XIANG Yue, CAO Yanan, ZHAO Gang, et al. Advances in the Nutritional Function and Safety of Coarse Cereals [J]. Science and Technology of Food Industry, 2021, 42(14): 362−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060341.
Citation: XIANG Yue, CAO Yanan, ZHAO Gang, et al. Advances in the Nutritional Function and Safety of Coarse Cereals [J]. Science and Technology of Food Industry, 2021, 42(14): 362−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060341.

Advances in the Nutritional Function and Safety of Coarse Cereals

More Information
  • Received Date: June 28, 2020
  • Available Online: May 19, 2021
  • Dietary imbalance is an important cause of chronic metabolic diseases such as type 2 diabetes, while the dietary intervention is one of the most effective and safe way to maintain the health of body. Coarse cereals are full of a variety of nutritional function factors, and have a variety of activities. It is widely recognized that coarse cereals are an important part in the daily diet structure. However, the current researches are lack of the systematic discussion of coarse cereals’ nutrition function and usually neglect the safety risks caused by the ingredients and anti-nutrition factors of themselves and inappropriate eating habits. Making the suitable and accurate position of the coarse cereals in dietary intervention is unclear. So it is not conducive to the deep processing of coarse cereals and the development of produce differentiated precision nutrition food. Therefore, to solve the above problems, this paper tries to systematically sort out the nutrition and functional composition of coarse cereals and summary the research of the coarse cereals’ safety. The advantages and disadvantages of coarse cereals effects on human body are reviewed, aims to avoid the edible risks of coarse cereals. This paper would provide a reference to produce precision nutrition food, and promote the healthy development of coarse cereals industry.
  • [1]
    田代华. 黄帝内经素问[M]. 北京: 人民卫生出版社, 2005: 48-48.
    [2]
    (明)李时珍. 本草纲目[M]. 北京: 人民卫生出版社, 1982: 1434−1570.
    [3]
    Zhang X, Zhang M, Zhao Z P, et al. Geographic variation in prevalence of adult obesity in China: Results from the 2013-2014 national chronic disease and risk factor Surveillance[J]. Annals of Internal Medicine,2020,172(4):291−291.
    [4]
    张君梅. 杂粮功能醋粉片制备及体内功能研究[D]. 太原: 山西大学, 2016.
    [5]
    Buja A, Grotto G, Brocadello F, et al. Primary school children and nutrition: lifestyles and behavioral traits associated with a poor-to-moderate adherence to the Mediterranean diet. A cross-sectional study[J]. European Journal of Pediatrics,2020,179(5):827−834.
    [6]
    杨月欣. 中国食物成分表[M]. 北京: 北京医科大学出版社, 2018: 48-55.
    [7]
    Deean E C, Walter J. The fiber gap and the disappearing gut microbiome: Implications for human nutrition[J]. Trends in Endocrinology and Metabolism,2016,27(5):239−242.
    [8]
    王蕾蕾, 何芳, 樊慧茹, 等. 高抗性淀粉大米血糖生成指数测定及对糖尿病患者血糖调控的干预研究[J]. 营养学报,2017,39(2):197−199. doi: 10.3969/j.issn.0512-7955.2017.02.018
    [9]
    Liu H, Guo X, Li Y, et al. In vitro digestibility and changes in physicochemical and textural properties of tartary buckwheat starch under high hydrostatic pressure[J]. Journal of Food Engineering,2016,189:64−71.
    [10]
    闫贝贝. 苦荞抗性淀粉对血脂代谢紊乱小鼠肠道菌群调节作用的研究[D]. 上海: 上海应用技术大学, 2018.
    [11]
    李恒, 刘静, 孙桂菊, 等. 抗性淀粉、脂肪和蛋白质对淀粉体外消化速度的影响[J]. 卫生研究,2007(3):308−310. doi: 10.3969/j.issn.1000-8020.2007.03.013
    [12]
    张洁, 张根义. 燕麦全麦粉中淀粉消化性的研究[J]. 食品与生物技术学报,2018,37(2):171−178. doi: 10.3969/j.issn.1673-1689.2018.02.009
    [13]
    Tang Y, Li X, Zhang B, et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes[J]. Food Chemistry,2015,166:380−388.
    [14]
    Multari S, Pihlava J M, Ollennu-Chuasam P, et al. Identification and quantification of avenanthramides and free and bound phenolic acids in eight cultivars of husked oat (Avena sativa L) from Finland[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2900−2908.
    [15]
    Hao M, Beta T. Qualitative and quantitative analysis of the major phenolic compounds as antioxidants in barley and flaxseed hulls using HPLC/MS/MS[J]. Journal of Science of Food Agriculture,2012,92(10):2062−2068.
    [16]
    臧胜. 糜子壳多酚类物质抗氧化活性研究[D]. 杨凌: 西北农林科技大学, 2010.
