HU Gaoshuang, WU Tianqi, SU Dan, et al. Research Progress on Application of New Labeling Materials Based Immunoassay on the Detection of Mycotoxin [J]. Science and Technology of Food Industry, 2021, 42(12): 398−404. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070071.
Citation: HU Gaoshuang, WU Tianqi, SU Dan, et al. Research Progress on Application of New Labeling Materials Based Immunoassay on the Detection of Mycotoxin [J]. Science and Technology of Food Industry, 2021, 42(12): 398−404. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070071.

Research Progress on Application of New Labeling Materials Based Immunoassay on the Detection of Mycotoxin

More Information
  • Received Date: July 07, 2020
  • Available Online: April 08, 2021
  • In recent years, mycotoxin contamination in food has become a hot and difficult issue in the field of food safety. Immunoassay has the advantages of short detection time, simple operation steps, low cost and environmental friendliness, which is suitable for food safety detection. The research of new labeling materials-based immunoassay techniques in rapid detection of mycotoxin in cereal products is reviewed in this paper, including enzyme linked immunosorbent assay, immunochromatography, electrochemical immunosensor, immunochips, cytometric bead array based on immunoassay and time resolved fluorescence immunoassay. The advantages and disadvantages of the above immunoassay are systematically analyzed, which provides references for the application and development of immunoassay techniques in the detection of mycotoxins, and also provides new ideas for ensuring safety of grain products.
  • [1]
    Goud K Y, Kailasa S K, Kumar V, et al. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review[J]. Biosensors and Bioelectronics,2018,121:205−222. doi: 10.1016/j.bios.2018.08.029
    [2]
    Luo Y, Liu X, Li J. Updating techniques on controlling mycotoxins - A review[J]. Food Control,2018,89:123−132. doi: 10.1016/j.foodcont.2018.01.016
    [3]
    Zhang Y, Pei F, Fang Y, et al. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC[J]. Food Chemistry,2019,275:763−769. doi: 10.1016/j.foodchem.2018.09.127
    [4]
    Puntscher H, Kutt M, Skrinjar P, et al. Tracking emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria toxins[J]. Analytical and Bioanalytical Chemistry,2018,410 (18):4481−4494. doi: 10.1007/s00216-018-1105-8
    [5]
    Dong H, Xian Y, Xiao K, et al. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS[J]. Food Chemistry,2019,274:471−479. doi: 10.1016/j.foodchem.2018.09.035
    [6]
    Mcmaster N, Acharya B, Harich K, et al. Quantification of the mycotoxin deoxynivalenol (don) in sorghum using GC-MS and a stable isotope dilution assay (SIDA)[J]. Food Analytical Methods,2019,12 (10):2334−2343. doi: 10.1007/s12161-019-01588-3
    [7]
    Rodriguezcarrasco Y, Molto J C, Manes J, et al. Development of microextraction techniques in combination with GC–MS/MS for the determination of mycotoxins and metabolites in human urine[J]. Journal of Separation Science,2017,40 (7):1572−1582. doi: 10.1002/jssc.201601131
    [8]
    Chen Y, Chen Q, Han M, et al. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk[J]. Biosensors and Bioelectronics,2016,79:430−434. doi: 10.1016/j.bios.2015.12.062
    [9]
    Wang X, Niessner R, Tang D, et al. Nanoparticle-based immunosensors and immunoassays for aflatoxins[J]. Analytica Chimica Acta,2016,912:10−23. doi: 10.1016/j.aca.2016.01.048
    [10]
    Oplatowska-Stachowiak M, Sajic N, Xu Y, et al. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients[J]. Food Control,2016,63:239−245. doi: 10.1016/j.foodcont.2015.11.041
    [11]
    Zhang A, Ma Y, Feng L, et al. Development of a sensitive competitive indirect ELISA method for determination of ochratoxin A levels in cereals originating from Nanjing, China[J]. Food Control,2011,22 (11):1723−1728. doi: 10.1016/j.foodcont.2011.04.004
    [12]
    Zhang Z, Li Y, Li P, et al. Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B1 in peanuts[J]. Food Chemistry,2014,146:314−319. doi: 10.1016/j.foodchem.2013.09.048
    [13]
    Wu S, Duan N, Zhu C, et al. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels[J]. Biosensors and Bioelectronics,2011,30 (1):35−42. doi: 10.1016/j.bios.2011.08.023
    [14]
    Hu G, Sheng W, Zhang Y, et al. Upconversion nanoparticles and monodispersed magnetic polystyrene microsphere based fluorescence immunoassay for the detection of sulfaquinoxaline in animal-derived foods[J]. Journal of Agricultural and Food Chemistry,2016,64(19):3908−3915. doi: 10.1021/acs.jafc.6b01497
    [15]
    Hou S, Ma J, Cheng Y, et al. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains[J]. Food Control,2020,117:107107. doi: 10.1016/j.foodcont.2020.107107
    [16]
    Liu D, Huang Y, Chen M, et al. Rapid detection method for aflatoxin B1 in soybean sauce based on fluorescent microspheres probe[J]. Food Control,2015,50:659−662. doi: 10.1016/j.foodcont.2014.10.011
    [17]
    Zhang X, Wen K, Wang Z, et al. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk[J]. Food Control,2016:588−595.
