Citation: | GUAN Jiaqi, QIU Ji, YUE Yingxue, et al. Characteristics and Application of Bifidobacterium longum [J]. Science and Technology of Food Industry, 2021, 42(12): 430−438. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070121. |
[1] |
Zhang C C, Yu Z M, Zhao J X, et al. Colonization and probiotic function of Bifidobacterium longum[J]. Journal of Functional Foods,2019,53:157−165. doi: 10.1016/j.jff.2018.12.022
|
[2] |
Turroni F, Peano C, Pass D, et al. Diversity of bifidobacteria within the infant gut microbiota[J]. PLoS One,2012,7(5):e36957. doi: 10.1371/journal.pone.0036957
|
[3] |
何晓青. Bergey's Manual of Systematic Bacteriology[J]. 微生物学通报,1984(6):276.
|
[4] |
李明洁, 杨波, 赵建新, 等. 长双歧杆菌婴儿亚种的快速区分[J]. 食品与发酵工业,2019,45(18):43−49.
|
[5] |
Arboleya S, Stanton C, Ryan C A, et al. Bosom Buddies: The symbiotic relationship between infants andBifidobacterium longum ssp. Longum and ssp. infantis. genetic and probiotic features[J]. Annual Review of Food Science and Technology,2016,7:1−21. doi: 10.1146/annurev-food-041715-033151
|
[6] |
刘宪夫, 牛琴, 覃树林, 等. 双歧杆菌分类、生理功能及应用研究进展[J]. 生物产业技术,2017(3):100−105.
|
[7] |
丁圣, 蒋菁莉, 刘松玲, 等. 长双歧杆菌BBMN68对便秘模型小鼠的通便作用[J]. 食品科学,2011(3):202−205.
|
[8] |
Yun B, Song M, Park D J, et al. Beneficial effect of Bifidobacterium longum ATCC 15707 on survival rate of clostridium difficile infection in mice[J]. Korean Journal for Food Science of Animal Resources,2017,37(3):368−375. doi: 10.5851/kosfa.2017.37.3.368
|
[9] |
韦云路, 刘义, 王瑶, 等. 3株益生菌体外降胆固醇能力及体内降血脂效果评价[J]. 食品科学,2017(23):136−141.
|
[10] |
吕锡斌, 何腊平, 张汝娇, 等. 双歧杆菌生理功能研究进展[J]. 食品工业科技,2013,34(16):353−358.
|
[11] |
杨景, 罗绪刚, 任发政. 长双歧杆菌BBMN68诱导的树突状细胞对小鼠牛乳β-乳球蛋白过敏的缓解作用[J]. 现代食品科技,2016,32(7):6−11.
|
[12] |
韩涛, 刘雅婷, 张芳, 等. 双歧杆菌的生理功能和检测技术的进展[J]. 福建分析测试,2019(5):22−26. doi: 10.3969/j.issn.1009-8143.2019.05.04
|
[13] |
刘瑞娜, 周雪, 梁玉, 等. 成人粪便中长双歧杆菌长亚种的分离鉴定及多位点序列分型分析[J]. 食品工业科技,2019,40(21):65−71.
|
[14] |
Arboleya S, Bottacini F, O’Connell-motherway M, et al. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains[J]. BMC Genomics,2018,19(1):33. doi: 10.1186/s12864-017-4388-9
|
[15] |
Altmann F, Kosma P, O’Callaghan A, et al. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624TM[J]. PLoS One,2017,11(9):e0162983.
|
[16] |
Jena R, Choudhury P K, Puniya A K, et al. Isolation and species delineation of genus Bifidobacterium using PCR-RFLP of partial hsp60 gene fragment[J]. LWT-Food Science and Technology,2017,80:286−293. doi: 10.1016/j.lwt.2017.02.032
|
[17] |
Requena T, Burton J, Matsuki T, et al. Identification, detection, and enumeration of human Bifidobacterium species by PCR targeting the transaldolase gene[J]. Applied and Environmental Microbiology,2002,68(5):2420−2427. doi: 10.1128/AEM.68.5.2420-2427.2002
|
[18] |
Martin C J Maiden, Melissa J Jansen van Rensburg, James E Bray, et al. MLST revisited: The gene-by-gene approach to bacterial genomics[J]. Nature Reviews Microbiology,2013,11(10):728−736. doi: 10.1038/nrmicro3093
|
[19] |
Yanokura E, Oki K, Makino H, et al. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: Description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets[J]. Systematic and Applied MicrobioloGy,2015,38(5):305−314. doi: 10.1016/j.syapm.2015.05.001
|
[20] |
Chaplin A V, Efimov B A, Smeianov V V, et al. Intraspecies genomic diversity and long-term persistence of Bifidobacterium longum[J]. PloS One,2015,10(8):e0135658. doi: 10.1371/journal.pone.0135658
|
[21] |
Lawley B, Munro K, Hughes A, et al. Differentiation of Bifidobacterium longum subspecies longum andinfantis by quantitative PCR using functional gene targets[J]. Peerj,2017,5:e3375. doi: 10.7717/peerj.3375
|
[22] |
Lawley B, Centanni M, Watanabe J, et al. Tuf gene sequence variation in Bifidobacterium longum subsp. infantis detected in the fecal microbiota of Chinese infants[J]. Applied and Environmental Microbiology,2018,84(13):e00336−18.
