Citation: | PENG Haishuai, WANG Bini, HUI Yuanyuan, et al. Research Progress of Aptamer Biosensor Detection of Streptomycin in Food[J]. Science and Technology of Food Industry, 2021, 42(14): 380−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070131. |
[1] |
Lyu Q, Bai K, Kan Y, et al. Variation in streptomycin resistance mechanisms in clavibacter michiganensis[J]. Phytopathology,2019,109(11):1849−1858. doi: 10.1094/PHYTO-05-19-0152-R
|
[2] |
陈溪, 曲世超, 黄大亮, 等. 链霉素在动物体内残留和代谢的研究进展[J]. 检验检疫学刊,2015(4):49−51. doi: 10.3969/j.issn.1674-5354.2015.04.013
|
[3] |
Klis S, Stienstra Y, Phillips R O, et al. Long term streptomycin toxicity in the treatment of buruli ulcer: Follow-up of participants in the BURULICO drug trial[J]. PLoS Neglected Tropical Diseases,2014,8(3):e2739. doi: 10.1371/journal.pntd.0002739
|
[4] |
Codex Alimentarius Commission. Maximumresidue limits for veterinary drugs in food[S]. 2012, 2: 15. [2020-6-15]. http://down.foodmate.net/standard/sort/11/33296.html.
|
[5] |
动物性食品中兽药最高残留量注释(续)[J]. 中国猪业, 2010, 5(9): 14-22.
|
[6] |
Ianni F, Pucciarini L, Carotti A, et al. Hydrophilic interaction liquid chromatography of aminoglycoside antibiotics with a diol-type stationary phase[J]. Analytica Chimica Acta,2018,1044:174−180. doi: 10.1016/j.aca.2018.08.008
|
[7] |
Diez C, Guillarme D, Staub spörri A, et al. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2015,882:127−139. doi: 10.1016/j.aca.2015.03.050
|
[8] |
Du B, Wen F, Guo X, et al. Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk[J]. Food Control,2019,106:106713. doi: 10.1016/j.foodcont.2019.106713
|
[9] |
Du B, Wen F, Zhang Y, et al. Presence of tetracyclines, quinolones, lincomycin and streptomycin in milk[J]. Food Control,2019,100:171−175. doi: 10.1016/j.foodcont.2019.01.005
|
[10] |
Zhu Z, Liu G, Wang F, et al. Development of a liquid chromatography tandem mass spectrometric method for simultaneous determination of 15 aminoglycoside residues in porcine tissues[J]. Food Analytical Methods,2016,9(9):2587−2599. doi: 10.1007/s12161-016-0446-1
|
[11] |
Wang Y, Li S, Zhang F, et al. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk[J]. Journal of Chromatography A,2016,1437:8−14. doi: 10.1016/j.chroma.2016.02.003
|
[12] |
Arsand J B, Jank L, Martins M T, et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass Spectrometry[J]. Talanta,2016,154:38−45. doi: 10.1016/j.talanta.2016.03.045
|
[13] |
Wang X, Yang S, Li Y, et al. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly[J]. Journal of chromatography A,2018,1542:28−36. doi: 10.1016/j.chroma.2018.02.029
|
[14] |
吴有雪, 吴美娇, 田亚晨, 等. 沙门氏菌检测生物传感器研究进展[J]. 食品科学,2021,42(3):339−345. doi: 10.7506/spkx1002-6630-20200209-071
|
[15] |
吴亚, 徐智辉, 张彪, 等. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报,2020,36(1):193−201.
|
[16] |
王琦, 颜春蕾, 高洪伟, 等. 基于核酸适配体传感器检测食品致病菌的研究进展[J]. 生物技术通报,2020,36(11):245−258.
|
[17] |
王嫦嫦, 马良, 刘微, 等. 基于先进材料的适配体传感器在真菌毒素快速检测中的研究进展[J]. 食品科学,2020,41(3):305−313. doi: 10.7506/spkx1002-6630-20190125-330
|
[18] |
张朝阳, 郭磊, 李一林, 等. SELEX与适配体在蛋白质研究中的应用[J]. 医学分子生物学杂志,2008(1):50−54. doi: 10.3870/j.issn.1672-8009.2008.01.012
|
[19] |
李一林, 郭磊, 张朝阳, 等. 适配体探针传感技术进展[J]. 中国科学(B辑: 化学),2008(1):1−11.
