PENG Haishuai, WANG Bini, HUI Yuanyuan, et al. Research Progress of Aptamer Biosensor Detection of Streptomycin in Food[J]. Science and Technology of Food Industry, 2021, 42(14): 380−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070131.
Citation: PENG Haishuai, WANG Bini, HUI Yuanyuan, et al. Research Progress of Aptamer Biosensor Detection of Streptomycin in Food[J]. Science and Technology of Food Industry, 2021, 42(14): 380−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070131.

Research Progress of Aptamer Biosensor Detection of Streptomycin in Food

More Information
  • Received Date: July 12, 2020
  • Available Online: May 23, 2021
  • Streptomycin (STR) is an aminoglycoside antibiotic widely used in aquaculture and animal husbandry to treat bacterial diseases. Excessive STR in animal foods that humans eat can seriously threaten human health. As a rapid detection technology, biosensors can achieve rapid and accurate detection of STR in foods. Biosensors based on aptamers are widely used in the field of food safety detection because of their unique advantages. In this paper, the application progress of optical and electrochemical biosensors based on aptamers in the detection of STR residue in animal food in the past five years is reviewed, and these detection techniques are compared and summarized, in order to provide some reference for the development of more effective, simple and sensitive STR biosensors in the future.
  • [1]
    Lyu Q, Bai K, Kan Y, et al. Variation in streptomycin resistance mechanisms in clavibacter michiganensis[J]. Phytopathology,2019,109(11):1849−1858. doi: 10.1094/PHYTO-05-19-0152-R
    [2]
    陈溪, 曲世超, 黄大亮, 等. 链霉素在动物体内残留和代谢的研究进展[J]. 检验检疫学刊,2015(4):49−51. doi: 10.3969/j.issn.1674-5354.2015.04.013
    [3]
    Klis S, Stienstra Y, Phillips R O, et al. Long term streptomycin toxicity in the treatment of buruli ulcer: Follow-up of participants in the BURULICO drug trial[J]. PLoS Neglected Tropical Diseases,2014,8(3):e2739. doi: 10.1371/journal.pntd.0002739
    [4]
    Codex Alimentarius Commission. Maximumresidue limits for veterinary drugs in food[S]. 2012, 2: 15. [2020-6-15]. http://down.foodmate.net/standard/sort/11/33296.html.
    [5]
    动物性食品中兽药最高残留量注释(续)[J]. 中国猪业, 2010, 5(9): 14-22.
    [6]
    Ianni F, Pucciarini L, Carotti A, et al. Hydrophilic interaction liquid chromatography of aminoglycoside antibiotics with a diol-type stationary phase[J]. Analytica Chimica Acta,2018,1044:174−180. doi: 10.1016/j.aca.2018.08.008
    [7]
    Diez C, Guillarme D, Staub spörri A, et al. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2015,882:127−139. doi: 10.1016/j.aca.2015.03.050
    [8]
    Du B, Wen F, Guo X, et al. Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk[J]. Food Control,2019,106:106713. doi: 10.1016/j.foodcont.2019.106713
    [9]
    Du B, Wen F, Zhang Y, et al. Presence of tetracyclines, quinolones, lincomycin and streptomycin in milk[J]. Food Control,2019,100:171−175. doi: 10.1016/j.foodcont.2019.01.005
    [10]
    Zhu Z, Liu G, Wang F, et al. Development of a liquid chromatography tandem mass spectrometric method for simultaneous determination of 15 aminoglycoside residues in porcine tissues[J]. Food Analytical Methods,2016,9(9):2587−2599. doi: 10.1007/s12161-016-0446-1
    [11]
    Wang Y, Li S, Zhang F, et al. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk[J]. Journal of Chromatography A,2016,1437:8−14. doi: 10.1016/j.chroma.2016.02.003
    [12]
    Arsand J B, Jank L, Martins M T, et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass Spectrometry[J]. Talanta,2016,154:38−45. doi: 10.1016/j.talanta.2016.03.045
    [13]
    Wang X, Yang S, Li Y, et al. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly[J]. Journal of chromatography A,2018,1542:28−36. doi: 10.1016/j.chroma.2018.02.029
    [14]
    吴有雪, 吴美娇, 田亚晨, 等. 沙门氏菌检测生物传感器研究进展[J]. 食品科学,2021,42(3):339−345. doi: 10.7506/spkx1002-6630-20200209-071
    [15]
    吴亚, 徐智辉, 张彪, 等. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报,2020,36(1):193−201.