    [18]
    Li X, Wang J, Yi C, et al. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed[J]. Sensors and Actuators B: Chemical,2019,290:170−179. doi: 10.1016/j.snb.2019.03.108
    [19]
    Hu G, Sheng W, Li S, et al. Quantum dot based multiplex fluorescence quenching immune chromatographic strips for the simultaneous determination of sulfonamide and fluoroquinolone residues in chicken samples[J]. RSC Advances,2017,7(49):31123−31128. doi: 10.1039/C7RA01753G
    [20]
    Hu G, Sheng W, Li J, et al. Fluorescent quenching immune chromatographic strips with quantum dots and upconversion nanoparticles as fluorescent donors for visual detection of sulfaquinoxaline in foods of animal origin[J]. Analytica Chimica Acta,2017,982:185−192. doi: 10.1016/j.aca.2017.06.013
    [21]
    Hou S, Ma J, Cheng Y, et al. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains[J]. Food Control,2020,117:107331. doi: 10.1016/j.foodcont.2020.107331
    [22]
    Hu W, Yan J, You K, et al. Streptococcal protein G based fluorescent universal probes and biosynthetic mimetics for fumonisin B1 immunochromatographic assay[J]. Food Control 2020,1074:42.
    [23]
    Zhao B, Huang Q, Dou L, et al. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,275:223−229. doi: 10.1016/j.snb.2018.08.029
    [24]
    Tian M, Xie W, Zhang T, et al. A sensitive lateral flow immunochromatographic strip with prussian blue nanoparticles mediated signal generation and cascade amplification[J]. Sensors and Actuators B: Chemical,2020,309:127728. doi: 10.1016/j.snb.2020.127728
    [25]
    Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews,2004,104 (1):139−173. doi: 10.1021/cr020357g
    [26]
    Schaefer H, Ptacek P, Koempe K, et al. Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission[J]. Chemistry of Materials,2007,19(6):1396−1400. doi: 10.1021/cm062385b
    [27]
    Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angewandte Chemie-International Edition,2011,50 (32):7385−7390. doi: 10.1002/anie.201101447
    [28]
    Dong H, Sun L D, Yan C H. Basic understanding of the lanthanide related upconversion emissions[J]. Nanoscale,2013,5 (13):5703−5714. doi: 10.1039/c3nr34069d
    [29]
    黄震, 肖小月, 熊智娟, 等. 上转换免疫层析方法检测牛奶中大肠杆菌O157: H7[J]. 理科版,2019,43(6):556−563.
    [30]
    Gong Y, Zheng Y, Jin B, et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing[J]. Talanta,2019:126−133.
    [31]
    谢艳君, 杨英, 孔维军, 等. 基于不同纳米材料的侧流免疫层析技术在真菌毒素检测中的应用[J]. 分析化学,2015,43 (4):618−628.