|
[20] |
Sui C J, Zhou Y L, Wang M Y, et al. Aptamer-based photoelectrochemical biosensor for antibiotic detection using ferrocene modified DNA as both aptamer and electron donor[J]. Sensors and Actuators B: Chemical,2018,266:514−521. doi: 10.1016/j.snb.2018.03.171
|
[21] |
Marimuthu, Citartan, Thean-Hock, et al. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics[J]. Talanta,2019,199:556−566. doi: 10.1016/j.talanta.2019.02.066
|
[22] |
孙颖颖, 董鹏程, 朱立贤, 等. 食源性致病菌的快速检测研究进展[J]. 食品与发酵工业,2020,46(17):264−270.
|
[23] |
Lu C, Song G, Lin J-M. Reactive oxygen species and their chemiluminescence-detection methods[J]. Trends in Analytical Chemistry,2006,25(10):985−995. doi: 10.1016/j.trac.2006.07.007
|
[24] |
Du B, Li H, Jin J, et al. Chemiluminescence determination of streptomycin in pharmaceutical preparation and its application to pharmacokinetic study by aflow injection analysis assembly[J]. Spectrochimica Acta PartA: Molecularand Biomolecular Spectroscopy,2013,115(11):823−828.
|
[25] |
Sun Y L, Han R, Dai Y, et al. Highly selective and sensitive streptomycin chemiluminescence sensor based on aptamer and G-quadruplex DNAzyme modified three-dimensional graphene composite[J]. Sensors and Actuators B: Chemical,2019,310:127122.
|
[26] |
Su M, Chen P, Sun H. Development and analytical application of chemiluminescence with some super normal metal complexes as oxidant[J]. TrAC Trends in Analytical Chemistry,2018,100:36−52. doi: 10.1016/j.trac.2017.11.018
|
[27] |
Dai Y, Zhang Y, Liao W, et al. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2020,238:118406. doi: 10.1016/j.saa.2020.118406
|
[28] |
李庆芝, 周奕华, 陈袁, 等. 比率型碳点荧光传感器检测机理与应用研究进展[J]. 发光学报,2020,41(5):579−591.
|
[29] |
Taghdisi S M, Danesh N M, Nameghi M A, et al. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum[J]. Food Chemistry,2016,203:145−149. doi: 10.1016/j.foodchem.2016.02.017
|
[30] |
Emrani A S, Danesh N M, Lavaee P, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles[J]. Food Chemistry,2016,190:115−121. doi: 10.1016/j.foodchem.2015.05.079
|
[31] |
Kim S E, Ahn K Y, Park J S, et al. Fluorescent ferritin nanoparticles and application to the aptamer sensor[J]. Analytical Chemistry,2011,83(15):5834−5843. doi: 10.1021/ac200657s
|
[32] |
Zhong W. Nanomaterials in fluorescence-based biosensing[J]. Analytical and Bioanalytical Chemistry,2009,394(1):47−59. doi: 10.1007/s00216-009-2643-x
|
[33] |
He X X, Wang K M, Tan W H, et al. A novel fluorescent label based on biological fluores-cent nanoparticles and its application in cell recognition[J]. Chinese Science Bulletin,2001,46(23):1962−1965. doi: 10.1007/BF02901906
|
[34] |
白文荟, 刘金钏, 陈爱亮. 纳米金比色法在食品安全检测中的应用研究进展[J]. 食品安全质量检测学报,2014,5(7):1943−1950.
|
[35] |
何芳兰, 李堃杰, 吕雪飞, 等. 基于智能手机的生物传感器及其在即时检测中的应用进展[J]. 航天医学与医学工程,2020,33(1):74−81.
|
[36] |
Luan Q, Miao Y, Gan N, et al. A POCT colorimetric aptasensor for streptomycin detection using porous silica beads- enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification[J]. Sensors and Actuators B: Chemical,2017,251:349−358. doi: 10.1016/j.snb.2017.04.149
|
[37] |
Lin B X, Yu Y, Cao Y, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone[J]. Biosensors and Bioelectronics,2018,100:482−489. doi: 10.1016/j.bios.2017.09.028
|
[38] |
李海琴, 张校亮, 谭慷, 等. 基于智能手机数字图片比色法的生化检测技术研究进展[J]. 生命科学仪器,2019,17(1):3−10.
