Citation: | LIU Jing, HU Jingwei, ZHOU Yibin. Advances in the Extraction and Emulsification System of Oil Bodies: A Review[J]. Science and Technology of Food Industry, 2021, 42(12): 422−429. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070118. |
[1] |
Laibach N, Post J, Twyman R M, et al. The characteristics and potential applications of structural lipid droplet proteins in plants[J]. Journal of Biotechnology,2015,201:15−27. doi: 10.1016/j.jbiotec.2014.08.020
|
[2] |
杨建远, 陈芳, 宋沥文, 等. 油茶籽油提取技术研究进展[J]. 食品与机械,2016,32(2):183−187.
|
[3] |
梁帆, 郭华, 周玥. 4种工艺制取的油茶籽油的品质分析及比较[J]. 食品科技,2016,41(5):196−200.
|
[4] |
Zaaboul F. 花生油体的分离、理化特性研究[D]. 无锡: 江南大学, 2018: 50−61.
|
[5] |
杨辉. 茶油提取新工艺及其品质的研究[D]. 南昌: 南昌大学, 2012: 70-71.
|
[6] |
Gai Q Y, Jiao J, Wei F Y, et al. Enzyme-assisted aqueous extraction of oil from Forsythia suspense seed and its physicochemical property and antioxidant activity[J]. Industrial Crops & Products,2013,51:274−278.
|
[7] |
Tzen J T C, Cao Y Z, Laurent P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant Physiology,1993,101(1):267−276. doi: 10.1104/pp.101.1.267
|
[8] |
Payne G, Lad M, Foster T, et al. Composition and properties of the surface of oil bodies recovered from echium plantagineum[J]. Colloids and Surfaces Bio-interfaces,2014,116:88−92. doi: 10.1016/j.colsurfb.2013.11.043
|
[9] |
Nikiforidis C V, Matsakidou A, Kiosseoglou V. Composition, properties and potential food applications of natural emulsions and cream materials based on oil-bodies[J]. RSC Advances,2014,4:25067−25078. doi: 10.1039/C4RA00903G
|
[10] |
赵路苹. 大豆油体富集物的蛋白质组成及其对油体乳液性质的影响研究[D]. 无锡: 江南大学, 2017.
|
[11] |
Tzen J T, Huang A H C. Surface structure and properties of plant seed oil bodies[J]. Journal of Cell Biology,1992,117 (2):327−335. doi: 10.1083/jcb.117.2.327
|
[12] |
Huang, Yu C. Evolution and functions of oleosins and oleosin-coated oil bodies in plants[D]. California: University of California, 2013: 98−130.
|
[13] |
Chen J C F, Tzen J T C. An in vitro system to examine the effective phospholipids and structural domain for protein targeting to seed oil bodies[J]. Plant and Cell Physiology,2001,42(11):1245−1252. doi: 10.1093/pcp/pce160
|
[14] |
Chen J C F, Tsai C C Y, Tzen J T C. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds[J]. Plant and Cell Physiology,1999,40(10):1079−1086. doi: 10.1093/oxfordjournals.pcp.a029490
|
[15] |
Lin L J, Sorgan S K T, Peng C C, et al. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies[J]. Plant Physiology,2002,128 (4):1200−1211.
|
[16] |
Nikiforidis C V, Karkani O A, Kiosseoglou V. Exploitation of maize germ for the preparation of a stable oil-body nano-emulsion using a combined aqueous extraction-ultrafiltration method[J]. Food Hydrocolloids,2011,25(5):1122−1127. doi: 10.1016/j.foodhyd.2010.10.009
|
[17] |
Nikiforidis C V, Kiosseoglou V. Aqueous extraction of oil bodies from maize germ (Zea mays) and characterization of the resulting natural oil-in-water emulsion[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5591−5596. doi: 10.1021/jf900771v
|
[18] |
Nikiforidis C V, Kiosseoglou V. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions[J]. Journal of Agricultural and Food Chemistry,2010,58(1):527−532. doi: 10.1021/jf902544j
|
[19] |
Nikiforidis C V, Kiosseoglou V. Competitive displacement of oil body surface proteins by Tween 80-Effect on physical stability[J]. Food Hydrocolloids,2011,25 (5):1063−1068. doi: 10.1016/j.foodhyd.2010.10.002
|
[20] |
Nikiforidis C V, Donsouzi S, Kiosseoglou V. The interplay between diverse oil body extracts and exogenous biopolymers or surfactants[J]. Food research international,2016,83(5):14−24.