    [16]
    王琦, 颜春蕾, 高洪伟, 等. 基于核酸适配体传感器检测食品致病菌的研究进展[J]. 生物技术通报,2020,36(11):245−258.
    [17]
    王嫦嫦, 马良, 刘微, 等. 基于先进材料的适配体传感器在真菌毒素快速检测中的研究进展[J]. 食品科学,2020,41(3):305−313. doi: 10.7506/spkx1002-6630-20190125-330
    [18]
    张朝阳, 郭磊, 李一林, 等. SELEX与适配体在蛋白质研究中的应用[J]. 医学分子生物学杂志,2008(1):50−54. doi: 10.3870/j.issn.1672-8009.2008.01.012
    [19]
    李一林, 郭磊, 张朝阳, 等. 适配体探针传感技术进展[J]. 中国科学(B辑: 化学),2008(1):1−11.
    [20]
    Sui C J, Zhou Y L, Wang M Y, et al. Aptamer-based photoelectrochemical biosensor for antibiotic detection using ferrocene modified DNA as both aptamer and electron donor[J]. Sensors and Actuators B: Chemical,2018,266:514−521. doi: 10.1016/j.snb.2018.03.171
    [21]
    Marimuthu, Citartan, Thean-Hock, et al. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics[J]. Talanta,2019,199:556−566. doi: 10.1016/j.talanta.2019.02.066
    [22]
    孙颖颖, 董鹏程, 朱立贤, 等. 食源性致病菌的快速检测研究进展[J]. 食品与发酵工业,2020,46(17):264−270.
    [23]
    Lu C, Song G, Lin J-M. Reactive oxygen species and their chemiluminescence-detection methods[J]. Trends in Analytical Chemistry,2006,25(10):985−995. doi: 10.1016/j.trac.2006.07.007
    [24]
    Du B, Li H, Jin J, et al. Chemiluminescence determination of streptomycin in pharmaceutical preparation and its application to pharmacokinetic study by aflow injection analysis assembly[J]. Spectrochimica Acta PartA: Molecularand Biomolecular Spectroscopy,2013,115(11):823−828.
    [25]
    Sun Y L, Han R, Dai Y, et al. Highly selective and sensitive streptomycin chemiluminescence sensor based on aptamer and G-quadruplex DNAzyme modified three-dimensional graphene composite[J]. Sensors and Actuators B: Chemical,2019,310:127122.
    [26]
    Su M, Chen P, Sun H. Development and analytical application of chemiluminescence with some super normal metal complexes as oxidant[J]. TrAC Trends in Analytical Chemistry,2018,100:36−52. doi: 10.1016/j.trac.2017.11.018
    [27]
    Dai Y, Zhang Y, Liao W, et al. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2020,238:118406. doi: 10.1016/j.saa.2020.118406
    [28]
    李庆芝, 周奕华, 陈袁, 等. 比率型碳点荧光传感器检测机理与应用研究进展[J]. 发光学报,2020,41(5):579−591.
    [29]
    Taghdisi S M, Danesh N M, Nameghi M A, et al. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum[J]. Food Chemistry,2016,203:145−149. doi: 10.1016/j.foodchem.2016.02.017
    [30]
    Emrani A S, Danesh N M, Lavaee P, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles[J]. Food Chemistry,2016,190:115−121. doi: 10.1016/j.foodchem.2015.05.079
    [31]
    Kim S E, Ahn K Y, Park J S, et al. Fluorescent ferritin nanoparticles and application to the aptamer sensor[J]. Analytical Chemistry,2011,83(15):5834−5843. doi: 10.1021/ac200657s
    [32]
    Zhong W. Nanomaterials in fluorescence-based biosensing[J]. Analytical and Bioanalytical Chemistry,2009,394(1):47−59. doi: 10.1007/s00216-009-2643-x
    [33]
    He X X, Wang K M, Tan W H, et al. A novel fluorescent label based on biological fluores-cent nanoparticles and its application in cell recognition[J]. Chinese Science Bulletin,2001,46(23):1962−1965. doi: 10.1007/BF02901906
    [34]
    白文荟, 刘金钏, 陈爱亮. 纳米金比色法在食品安全检测中的应用研究进展[J]. 食品安全质量检测学报,2014,5(7):1943−1950.