    [17]
    Guo X D, Ma Y J, Parry J, et al. Phenolics content and antioxidant activity of tartary buckwheat from different locations[J]. Molecules,2011,16(12):9850−9867.
    [18]
    李文婷. 六种豆类中不同结合态多酚组成、胃肠道生物可接受率及其抗氧化活性研究[D]. 南昌: 南昌大学, 2018.
    [19]
    陈长应, 朱桂红. 黑荞麦中花青素的提取及含量测定[J]. 粮食与饲料工业,2017(1):64−68.
    [20]
    董晶, 张焱, 曹赵茹, 等. 藜麦总黄酮的超声波法提取及抗氧化活性[J]. 江苏农业科学,2015,43(4):267−269.
    [21]
    胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展[J]. 作物学报,2018,44(11):1579−1591.
    [22]
    Roberta, Masella, Claudio, et al. Effects of dietary virgin olive oil phenols on low density lipoprotein oxidation in hyperlipidemic patients[J]. Lipids,2001,36(11):1195−1202.
    [23]
    肖杰, 王曦, 侯粲, 等. 苦荞调控糖脂代谢作用及其生物学机制研究进展[J]. 食品科学,2019,40(21):343−349. doi: 10.7506/spkx1002-6630-20181024-274
    [24]
    周小理, 王越, 赵燊, 等. 苦荞对高脂膳食诱导小鼠血脂代谢及组织氧化还原的影响[J]. 食品科学,2018,39(3):188−192. doi: 10.7506/spkx1002-6630-201803029
    [25]
    Adebamowo C A, Cho E, Sampson L, et al. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer[J]. International Journal of Cancer,2005,114(4):628−633.
    [26]
    Guo W, Wise M L, Collins F W, et al. Avenanthramides, polyphenols from oats, inhibit IL-1beta-induced NF-kappaB activation in endothelial cells[J]. Free Radical Biology and Medicine,2008,44(3):415−429.
    [27]
    王璇琳, 丁雪洁, 任素萍, 等. 黑青稞籽皮类黄酮的提取及其对缺氧损伤细胞的保护作用[J]. 中国医药导报,2014,11(21):90−94.
    [28]
    Steadman K J, Burgoon M S, Schuster R L, et al. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions[J]. Journal of Agricultural and Food Chemistry,2000,48(7):2843−2847.
    [29]
    曹文明, 张燕群, 苏勇. 荞麦手性肌醇提取及其降糖功能研究[J]. 粮食与油脂,2006(1):22−24. doi: 10.3969/j.issn.1008-9578.2006.01.007
    [30]
    Ostlund R E, Jr, Mcgill J B et al. D-chiro-Inositol metabolism in diabetes mellitus[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(21):9988−9992.
    [31]
    刘瑞敏. 苦荞降糖成分的提取与药效初步研究[D]. 成都: 四川师范大学, 2012.
    [32]
    Horbowicz M, Obendorf R L. Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols—review and survey[J]. Deed Science Research,1994,4(4):38−405.
    [33]
    Yao Y, Cheng X-Z, Ren G-X. Contents of D-chiro-inositol, vitexin, and isovitexin in various varieties of mung bean and its Products[J]. Agricultural Sciences in China,2011,10(11):1710−1715.
    [34]
    张泽生, 裴雅, 高云峰, 等. D-手性肌醇的研究与开发[J]. 中国食品添加剂,2013(3):77−83. doi: 10.3969/j.issn.1006-2513.2013.03.005
    [35]
    Cheng F, Han L, Xiao Y, et al. D- chiro-Inositol ameliorates high fat diet-induced hepatic steatosis and insulin resistance via PKCepsilon-PI3K/AKT pathway[J]. Journal of Agricutual and Food Chemistry,2019,67(21):5957−5967.
    [36]
    Hu Y, Zhao Y, Ren D, et al. Hypoglycemic and hepatoprotective effects of D-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice[J]. Food Function,2015,6(12):3760−3769.
    [37]
    么杨. 绿豆降血糖活性研究[D]. 北京: 中国农业大学, 2008.
    [38]
    包塔娜, 周正质, 张帆, 等. 苦荞麦麸皮的化学成分研究[J]. 天然产物研究与开发,2003(2):116−117. doi: 10.3969/j.issn.1001-6880.2003.02.007
    [39]
    卫星星, 李银涛, 靳月琴. 苦荞籽壳化学成分的研究[J]. 天然产物研究与开发,2013,25(1):44−46. doi: 10.3969/j.issn.1001-6880.2013.01.010
    [40]
    Peng L X, Wang J B, Hu L X, et al. Rapid and simple method for the determination of emodin in tartary buckwheat (Fagopyrum tataricum) by high-performance liquid chromatography coupled to a diode array detector[J]. Journal of Agricutual and Food Chemistry,2013,61(4):854−857.
