6880.2008.01.013
    [8]
    王玲玲, 边祥雨, 高蔚娜, 等. 植物类黄酮提取纯化技术研究进展[J]. 天然产物研究与开发,2019,41(6):606−610.
    [9]
    Laghari A Q, Memon S, Nelofar A, et al. Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia[J]. Am J Anal Chem,2011,2:871−878. doi: 10.4236/ajac.2011.28100
    [10]
    Lamou B, Taiwe G S, Hamadou A, et al. Antioxidant and antifatigue properties of the aqueous extract of Moringa oleifera in rats subjected to forced swimming endurance test[J]. Oxid Med Cell Longev,2016,1:1−9.
    [11]
    郝可欣, 胡文忠, 张清洁, 等. 响应面法优化超声辅助提取代代花总黄酮的工艺及其抗氧化活性研究[J]. 食品工业科技,2019,40(24):159−164.
    [12]
    刘娜, 陈灵智, 张彦, 等. 响应面优化超声提取汉麻大麻素及其抗氧化性研究[J]. 现代化工,2019,39(1):144−148.
    [13]
    宋林晓, 邵娟娟. 黄酮类化合物提取方法研究进展[J]. 粮食与油脂,2020,33(1):21−22. doi: 10.3969/j.issn.1008-9578.2020.01.008
    [14]
    吴文博, 董占军. 中药制剂中细胞破壁技术探讨[J]. 中国药房,2011,22(3):285−287.
    [15]
    蔡凌云, 黎云祥, 陈焦, 等. 白簕根皮总黄酮提取工艺研究[J]. 食品科学,2009,30(4):15−18.
    [16]
    陈虎, 蒲俊松, 向仲怀, 等. 药桑葚总黄酮的提取工艺及其抗氧化活性分析[J]. 食品科学,2014,35(12):7−12. doi: 10.7506/spkx1002-6630-201412002
    [17]
    孔繁晟, 贲永光, 孙爱群, 等. 超声法与连续回流法提取黄芪总黄酮的工艺对比研究[J]. 中国药房,2010,21(19):1752−1754.
    [18]
    谢蓝华, 杜冰, 叶琼娟, 等. 正交试验优化酶法提取黄芪总黄酮工艺[J]. 包装与食品机械,2013,31(3):7−12. doi: 10.3969/j.issn.1005-1295.2013.03.002
    [19]
    李钢, 彭飞, 尹洪洋, 等. 板栗叶总黄酮提取工艺的优化及其抗氧化活性[J]. 食品研究与开发,2020,41(3):64−72.
    [20]
    Choudhary A, Kumar R, Srivastava R B, et al. Isolation and characterization of phenolic compounds from Rhodiola imbricata, a trans-himalayan food crop having antioxidant and anticancer potential[J]. J Funct Foods,2015,16:183−193.
    [21]
    陈建福. 响应面优化超声辅助提取黄槿叶总黄酮工艺及其亚硝酸盐清除能力[J]. 食品工业科技,2019,40(6):193−197.
    [22]
    I lhami G, Mehmet Emin B. Metal chelating and hydrogen peroxide scavenging effects of melatonin[J]. J Pineal Res,2010,34(4):278−281.
    [23]
    张玲玲, 孙芬芳, 张蓉希, 等. 响应面法优化提取丁香中的总黄酮及抗氧化性研究[J]. 中国调味品,2019,44(11):40−50. doi: 10.3969/j.issn.1000-9973.2019.11.009
    [24]
    王芳, 乔璐, 淡小艳, 等. 桑树黄酮的提取及抗氧化研究[J]. 广东农业科学,2011,38(15):76−79. doi: 10.3969/j.issn.1004-874X.2011.15.029
    [25]
    徐洪宇, 蒯宜蕴, 赵烊, 等. 响应面优化提取龙牙楤木中总黄酮的工艺研究[J]. 食品研究与开发,2019,40(3):106−111. doi: 10.3969/j.issn.1005-6521.2019.03.018
    [26]
    汤磊, 刘本. 响应面法优化白芍中芍药普的超临界流体提取研究[J]. 中成药,2010,32(8):1332−1336. doi: 10.3969/j.issn.1001-1528.2010.08.016
    [27]
    张迪. 响应面法优化马鞭草中总黄酮闪式提取工艺及其体外抗氧化活性[J]. 食品工业科技,2019,40(3):173−178.
    [28]
    张斌, 陈兆贵, 邹俊杰. 响应面法优化荔枝醋酸发酵的工艺条件[J]. 中国酿造,2019,38(6):136−139. doi: 10.11882/j.issn.0254-5071.2019.06.026
    [29]
    曹艳华, 程丽丽, 张小芳. 响应面法优化洋葱多酚的提取工艺及抗氧化性研究[J]. 食品研究与开发,2020,41(12):164−170. doi: 10.12161/j.issn.1005-6521.2020.12.027
    [30]
    张锦东, 王小玉, 游淑珠, 等. 菠萝蜜种子中总黄酮的提取工艺及其抗氧化性研究[J]. 广东农业科学,2017,44(12):136−143.
  • Cited by

    Periodical cited type(2)

    1. 李师行,徐洪涛,李笑,孙美玲,杨鑫焱,项鹏宇,杨智浩,满朝新,姜毓君. A1/A2 β-酪蛋白基因型的鉴定及其消化性能的比较. 食品工业科技. 2025(05): 160-167 . 本站查看
    2. 唐琳琳,赵羚暄,秦爱荣,多杰仁青,李红娟,于景华. 不同结构酪蛋白深度水解物的致敏性分析. 粮食与油脂. 2024(12): 148-153 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (349) PDF downloads (32) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return