|
[39] |
Shahdordizadeh M, Taghdisi S M, Ansari N, et al. Aptamer based biosensors for detection of Staphylococcus aureus[J]. Sensors and Actuators B: Chemical,2017,241:619−635. doi: 10.1016/j.snb.2016.10.088
|
[40] |
Viswanathan S, Radecka H, Radecki J. Electrochemical biosensors for food analysis[J]. Monatshefte Fur Chemie,2009,140(8):891−899. doi: 10.1007/s00706-009-0143-5
|
[41] |
Wei C, Chao Y, Lin C, et al. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates[J]. Biosensors and Bioelectronics,2018,117:845−851. doi: 10.1016/j.bios.2018.07.012
|
[42] |
Taghdisi S M, Danesh N M, Emrani A S, et al. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine[J]. Biosensors and Bioelectronics,2015,73:245−250. doi: 10.1016/j.bios.2015.05.065
|
[43] |
Zhang Q, Li L Y, Qiao Z H, et al. Electrochemical conversion of Fe3O4 magnetic nanoparticles to electroactive prussian blue analogues for self-sacrificial label biosensing of avian influenza virus H5N1[J]. Analytical Chemistry,2017,89(22):12145−12151. doi: 10.1021/acs.analchem.7b02784
|
[44] |
Zhou J W, Zou X M, Song S H, et al. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues[J]. Journal of Agricultural and Food Chemistry,2018,66(6):1307−1319. doi: 10.1021/acs.jafc.7b05119
|
[45] |
Zhao W W, Xu J J, Chen H Y. Photoelectrochemical DNA biosensors[J]. Chemical Reviews,2014,114(15):7421−7441. doi: 10.1021/cr500100j
|
[46] |
Shu J, Tang D. Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes[J]. Analytical Chemistry,2020,92(1):363−377. doi: 10.1021/acs.analchem.9b04199
|
[47] |
Ghanbari K, Roushani M. A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic[J]. Bioelectrochemistry,2018,120:43−48. doi: 10.1016/j.bioelechem.2017.11.006
|
[48] |
Li L L, Liu X, Yang L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor[J]. Biosensors and Bioelectronics,2019,142:111525. doi: 10.1016/j.bios.2019.111525
|
[49] |
Roushani M, Ghanbari K. An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode[J]. Microchimica Acta,2019,186(2):115. doi: 10.1007/s00604-018-3191-x
|
[50] |
Amouzadeh Tabrizi M, Shamsipur M, Saber R, et al. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1, 3, 6, 8-pyrenetetrasulfonate[J]. Microchimica Acta,2018,185(1):59.
|
[51] |
Li F L, Wang X, Sun X, et al. Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles[J]. Sensors and Actuators B: Chemical,2018,265:217−226. doi: 10.1016/j.snb.2018.03.042
|
[52] |
Zhu B, Xu X, Luo J, et al. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent[J]. Food Chemistry,2019,276:202. doi: 10.1016/j.foodchem.2018.09.152
|
[53] |
Li F L, Guo Y, Wang X, et al. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk[J]. Biosensors and Bioelectronics,2018,115:7−13. doi: 10.1016/j.bios.2018.04.024
|
[54] |
Zhang Z, Ji H, Song Y, et al. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions[J]. Biosensors and Bioelectronics,2017,94:358−364. doi: 10.1016/j.bios.2017.03.014
|
[55] |
Yin J L, Guo W J, Qin X, et al. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification[J]. Sensors and Actuators B: Chemical,2017,241:151−159. doi: 10.1016/j.snb.2016.10.062
|
[56] |
Yin Y, Qin X L, Wang Q C, et al. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy[J]. Rsc Advances,2016,6(45):39401−8. doi: 10.1039/C6RA02029A
|
[57] |
Li Y J, Ma M J, Zhu J J. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein[J]. Analytical Chemistry,2012,84 (23):10492−10499. doi: 10.1021/ac302853y
|
[58] |
Pang X, Bian H, Su M, et al. Photoelectrochemical cytosensing of RAW264.7 macrophage cells based on a TiO2 nanoneedls@MoO3 array[J]. Analytical Chemistry,2017,89(15):7950−7957. doi: 10.1021/acs.analchem.7b01038
|
[59] |
Liu D, Xu X, Shen X, et al. Construction of the direct Z-scheme CdTe/APTES-WO3 heterostructure by interface engineering for cathodic “signal-off ” photoelectrochemical aptasensing of streptomycin at sub-nanomole level[J]. Sensors and Actuators B: Chemical,2020:305.
