Citation: | HU Gaoshuang, WU Tianqi, SU Dan, et al. Research Progress on Application of New Labeling Materials Based Immunoassay on the Detection of Mycotoxin [J]. Science and Technology of Food Industry, 2021, 42(12): 398−404. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070071. |
[1] |
Goud K Y, Kailasa S K, Kumar V, et al. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review[J]. Biosensors and Bioelectronics,2018,121:205−222. doi: 10.1016/j.bios.2018.08.029
|
[2] |
Luo Y, Liu X, Li J. Updating techniques on controlling mycotoxins - A review[J]. Food Control,2018,89:123−132. doi: 10.1016/j.foodcont.2018.01.016
|
[3] |
Zhang Y, Pei F, Fang Y, et al. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC[J]. Food Chemistry,2019,275:763−769. doi: 10.1016/j.foodchem.2018.09.127
|
[4] |
Puntscher H, Kutt M, Skrinjar P, et al. Tracking emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria toxins[J]. Analytical and Bioanalytical Chemistry,2018,410 (18):4481−4494. doi: 10.1007/s00216-018-1105-8
|
[5] |
Dong H, Xian Y, Xiao K, et al. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS[J]. Food Chemistry,2019,274:471−479. doi: 10.1016/j.foodchem.2018.09.035
|
[6] |
Mcmaster N, Acharya B, Harich K, et al. Quantification of the mycotoxin deoxynivalenol (don) in sorghum using GC-MS and a stable isotope dilution assay (SIDA)[J]. Food Analytical Methods,2019,12 (10):2334−2343. doi: 10.1007/s12161-019-01588-3
|
[7] |
Rodriguezcarrasco Y, Molto J C, Manes J, et al. Development of microextraction techniques in combination with GC–MS/MS for the determination of mycotoxins and metabolites in human urine[J]. Journal of Separation Science,2017,40 (7):1572−1582. doi: 10.1002/jssc.201601131
|
[8] |
Chen Y, Chen Q, Han M, et al. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk[J]. Biosensors and Bioelectronics,2016,79:430−434. doi: 10.1016/j.bios.2015.12.062
|
[9] |
Wang X, Niessner R, Tang D, et al. Nanoparticle-based immunosensors and immunoassays for aflatoxins[J]. Analytica Chimica Acta,2016,912:10−23. doi: 10.1016/j.aca.2016.01.048
|
[10] |
Oplatowska-Stachowiak M, Sajic N, Xu Y, et al. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients[J]. Food Control,2016,63:239−245. doi: 10.1016/j.foodcont.2015.11.041
|
[11] |
Zhang A, Ma Y, Feng L, et al. Development of a sensitive competitive indirect ELISA method for determination of ochratoxin A levels in cereals originating from Nanjing, China[J]. Food Control,2011,22 (11):1723−1728. doi: 10.1016/j.foodcont.2011.04.004
|
[12] |
Zhang Z, Li Y, Li P, et al. Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B1 in peanuts[J]. Food Chemistry,2014,146:314−319. doi: 10.1016/j.foodchem.2013.09.048
|
[13] |
Wu S, Duan N, Zhu C, et al. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels[J]. Biosensors and Bioelectronics,2011,30 (1):35−42. doi: 10.1016/j.bios.2011.08.023
|
[14] |
Hu G, Sheng W, Zhang Y, et al. Upconversion nanoparticles and monodispersed magnetic polystyrene microsphere based fluorescence immunoassay for the detection of sulfaquinoxaline in animal-derived foods[J]. Journal of Agricultural and Food Chemistry,2016,64(19):3908−3915. doi: 10.1021/acs.jafc.6b01497
|
[15] |
Hou S, Ma J, Cheng Y, et al. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains[J]. Food Control,2020,117:107107. doi: 10.1016/j.foodcont.2020.107107
|
[16] |
Liu D, Huang Y, Chen M, et al. Rapid detection method for aflatoxin B1 in soybean sauce based on fluorescent microspheres probe[J]. Food Control,2015,50:659−662. doi: 10.1016/j.foodcont.2014.10.011
|
[17] |
Zhang X, Wen K, Wang Z, et al. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk[J]. Food Control,2016:588−595.
|
[18] |
Li X, Wang J, Yi C, et al. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed[J]. Sensors and Actuators B: Chemical,2019,290:170−179. doi: 10.1016/j.snb.2019.03.108
|
[19] |
Hu G, Sheng W, Li S, et al. Quantum dot based multiplex fluorescence quenching immune chromatographic strips for the simultaneous determination of sulfonamide and fluoroquinolone residues in chicken samples[J]. RSC Advances,2017,7(49):31123−31128. doi: 10.1039/C7RA01753G
|
[20] |
Hu G, Sheng W, Li J, et al. Fluorescent quenching immune chromatographic strips with quantum dots and upconversion nanoparticles as fluorescent donors for visual detection of sulfaquinoxaline in foods of animal origin[J]. Analytica Chimica Acta,2017,982:185−192. doi: 10.1016/j.aca.2017.06.013
|
[21] |
Hou S, Ma J, Cheng Y, et al. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains[J]. Food Control,2020,117:107331. doi: 10.1016/j.foodcont.2020.107331
|
[22] |
Hu W, Yan J, You K, et al. Streptococcal protein G based fluorescent universal probes and biosynthetic mimetics for fumonisin B1 immunochromatographic assay[J]. Food Control 2020,1074:42.