|
[23] |
张秋雪, 刘晓婵, 朱宗涛, 等. 婴儿粪便长双歧杆菌的分离与多样性分析[J]. 食品科学,2017,38(24):14−20.
|
[24] |
Martin R, Makino H, Cetinyurek Y A, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota[J]. PLoS One,2017,11(6):e0158498.
|
[25] |
Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird's-eye view.[J]. Frontiers in Microbiology,2017,8:1388. doi: 10.3389/fmicb.2017.01388
|
[26] |
李让, 乔雪薇, 刘松玲, 等. 长双歧杆菌BBMN68在胃肠道中生物分布规律研究[J]. 中国乳业,2015(10):72−76. doi: 10.3969/j.issn.1671-4393.2015.10.016
|
[27] |
Sugahara H, Odamaki T, Fukuda S, et al. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community[J]. Scientific Reports,2015,5(1):13548. doi: 10.1038/srep13548
|
[28] |
占萌. 高黏附乳酸菌的筛选及其对RAW264.7细胞的免疫调节作用[D]. 哈尔滨: 东北农业大学, 2019.
|
[29] |
Takane K. Host-derived glycans serve as selected nutrients for the gut microbe: Human milk oligosaccharides and bifidobacteria[J]. Bioscience, biotechnology, and biochemistry,2016,80(4):621−632. doi: 10.1080/09168451.2015.1132153
|
[30] |
Thomson P, Medina D A, Garrido D, Human milk oligosaccharides and infant gutbifidobacteria: Molecular strategies for their utilization[J]. Food Microbiol, 2018, 75, 37–46.
|
[31] |
Egan M, Mary O’C M, Michelle K, et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium[J]. BioMed Central,2014,14(1):282. doi: 10.1186/s12888-014-0282-z
|
[32] |
Egan M, Michelle K, Mary O’C M, et al. Metabolism of sialic acidby Bifidobacterium breve UCC2003[J]. Applied & Environmental Microbiology,2014,80:4414−4426.
|
[33] |
Turroni F, Özcan E, Milani C, et al. Glycan cross-feeding activities between bifidobacteria under in vitro conditions[J]. Frontiers in Microbiology,2015,6:1030.
|
[34] |
Turroni F, Milani C, Duranti S, et al. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approac[J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology,2016,10(Suppl 2):1656−1668.
|
[35] |
Belenguer A, Duranti S, Calder A G, et al. Two routes of metabolic cross-feedingbetween Bifidobacterium adolescentis and butyrate-producinganaerobes from the human gut[J]. Applied and Environmental Microbiology,2006,72(5):3593−3599. doi: 10.1128/AEM.72.5.3593-3599.2006
|
[36] |
Sela D A, Chapman J, Adeuya A, et al. The genome sequence ofBifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(48):18964−18969. doi: 10.1073/pnas.0809584105
|
[37] |
Lewis Z T, Totten S M, Smilowitz J T, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants[J]. Microbiome,2015,3(1):13. doi: 10.1186/s40168-015-0071-z
|
[38] |
Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure[J]. Applied and Environmental Microbiology,2008,74(13):3996−4004. doi: 10.1128/AEM.00149-08
|
[39] |
Maldonadogómez M X, Martinez I, Bottacini F, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome[J]. Cell Host & Microbe,2016,20(4):515−526.
|
[40] |
Li S S, Zhu A, Benes V, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation[J]. Science,2016,352(6285):586−589. doi: 10.1126/science.aad8852
|
[41] |
Stecher B, Berry D, LOY A. Colonization resistance and microbial ecophysiology: Using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle[J]. Fems Microbiology Reviews,2013,37(5):793−829. doi: 10.1111/1574-6976.12024
|
[42] |
Foroni E, Serafini F, Amidani D, et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium[J]. Microbial Cell Factories,2011,10 Suppl 1:S16.
|
[43] |
O'Connell M M, Zomer A, Leahy S C, et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(27):11217−11222. doi: 10.1073/pnas.1105380108
|
[44] |
Arboleya S, Watkins C, Stanton C, et al. Gut bifidobacteria populations in humanhealth and aging[J]. Frontiers in Microbiology,2016,7:1204.