|
[21] |
Simona, Bettini, Angelo, et al. Reconstituted oil bodies characterization at the air/water and at the air/oil/water interfaces[J]. Colloids and Surfaces B: Biointerfaces,2014,122:12−18. doi: 10.1016/j.colsurfb.2014.06.044
|
[22] |
Tzen J T C, Peng C C, Cheng D J, et al. A new method for seed oil body purification and examination of oil body integrity following germination[J]. Journal of Biochemistry,1997,121(4):762−768. doi: 10.1093/oxfordjournals.jbchem.a021651
|
[23] |
Jolivet P, Boulard C, Bellamy A, et al. Protein composition of oil bodies from mature Brassica napus seeds[J]. Protomics,2009,9(12):3268−3284. doi: 10.1002/pmic.200800449
|
[24] |
仇键. 油茶种子油体蛋白基因的分离克隆及其原核表达[D]. 长沙: 中南林业科技大学, 2006.
|
[25] |
Hou J, Feng X, Jiang M, et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops[J]. LWT-Food Science and Technology,2019,113:1−9.
|
[26] |
Chen Y, Ono T. Simple extraction method of non-allergenic intact soybean oil bodies that are thermally stable in an aqueous medium[J]. Journal of Agricultural and Food Chemistry,2010,58(12):7402−7407. doi: 10.1021/jf1006159
|
[27] |
Chen B, Mcclements D J, Gray D A, et al. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans[J]. Food Chemistry,2012,132(3):1514−1520. doi: 10.1016/j.foodchem.2011.11.144
|
[28] |
Zaaboul F, Raza H, Chen C, et al. Characterization of peanut oil bodies integral proteins, lipids, and their associated phytochemicals[J]. Journal of Food science,2018,83(1-3):93−100.
|
[29] |
Kapchie V N, Towa L T, Hauck C, et al. Evaluation of enzyme efficiency for soy oleosome isolation and ultrastructural aspects[J]. Food Research International,2010,43(1):241−247. doi: 10.1016/j.foodres.2009.09.019
|
[30] |
Chirico S D, Bari V D, Foster T, et al. Enhancing the recovery of oilseed rape seed oil bodies (oleosomes) using bicarbonate-based soaking and grinding media[J]. Food Chemistry,2018,241:419−426. doi: 10.1016/j.foodchem.2017.09.008
|
[31] |
Chirico S D, Bari V D, María Juliana Romero Guzmán, et al. Assessment of rapeseed oil body (oleosome) lipolytic activity as an effective predictor of emulsion purity and stability[J]. Food Chemistry,2020,316:126355. doi: 10.1016/j.foodchem.2020.126355
|
[32] |
Pimentel, Lígia, Fontes A L, et al. Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis[J]. Electrophoresis,2018,39(15):1835−1845. doi: 10.1002/elps.201700425
|
[33] |
Avalli A, Contarini G. Determination of phospholipids in dairy products by SPE/HPLC/ELSD[J]. Journal of chromatography,2005,1071(1−2):185−190. doi: 10.1016/j.chroma.2005.01.072
|
[34] |
Bourgeois C, Gomaa A I, Lefèvre T, et al. Interaction of oil bodies proteins with phospholipid bilayers: A molecular level elucidation as revealed by infrared spectroscopy[J]. Biomac, 2018, 122: 873−881.
|
[35] |
Eibl H. Phospholipids as functional constituents of biomembranes[J]. Angewandte Chemie International Edition,2010,23(4):257−271.
|
[36] |
Zhou L Z, Chen F S, Li H H, et al. Peanut oil body composition and stability[J]. Journal of Food Science,2019,84(4):2812−2819.
|
[37] |
Li Y, Liu B, Jiang L. Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions: A fluorescence analysis[J], Food Hydrocolloids, 2018, 87: 814−829.