    [32]
    Tang D, Sauceda J C, Lin Z, et al. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food[J]. Biosensors and Bioelectronics,2009,25 (2):514−518. doi: 10.1016/j.bios.2009.07.030
    [33]
    Huang Y M, Liu D F, Lai W H, et al. Rapid detection of aflatoxin M1 by immunochromatography combined with enrichment based on immunomagnetic nanobead[J]. Chinese Journal of Analytical Chemistry,2014,42 (5):654−659. doi: 10.1016/S1872-2040(13)60731-8
    [34]
    刘坤. 饲料中玉米赤霉烯酮的高效富集及免疫层析定量检测方法的建立[D]. 南昌, 南昌大学, 2015.
    [35]
    张博. 基于磁致荧光淬灭性能的双模态免疫层析检测技术初探[D]. 天津: 天津大学, 2018.
    [36]
    Hou S, Ma Z, Meng H, et al. Ultrasensitive and green electrochemical immunosensor for mycotoxin ochratoxin A based on phage displayed mimotope peptide[J]. Talanta,2019,194:919−924. doi: 10.1016/j.talanta.2018.10.081
    [37]
    Valera E, Garciafebrero R, Elliott C T, et al. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples[J]. Analytical and Bioanalytical Chemistry,2019,411 (9):1915−1926. doi: 10.1007/s00216-018-1538-0
    [38]
    Paniel N, Radoi A, Marty J, et al. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk[J]. Sensors,2010,10(10):9439−9448. doi: 10.3390/s101009439
    [39]
    Chen Y, Meng X, Zhu Y, et al. Rapid detection of four mycotoxins in corn using a microfluidics and microarray-based immunoassay system[J]. Talanta,2018,186:299−305. doi: 10.1016/j.talanta.2018.04.064
    [40]
    蔡婷婷. 基于TiO2—多孔硅的蛋白质芯片技术检测谷物中的多元真菌毒素[D]. 南京: 南京师范大学, 2018.
    [41]
    Li Z, Li Z, Jiang J, et al. Simultaneous detection of various contaminants in milk based on visualized microarray[J]. Food Control,2017:994−1001.
    [42]
    Qu J, Xie H, Zhang S, et al. Multiplex flow cytometric immunoassays for high-throughput screening of multiple mycotoxin residues in milk[J]. Food Analytical Methods,2019,12(4):877−886. doi: 10.1007/s12161-018-01412-4
    [43]
    Zhang Y, Dong C, Su L, et al. Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays[J]. ACS Applied Materials & Interfaces,2016,8 (1):6301−6301.
    [44]
    Zhang Y, Liao Z, Liu Y, et al. Flow cytometric immunoassay for aflatoxin B1 using magnetic microspheres encoded with upconverting fluorescent nanocrystals[J]. Mikrochimica Acta,2017,184 (5):1471−1479. doi: 10.1007/s00604-017-2116-4
    [45]
    Wang D, Zhang Z, Li P, et al. Time-resolved fluorescent immunochromatography of aflatoxin b1 in soybean sauce: A rapid and sensitive quantitative analysis[J]. Sensors,2016,16 (7):1094. doi: 10.3390/s16071094
    [46]
    Tang X, Li P, Zhang Q, et al. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and zearalenone in maize and its products[J]. Analytical Chemistry,2017,89 (21):11520−11528. doi: 10.1021/acs.analchem.7b02794
    [47]
    Sobral M M C, Faria M A, Cunha S C, et al. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells[J]. Chemosphere,2018,202:538−548. doi: 10.1016/j.chemosphere.2018.03.122
    [48]
    舒梅. 抗独特型纳米抗体的亲和力成熟及检测伏马菌素B1绿色免疫分析方法的研究[D]. 南昌: 南昌大学, 2016.
    [49]
    唐宗文. 基于纳米抗体检测赭曲霉毒素A的荧光免疫分析方法的构建研究[D]. 海口: 海南大学, 2019.
    [50]
    周伟璐. 胶体金适配子试纸条现场快速筛查中药中赭曲霉毒素A研究[D]. 镇江: 江苏大学, 2016.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (330) PDF downloads (26) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return