|
[45] |
Arboleya S, Sánchez B, Milani C, et al. Intestinal microbiota development inpreterm neonates and effect of perinatal antibiotics[J]. The Journal of Pediatrics,2015,166(3):538–544.
|
[46] |
王娜娜, 霍贵成, 李春, 等. 益生菌对神经系统疾病作用的研究进展[J]. 食品科学,2019,40(11):338−342. doi: 10.7506/spkx1002-6630-20180507-110
|
[47] |
钱伟, 刘娜, 宋军, 等. 长双歧杆菌抑制回肠NLRP6炎症小体调节感染后肠易激综合征内脏高敏感性[J]. 临床消化病杂志,2014,26(5):257−263. doi: 10.3870/lcxh.j.issn.1005-541X.2014.05.01
|
[48] |
Leonilde B, Domenica M, Di P, et al. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients[J]. European Journal of Clinical Investigation,2020,50(3).
|
[49] |
Lin P, Li Q. Can gut flora changes be new biomarkers for depression?[J]. Frontiers in Laboratory Medicine,2017,1(3).
|
[50] |
马燕, 郭莉娜, 刘漪沦. 肠道菌群与抑郁症发生的研究进展[J]. 实用医学杂志,2018,34(2):324−327. doi: 10.3969/j.issn.1006-5725.2018.02.042
|
[51] |
Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression[J]. Mol Psychiatry,2008,13(7):717−728. doi: 10.1038/sj.mp.4002055
|
[52] |
Pinto-Sanchez M I, Hall G B, Ghajar K, et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome[J]. Gastroenterology,2017,153(2):448−459. doi: 10.1053/j.gastro.2017.05.003
|
[53] |
Bravo J A, Forsythe P, Chew M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(38):16050. doi: 10.1073/pnas.1102999108
|
[54] |
Allen AP, Hutch W, Borre Y E, et al. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers[J]. Transl Psychiatry, 2016, 6 (11): e939.
|
[55] |
Wang H Y, Braun N C, Murphy E F, et al. Bifidobacterium longum 1714™ strain modulates brain activity of healthy volunteers during social stress[J]. The American Journal of Gastroenterology,2019,114(7):1152−1162. doi: 10.14309/ajg.0000000000000203
|
[56] |
Hae-Ji Lee. 长双歧杆菌通过改善肠道菌群失调减轻5×FAD转基因小鼠和老龄小鼠的认知功能衰退[C]. 达能营养中心2019年论文汇编: 膳食营养与认知功能: 中国疾病预防控制中心达能营养中心, 2019: 75.
|
[57] |
Matsuki T, Yahagi K., Mori H, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development[J]. Nature Communications,2016,7:11939. doi: 10.1038/ncomms11939
|
[58] |
Abid Y, Casillo A, Gharsallah H, et al. Production and structural characterization ofexopolysaccharides from newly isolated probiotic lactic acid bacteria[J]. International Journal of Biological Macromolecules,2017,108:719−728.
|
[59] |
Inturri R, Mangano K., Santagati M, et al. Immunomodulatory effects of Bifidobacterium longum W11 produced exopoly-saccharide on cytokine production[J]. Current Pharmaceutical Biotechnology,2017,18(11):883−889.
|
[60] |
Wang L S, Zhu H M, Zhou D Y, et al. Influence of whole peptidoglycan of bifidobacterium on cytotoxic effectors produced by mouse peritoneal macrophages[J]. World Journal of Gastroenterology,2001(3):440−443.
|
[61] |
付艳茹, 龚虹, 刘彦民, 等. 长双歧杆菌完整肽聚糖对小鼠免疫功能的影响[J]. 中国微生态学杂志,2010,22(3):217−219, 222.
|
[62] |
Fischer W. Physiology of lipoteichoic acids in bacteria[J]. Adv Microb Physiol,1988,29(1):233.
|
[63] |
龚虹, 黄少磊, 刘斌, 等. 长双歧杆菌NQ-1501脂磷壁酸提取及免疫功能的研究[J]. 中国微生态学杂志,2015,27(9):993−996.
|
[64] |
李在玲. 食物过敏与相关消化系统疾病[J]. 中华实用儿科临床杂志,2015(30):485.