|
[38] |
Zhang Y, Yang N, Xu Y, et al. Improving the stability of oil body emulsions from diverse plant seeds using sodium alginate[J]. Molecules,2019,24(21):3856−3867. doi: 10.3390/molecules24213856
|
[39] |
Chang C, Tu S, Ghosh S, et al. Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates[J]. Food Research International,2015,77(3):360−367.
|
[40] |
Yan Z, Zhao L, Kong X. Behaviors of particle size and bound proteins of oil bodies in soymilk processing[J]. Food Chemistry,2016,194:881−890. doi: 10.1016/j.foodchem.2015.08.100
|
[41] |
Zhao L, Chen Y, Chen Y, et al. Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis[J]. Food Chemistry,2016,200(6):125−133.
|
[42] |
Qi B, Ding J, Wang Z, et al. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH[J]. Food research international,2017,100(1):551−557.
|
[43] |
Juliana M R G, Petris V, Chirico S D, et al. The effect of monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations on rapeseed oleosome (oil body) extraction and stability at pH 7[J]. Food Chemistry,2020,306:1−6.
|
[44] |
Gurtovenko A A, Vattulainen I. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: Insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane[J]. Journal of Physical Chemistry B,2008,112(7):1953−1962. doi: 10.1021/jp0750708
|
[45] |
Allouche D, Parello J, Sanejouand Y H. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins: A theoretical study[J]. Journal of molecular biology,1999,285(2):857−873. doi: 10.1006/jmbi.1998.2329
|
[46] |
Guzey D, Mcclements D J. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by β-Lactoglobulin and pectin complexes[J]. Journal of Agricultural and Food Chemistry,2007,55(2):475−485. doi: 10.1021/jf062342f
|
[47] |
Wu N N, Huang X, Yang X Q, et al. Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling[J]. Food Hydrocolloids,2012,28(1):110−120. doi: 10.1016/j.foodhyd.2011.12.005
|
[48] |
Wu N N, Yang X Q, Teng Z, et al. Stabilization of soybean oil body emulsions using κ, ι, λ-carrageenan at different pH values[J]. Food Research International,2011,44(4):1059−1068. doi: 10.1016/j.foodres.2011.03.019
|
[49] |
Qiu C, Zhao M, McClements D J. Improving the stability of wheat protein stabilized emulsions: Effect of pectin and xanthan gum addition[J]. Food Hydrocolloids,2015,43:377−387. doi: 10.1016/j.foodhyd.2014.06.013
|
[50] |
Iwanaga D, Gray D, Decker E A, et al. Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition[J]. Journal of Agricultural & Food Chemistry,2008,56(6):2240−2245.
|
[51] |
Tsibranska S, Tcholakova S, Golemanov K, et al. Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions[J]. Journal of Colloid and Interface Science,2019.
|
[52] |
Tippel J, Lehmann M, Von Klitzing R, et al. Interfacial properties of quillaja saponins and its use for micellisation of lutein esters[J]. Food Chemistry,2016,212(10):35−42.
|
[53] |
Ralla T, Salminen H, Edelmann M, et al. Stability of emulsions using a new natural emulsifier: Sugar beet extract (Beta vulgaris L.)[J]. Food Biophysics,2017,12(3):269−278. doi: 10.1007/s11483-017-9482-7
|
[54] |
Ralla T, Salminen H, Tuosto J, et al. Formation and stability of emulsions stabilised by Yucca saponin extract[J]. International Journal of Food science and Technology,2018,53:1−8. doi: 10.1111/ijfs.13702
|
[55] |
杨建远. 水法提取茶油过程中天然组分乳化机制及破乳提油技术的研究[D]. 南昌: 南昌大学, 2019.
|
[56] |
Bouhoute M, Taarji N, Vodo S, et al. Formation and stability of emulsions using crude extracts as natural emulsifiers from argan shells[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020.
|
1. |
张奕涛,谢荣华,谭德馨,黎小椿,李官丽,罗杨合,伍淑婕. 速溶型马蹄脆脆粉配方优化及性能分析. 食品研究与开发. 2024(11): 125-135 .
![]() |