    [35]
    何芳兰, 李堃杰, 吕雪飞, 等. 基于智能手机的生物传感器及其在即时检测中的应用进展[J]. 航天医学与医学工程,2020,33(1):74−81.
    [36]
    Luan Q, Miao Y, Gan N, et al. A POCT colorimetric aptasensor for streptomycin detection using porous silica beads- enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification[J]. Sensors and Actuators B: Chemical,2017,251:349−358. doi: 10.1016/j.snb.2017.04.149
    [37]
    Lin B X, Yu Y, Cao Y, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone[J]. Biosensors and Bioelectronics,2018,100:482−489. doi: 10.1016/j.bios.2017.09.028
    [38]
    李海琴, 张校亮, 谭慷, 等. 基于智能手机数字图片比色法的生化检测技术研究进展[J]. 生命科学仪器,2019,17(1):3−10.
    [39]
    Shahdordizadeh M, Taghdisi S M, Ansari N, et al. Aptamer based biosensors for detection of Staphylococcus aureus[J]. Sensors and Actuators B: Chemical,2017,241:619−635. doi: 10.1016/j.snb.2016.10.088
    [40]
    Viswanathan S, Radecka H, Radecki J. Electrochemical biosensors for food analysis[J]. Monatshefte Fur Chemie,2009,140(8):891−899. doi: 10.1007/s00706-009-0143-5
    [41]
    Wei C, Chao Y, Lin C, et al. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates[J]. Biosensors and Bioelectronics,2018,117:845−851. doi: 10.1016/j.bios.2018.07.012
    [42]
    Taghdisi S M, Danesh N M, Emrani A S, et al. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine[J]. Biosensors and Bioelectronics,2015,73:245−250. doi: 10.1016/j.bios.2015.05.065
    [43]
    Zhang Q, Li L Y, Qiao Z H, et al. Electrochemical conversion of Fe3O4 magnetic nanoparticles to electroactive prussian blue analogues for self-sacrificial label biosensing of avian influenza virus H5N1[J]. Analytical Chemistry,2017,89(22):12145−12151. doi: 10.1021/acs.analchem.7b02784
    [44]
    Zhou J W, Zou X M, Song S H, et al. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues[J]. Journal of Agricultural and Food Chemistry,2018,66(6):1307−1319. doi: 10.1021/acs.jafc.7b05119
    [45]
    Zhao W W, Xu J J, Chen H Y. Photoelectrochemical DNA biosensors[J]. Chemical Reviews,2014,114(15):7421−7441. doi: 10.1021/cr500100j
    [46]
    Shu J, Tang D. Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes[J]. Analytical Chemistry,2020,92(1):363−377. doi: 10.1021/acs.analchem.9b04199
    [47]
    Ghanbari K, Roushani M. A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic[J]. Bioelectrochemistry,2018,120:43−48. doi: 10.1016/j.bioelechem.2017.11.006
    [48]
    Li L L, Liu X, Yang L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor[J]. Biosensors and Bioelectronics,2019,142:111525. doi: 10.1016/j.bios.2019.111525
    [49]
    Roushani M, Ghanbari K. An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode[J]. Microchimica Acta,2019,186(2):115. doi: 10.1007/s00604-018-3191-x
    [50]
    Amouzadeh Tabrizi M, Shamsipur M, Saber R, et al. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1, 3, 6, 8-pyrenetetrasulfonate[J]. Microchimica Acta,2018,185(1):59.