|
[65] |
黄铖铖. 长双歧杆菌BBMN68治疗婴儿CMPA腹泻的效果及对EOS、IgE及白介素水平的影响[J]. 泰山医学院学报,2018,39(1):32−34. doi: 10.3969/j.issn.1004-7115.2018.01.009
|
[66] |
拉姆卓嘎, 皮壮, 吕欣桐, 等. 开放性食物激发试验在牛奶蛋白过敏诊治中的应用价值[J]. 中国免疫学杂志,2016,32(4):567−569. doi: 10.3969/j.issn.1000-484X.2016.04.026
|
[67] |
Lyons A, O'Mahony D, O'Brien F, et al. Bacterial strain-specific induction of Foxp3 + T regulatory cells is protective in murine allergy models[J]. Clinical & Experimental Allergy,2010,40(5):811−819.
|
[68] |
Akay H K, Bahar T H, Hatipoglu N, et al. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: A prospective study of 0-3 years-old children in Turkey[J]. Anaerobe,2014,28:98−103. doi: 10.1016/j.anaerobe.2014.05.006
|
[69] |
Schiavi E, Gleinser M, Molloy E, et al. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 Plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses[J]. Applied and Environment Microbiology,2016,82(24):7185−7196. doi: 10.1128/AEM.02238-16
|
[70] |
Srutkova D, Schwarzer M, Hudcovic T, et al. Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-Induced colitis in strictly strain-specific manner[J]. PLoS One,2015,10(7):e0134050. doi: 10.1371/journal.pone.0134050
|
[71] |
In K H, Kim JK, Kim J Y, et al. Lactobacillus plantarum LC27 andBifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice[J]. Nutrition Research (New York, N. Y.),2019,67:78−89. doi: 10.1016/j.nutres.2019.03.008
|
[72] |
Kwon EK, Kang GD, Kim WK, et al. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate ethanol-induced gastritis and hepatic injury in mice[J]. Funct Foods, 2017, 38: 389−398.
|
[73] |
Kim W G, Kim H I, Kwon E K, et al. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota[J]. Food Funct, 2018, 9: 3114–3124.
|
[74] |
Jang S E, Lim S M, Jeong J J, et al. Gastrointestinal inflammation by gut microbiota disturbance induces memory impairment in mice[J]. Mucosal Immunol, 2018, 11: 369-79.
|
[75] |
臧杰, 孔庆利. 厌氧菌作为实体瘤基因治疗载体的研究进展[J]. 中华现代内科学杂志,2007,4(9):112−114.
|
[76] |
Fujimori M, Amano J, Taniguchi S. The genus Bifidobacterium for cancer gene therapy[J]. Current Opinion in Drug Discovery & Development,2002,5(2):200−203.
|
[77] |
Xu Y F, Zhu L P, Hu B, et al. A new expression plasmidin Bifidobacterium longum as a delivery system of endostatin for cancer genetherapy[J]. Cancer Gene Ther,2007,14(2):151−157. doi: 10.1038/sj.cgt.7701003
|
[78] |
祁艳, 周艳, 张旭东, 等. 富硒长双歧杆菌DD98菌株对伊立替康所致小鼠腹泻及肠道菌群的影响[J]. 食品工业科技,2020,41(6):293−298.
|
[79] |
Liu F, Cottrell J J, Fumess J B, et al. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs[J]. Exp Physiol,2016,101(7):801−810. doi: 10.1113/EP085746
|
[80] |
Nido S A, Shituleni S A, Mengistu B M, et al. Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet[J]. Biol Trace Elem Res,2016,171(2):399−409. doi: 10.1007/s12011-015-0552-8
|
[81] |
Liu Y H, Liu Q, Ye G P, et al. Protective effects of selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats[J]. J Agric Food Chem,2015,63(1):242−249. doi: 10.1021/jf5039184
|
[82] |
易宏伟, 朱笑笑, 黄小莉, 等. 富硒长双歧杆菌抑制乙醇诱导的小鼠肝损伤[J]. 中国药学杂志,2019,54(22):1859−1864.
|
[83] |
周艳, 祁艳, 纪瑞, 等. 富硒长双歧杆菌DD98菌株的黏附特性及黏附机制初步研究[J]. 食品工业科技,2019,40(13):84−88.
|
[84] |
徐莉莎, 朱家桢, 冯黎黎, 等. 富硒长双歧杆菌水溶性蛋白保护脂多糖诱导的大鼠肠上皮细胞IEC6损伤[J]. 中国药理学通报,2019,35(9):1274−1278. doi: 10.3969/j.issn.1001-1978.2019.09.017
|
[85] |
Qiu Y, Zhang J, Ji R, et al. Preventative effects of selenium-enriched Bifidobacterium longum on irinotecan-induced small intestinal mucositis in mice[J]. Benef Microbes,2019,10(5):1−10.
|
[86] |
张素姬, 刘海燕, 陈代杰, 等. 富硒长双歧杆菌总蛋白对黑色素瘤细胞活性研究[J]. 工业微生物,2017,47(6):14−18. doi: 10.3969/j.issn.1001-6678.2017.06.003
|