|
[23] |
Zhao B, Huang Q, Dou L, et al. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,275:223−229. doi: 10.1016/j.snb.2018.08.029
|
[24] |
Tian M, Xie W, Zhang T, et al. A sensitive lateral flow immunochromatographic strip with prussian blue nanoparticles mediated signal generation and cascade amplification[J]. Sensors and Actuators B: Chemical,2020,309:127728. doi: 10.1016/j.snb.2020.127728
|
[25] |
Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews,2004,104 (1):139−173. doi: 10.1021/cr020357g
|
[26] |
Schaefer H, Ptacek P, Koempe K, et al. Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission[J]. Chemistry of Materials,2007,19(6):1396−1400. doi: 10.1021/cm062385b
|
[27] |
Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angewandte Chemie-International Edition,2011,50 (32):7385−7390. doi: 10.1002/anie.201101447
|
[28] |
Dong H, Sun L D, Yan C H. Basic understanding of the lanthanide related upconversion emissions[J]. Nanoscale,2013,5 (13):5703−5714. doi: 10.1039/c3nr34069d
|
[29] |
黄震, 肖小月, 熊智娟, 等. 上转换免疫层析方法检测牛奶中大肠杆菌O157: H7[J]. 理科版,2019,43(6):556−563.
|
[30] |
Gong Y, Zheng Y, Jin B, et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing[J]. Talanta,2019:126−133.
|
[31] |
谢艳君, 杨英, 孔维军, 等. 基于不同纳米材料的侧流免疫层析技术在真菌毒素检测中的应用[J]. 分析化学,2015,43 (4):618−628.
|
[32] |
Tang D, Sauceda J C, Lin Z, et al. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food[J]. Biosensors and Bioelectronics,2009,25 (2):514−518. doi: 10.1016/j.bios.2009.07.030
|
[33] |
Huang Y M, Liu D F, Lai W H, et al. Rapid detection of aflatoxin M1 by immunochromatography combined with enrichment based on immunomagnetic nanobead[J]. Chinese Journal of Analytical Chemistry,2014,42 (5):654−659. doi: 10.1016/S1872-2040(13)60731-8
|
[34] |
刘坤. 饲料中玉米赤霉烯酮的高效富集及免疫层析定量检测方法的建立[D]. 南昌, 南昌大学, 2015.
|
[35] |
张博. 基于磁致荧光淬灭性能的双模态免疫层析检测技术初探[D]. 天津: 天津大学, 2018.
|
[36] |
Hou S, Ma Z, Meng H, et al. Ultrasensitive and green electrochemical immunosensor for mycotoxin ochratoxin A based on phage displayed mimotope peptide[J]. Talanta,2019,194:919−924. doi: 10.1016/j.talanta.2018.10.081
|
[37] |
Valera E, Garciafebrero R, Elliott C T, et al. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples[J]. Analytical and Bioanalytical Chemistry,2019,411 (9):1915−1926. doi: 10.1007/s00216-018-1538-0
|
[38] |
Paniel N, Radoi A, Marty J, et al. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk[J]. Sensors,2010,10(10):9439−9448. doi: 10.3390/s101009439
|
[39] |
Chen Y, Meng X, Zhu Y, et al. Rapid detection of four mycotoxins in corn using a microfluidics and microarray-based immunoassay system[J]. Talanta,2018,186:299−305. doi: 10.1016/j.talanta.2018.04.064
|
[40] |
蔡婷婷. 基于TiO2—多孔硅的蛋白质芯片技术检测谷物中的多元真菌毒素[D]. 南京: 南京师范大学, 2018.
|
[41] |
Li Z, Li Z, Jiang J, et al. Simultaneous detection of various contaminants in milk based on visualized microarray[J]. Food Control,2017:994−1001.
|
[42] |
Qu J, Xie H, Zhang S, et al. Multiplex flow cytometric immunoassays for high-throughput screening of multiple mycotoxin residues in milk[J]. Food Analytical Methods,2019,12(4):877−886. doi: 10.1007/s12161-018-01412-4
|
[43] |
Zhang Y, Dong C, Su L, et al. Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays[J]. ACS Applied Materials & Interfaces,2016,8 (1):6301−6301.
|
[44] |
Zhang Y, Liao Z, Liu Y, et al. Flow cytometric immunoassay for aflatoxin B1 using magnetic microspheres encoded with upconverting fluorescent nanocrystals[J]. Mikrochimica Acta,2017,184 (5):1471−1479. doi: 10.1007/s00604-017-2116-4
|
[45] |
Wang D, Zhang Z, Li P, et al. Time-resolved fluorescent immunochromatography of aflatoxin b1 in soybean sauce: A rapid and sensitive quantitative analysis[J]. Sensors,2016,16 (7):1094. doi: 10.3390/s16071094
|
[46] |
Tang X, Li P, Zhang Q, et al. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and zearalenone in maize and its products[J]. Analytical Chemistry,2017,89 (21):11520−11528. doi: 10.1021/acs.analchem.7b02794
|
[47] |
Sobral M M C, Faria M A, Cunha S C, et al. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells[J]. Chemosphere,2018,202:538−548. doi: 10.1016/j.chemosphere.2018.03.122
|
[48] |
舒梅. 抗独特型纳米抗体的亲和力成熟及检测伏马菌素B1绿色免疫分析方法的研究[D]. 南昌: 南昌大学, 2016.
|
[49] |
唐宗文. 基于纳米抗体检测赭曲霉毒素A的荧光免疫分析方法的构建研究[D]. 海口: 海南大学, 2019.
|
[50] |
周伟璐. 胶体金适配子试纸条现场快速筛查中药中赭曲霉毒素A研究[D]. 镇江: 江苏大学, 2016.
|