    [51]
    Li F L, Wang X, Sun X, et al. Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles[J]. Sensors and Actuators B: Chemical,2018,265:217−226. doi: 10.1016/j.snb.2018.03.042
    [52]
    Zhu B, Xu X, Luo J, et al. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent[J]. Food Chemistry,2019,276:202. doi: 10.1016/j.foodchem.2018.09.152
    [53]
    Li F L, Guo Y, Wang X, et al. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk[J]. Biosensors and Bioelectronics,2018,115:7−13. doi: 10.1016/j.bios.2018.04.024
    [54]
    Zhang Z, Ji H, Song Y, et al. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions[J]. Biosensors and Bioelectronics,2017,94:358−364. doi: 10.1016/j.bios.2017.03.014
    [55]
    Yin J L, Guo W J, Qin X, et al. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification[J]. Sensors and Actuators B: Chemical,2017,241:151−159. doi: 10.1016/j.snb.2016.10.062
    [56]
    Yin Y, Qin X L, Wang Q C, et al. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy[J]. Rsc Advances,2016,6(45):39401−8. doi: 10.1039/C6RA02029A
    [57]
    Li Y J, Ma M J, Zhu J J. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein[J]. Analytical Chemistry,2012,84 (23):10492−10499. doi: 10.1021/ac302853y
    [58]
    Pang X, Bian H, Su M, et al. Photoelectrochemical cytosensing of RAW264.7 macrophage cells based on a TiO2 nanoneedls@MoO3 array[J]. Analytical Chemistry,2017,89(15):7950−7957. doi: 10.1021/acs.analchem.7b01038
    [59]
    Liu D, Xu X, Shen X, et al. Construction of the direct Z-scheme CdTe/APTES-WO3 heterostructure by interface engineering for cathodic “signal-off ” photoelectrochemical aptasensing of streptomycin at sub-nanomole level[J]. Sensors and Actuators B: Chemical,2020:305.
    [60]
    Okoth O K, Yan K, Zhang J. Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin[J]. Carbon,2017,120:194−202. doi: 10.1016/j.carbon.2017.04.079
    [61]
    Peng J, Huang Q, Liu Y, et al. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin[J]. Sensors and Actuators B: Chemical,2019,294:157−165. doi: 10.1016/j.snb.2019.05.047
    [62]
    Wang Y, Gao C, Ge S, et al. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching[J]. Biosensors and Bioelectronics,2016,85:205−211. doi: 10.1016/j.bios.2016.05.015
    [63]
    Luo Y N, Tan X, Young D J, et al. A photoelectrochemical aptasensor for the sensitive detection of streptomycin based on a TiO2/BiOI/BiOBr heterostructure[J]. Analytica Chimica Acta,2020,1115:33−40. doi: 10.1016/j.aca.2020.04.021
    [64]
    Xu X X, Liu D, Luo L, et al. Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin[J]. Sensors and Actuators B: Chemical,2017,251:564−571. doi: 10.1016/j.snb.2017.04.168
    [65]
    Dai H, Zhang S, Hong Z, et al. Enhanced photoelectrochemical activity of a hierarchical-ordered TiO2 mesocrystal and its sensing application on a carbon nanohorn support scaffold[J]. Analytical Chemistry,2014,86(13):6418−6424. doi: 10.1021/ac500813u
    [66]
    Shen X L, Liu D, Zhu C X, et al. Photoelectrochemical and electrochemical ratiometric aptasensing: A case study of streptomycin[J]. Electrochemistry Communications,2020:110.
    [67]
    Jiang W, Zong X, An L, et al. Consciously constructing heterojunction or direct Z-scheme photocatalyst by regulating electron flow direction[J]. ACS Catalysis,2018,8(3):2209−2217. doi: 10.1021/acscatal.7b04323
    [68]
    Xu Y H, Ding L J, Wen Z R, et al. Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor[J]. Applied Surface Science,2020:511.
    [69]
    Tang L, Ouyang X L, Peng B, et al. Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction[J]. Nanoscale,2019,11(25):12198−12209. doi: 10.1039/C9NR03004B
    [70]
    Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694.