|
[60] |
Okoth O K, Yan K, Zhang J. Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin[J]. Carbon,2017,120:194−202. doi: 10.1016/j.carbon.2017.04.079
|
[61] |
Peng J, Huang Q, Liu Y, et al. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin[J]. Sensors and Actuators B: Chemical,2019,294:157−165. doi: 10.1016/j.snb.2019.05.047
|
[62] |
Wang Y, Gao C, Ge S, et al. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching[J]. Biosensors and Bioelectronics,2016,85:205−211. doi: 10.1016/j.bios.2016.05.015
|
[63] |
Luo Y N, Tan X, Young D J, et al. A photoelectrochemical aptasensor for the sensitive detection of streptomycin based on a TiO2/BiOI/BiOBr heterostructure[J]. Analytica Chimica Acta,2020,1115:33−40. doi: 10.1016/j.aca.2020.04.021
|
[64] |
Xu X X, Liu D, Luo L, et al. Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin[J]. Sensors and Actuators B: Chemical,2017,251:564−571. doi: 10.1016/j.snb.2017.04.168
|
[65] |
Dai H, Zhang S, Hong Z, et al. Enhanced photoelectrochemical activity of a hierarchical-ordered TiO2 mesocrystal and its sensing application on a carbon nanohorn support scaffold[J]. Analytical Chemistry,2014,86(13):6418−6424. doi: 10.1021/ac500813u
|
[66] |
Shen X L, Liu D, Zhu C X, et al. Photoelectrochemical and electrochemical ratiometric aptasensing: A case study of streptomycin[J]. Electrochemistry Communications,2020:110.
|
[67] |
Jiang W, Zong X, An L, et al. Consciously constructing heterojunction or direct Z-scheme photocatalyst by regulating electron flow direction[J]. ACS Catalysis,2018,8(3):2209−2217. doi: 10.1021/acscatal.7b04323
|
[68] |
Xu Y H, Ding L J, Wen Z R, et al. Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor[J]. Applied Surface Science,2020:511.
|
[69] |
Tang L, Ouyang X L, Peng B, et al. Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction[J]. Nanoscale,2019,11(25):12198−12209. doi: 10.1039/C9NR03004B
|
[70] |
Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694.
|
1. |
代桂丽,张超锋. 反相高效液相色谱-脉冲安培检测法对硫酸新霉素的药物分析研究. 化学与粘合. 2024(02): 200-205 .
![]() | |
2. |
苗晶,宋戈,朱琳,王树奇,李茜,杨文敏. 离子交换色谱法测定调制乳粉和固体饮料中异麦芽糖、异麦芽三糖和潘糖. 中国乳品工业. 2023(05): 50-54 .
![]() | |
3. |
颉东妹,王宁丽,刘笑笑,吴福祥,裴栋,郭玫,邸多隆. 微波消解-离子色谱法测定枸杞多糖的含量及组成. 食品安全质量检测学报. 2022(04): 1065-1072 .
![]() | |
4. |
陈修红,冀鹏,何国亮,夏然,李祖明,刘佳. 离子色谱-脉冲安培法同时测定牛肉水解产物中6种糖组分的含量. 食品工业科技. 2022(11): 267-275 .
![]() | |
5. |
胡佳偲,孙晨,张昊,霍宗利. 高效液相色谱法同时测定全血中的原卟啉和锌原卟啉. 江苏预防医学. 2022(03): 272-276 .
![]() | |
6. |
梁静. 离子色谱在食品检测中的应用. 食品安全导刊. 2021(29): 152-153 .
![]() |