  • Related Articles

    [1]ZHOU Wan-qing, NESTERENKO Pavel N, LIN Yang, JIN Xiao-ling, HUANG Jin-fei, YE Ming-li, CHEN Mei-lan. Determination by Ion Chromatography and Distribution Characteristics of Main Cations in Three Drinking Waters[J]. Science and Technology of Food Industry, 2019, 40(24): 219-224. DOI: 10.13386/j.issn1002-0306.2019.24.036
    [2]ZHANG Shao-hua, YING Lu, ZHANG Shu-fen, SHI Lin-lin, KE Jian-jun, SU Yu-ting, XING Jia-li. Simultaneous Determination of Thiocyanate and Perchlorate in Vegetables by Ultrasonic Assisted Extraction of Hot Water-Ion Chromatography[J]. Science and Technology of Food Industry, 2019, 40(7): 224-227. DOI: 10.13386/j.issn1002-0306.2019.07.038
    [3]SHEN Song-li, LIN Zhi-wei, CHEN Mei-lan. Determination of organic acid and anion in noni powder by ion chromatography[J]. Science and Technology of Food Industry, 2017, (03): 305-308. DOI: 10.13386/j.issn1002-0306.2017.03.050
    [4]YU Lu, ZHOU Guang-ming, SHEN Jie, YU Yan-li. Determination of glucose,sucrose and fructose in 10 kinds of tropical fruits by ion chromatography[J]. Science and Technology of Food Industry, 2016, (22): 94-98. DOI: 10.13386/j.issn1002-0306.2016.22.010
    [5]HAN Ting-ting, CUI He, DUAN Xiao-juan, SONG Tian, JI Hong-wei, LI Hui-xin, CAI Feng, ZHU Qian-lin. Determination of four anions in alcohol and methanol by ion chromatography[J]. Science and Technology of Food Industry, 2016, (11): 284-288. DOI: 10.13386/j.issn1002-0306.2016.11.050
    [6]ZHANG Xian-an, ZENG Shi-qiao, LI Guan-xin, XU Hong-yong, YIN Zhao-ping, XU Yu-cheng. Simultaneous determination of ten mental cations in water by single column ion chromatography[J]. Science and Technology of Food Industry, 2014, (01): 286-288. DOI: 10.13386/j.issn1002-0306.2014.01.027
    [7]Determination of sucrose, glucose and lactose in toffee by ion chromatography[J]. Science and Technology of Food Industry, 2012, (19): 309-311. DOI: 10.13386/j.issn1002-0306.2012.19.016
    [8]Determination of polyphosphates in aquatic products by alkali liquor extraction-ion chromatography[J]. Science and Technology of Food Industry, 2012, (19): 301-303. DOI: 10.13386/j.issn1002-0306.2012.19.014
    [9]Determination of sulfur dioxide in wine by solid phase extraction-ion chromatography[J]. Science and Technology of Food Industry, 2012, (17): 330-332. DOI: 10.13386/j.issn1002-0306.2012.17.016
    [10]Uncertainty analysis of determination of fluoride and bromide in tea by ion chromatography[J]. Science and Technology of Food Industry, 2012, (17): 322-324. DOI: 10.13386/j.issn1002-0306.2012.17.015
  • Cited by

    Periodical cited type(6)

    1. 代桂丽,张超锋. 反相高效液相色谱-脉冲安培检测法对硫酸新霉素的药物分析研究. 化学与粘合. 2024(02): 200-205 .
    2. 苗晶,宋戈,朱琳,王树奇,李茜,杨文敏. 离子交换色谱法测定调制乳粉和固体饮料中异麦芽糖、异麦芽三糖和潘糖. 中国乳品工业. 2023(05): 50-54 .
    3. 颉东妹,王宁丽,刘笑笑,吴福祥,裴栋,郭玫,邸多隆. 微波消解-离子色谱法测定枸杞多糖的含量及组成. 食品安全质量检测学报. 2022(04): 1065-1072 .
    4. 陈修红,冀鹏,何国亮,夏然,李祖明,刘佳. 离子色谱-脉冲安培法同时测定牛肉水解产物中6种糖组分的含量. 食品工业科技. 2022(11): 267-275 . 本站查看
    5. 胡佳偲,孙晨,张昊,霍宗利. 高效液相色谱法同时测定全血中的原卟啉和锌原卟啉. 江苏预防医学. 2022(03): 272-276 .
    6. 梁静. 离子色谱在食品检测中的应用. 食品安全导刊. 2021(29): 152-153 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return