    [41]
    吴兴强. 加速溶剂萃取-超高效液相色谱检测农作物种农药残留与蒽醌类活性物质[D]. 保定: 河北大学, 2014.
    [42]
    Wu X, Ge X, Liang S, et al. A novel selective accelerated solvent extraction for effective separation and rapid simultaneous determination of six anthraquinones in tartary buckwheat and its products by UPLC-DAD[J]. Food Analytical Methods,2014,8(5):1124−1132.
    [43]
    纪晓萍, 张炯丰, 方东生. 大黄提取物中游离蒽醌对实验性便秘小鼠的泻下作用[J]. 黑龙江中医药,2019,48(6):336−337.
    [44]
    蔡友德, 何前松, 樊梓媛, 等. 基于抗氧化作用探讨大黄游离蒽醌类成分对脑缺血再灌注损伤的脑保护机制[J]. 贵阳中医学院学报,2019,41(4):5−10.
    [45]
    朱艺, 李琛, 李洪亮, 等. 何首乌中相关蒽醌类化合物抗癌作用的研究进展[J]. 中国实验方剂学杂志,2019,25(18):196−205.
    [46]
    Aminu M, Auwal I M, Nasir T, et al. Antidiabetic potential of anthraquinones: A review[J]. Phytotherapy research: PTR,2020,34(3):48504−48504.
    [47]
    鹿成稻. 1.1类新药“富马酸替诺福韦双特戊酯”和鹰嘴豆总生物碱抗肝炎药理学研究[D]. 西安: 第四军医大学, 2012.
    [48]
    Singh R, De S, Belkheir A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview[J]. Critical Reviews in Food Science and Nutrition,2013,53(2):126−144.
    [49]
    Bratt K, Sunnerheim K, Bryngelsson S, et al. Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships[J]. Journal of Agricultural and Food Chemistry,2003,51(3):594−600.
    [50]
    刘树兴, 李浩恒, 任益平. 响应面法优化藜麦中生物碱的提取工艺[J]. 中国调味品,2020,45(2):98−103. doi: 10.3969/j.issn.1000-9973.2020.02.022
    [51]
    吴玉杰, 袁娟丽, 陈红兵. 燕麦生物碱的结构与功能研究进展[J]. 食品工业科技,2018,39(15):328−333.
    [52]
    Wang D, Wise M L, Li F, et al. Phytochemicals attenuating aberrant activation of beta-catenin in cancer cells[J]. PLoS One,2012,7(12):e50508−e50508.
    [53]
    郭彩珍, 褚盼盼, 乔元彪. 绿豆生物碱的提取及抑菌作用的研究[J]. 浙江农业科学,2016,57(7):987−988, 990.
    [54]
    肖晶晶, 刘静雪, 高婷婷, 等. 荞麦膳食纤维加工技术研究进展[J]. 粮食问题研究,2018(6):34−37. doi: 10.3969/j.issn.1003-2576.2018.06.008
    [55]
    王锐. 酶法降解糜米中蛋白的初步研究[D]. 长春: 吉林大学, 2005.
    [56]
    张艳莉, 王颖, 王迪, 等. 芸豆渣膳食纤维超声辅助酶法提取工艺优化及特性研究[J]. 食品与机械,2019,35(10):201−205.
    [57]
    洛桑旦达, 强小林. 青稞特有营养成份分析与开发利用现状调查研究报告[J]. 西藏科技,2001(8):54−64.
    [58]
    刘文婷, 杨才, 张新军, 等. 中国不同地区燕麦营养品质及相关性分析[J]. 农业科技通讯,2019(12):151−155, 274.
    [59]
    周一鸣, 李保国, 崔琳琳, 等. 荞麦淀粉及其抗性淀粉的颗粒结构[J]. 食品科学,2013,34(23):25−27.
    [60]
    李一博, 冯进, 李春阳, 等. 蚕豆淀粉与其抗性淀粉理化性质的比较[J]. 食品工业科技,2020,41(8):26−32.
    [61]
    曹承嘉, 缪书婷, 张晓晨, 等. 压热冷却循环处理制备青稞抗性淀粉的工艺优化及其特性研究[J]. 食品科技,2020,45(3):253−258.
    [62]
    张若辰. 高粱中抗性淀粉的研究[D]. 济南: 齐鲁工业大学, 2014.
    [63]
    Aoe S, Ichinnose Y, Kohyama N, et al. Effects of high beta-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study[J]. Nutrition,2017,42:1−6.
    [64]
    Beck E J, Tosh S M, Batterham M J, et al. Oat beta-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects[J]. Molecular Nutrition and Food Reseach,2009,53(10):1343−1351.
    [65]
    董吉林, 林娟, 申瑞玲, 等. 高粱淀粉及抗性淀粉对高脂饮食诱导大鼠体脂分布研究[J]. 粮食与油脂,2013,26(10):14−17. doi: 10.3969/j.issn.1008-9578.2013.10.004
    [66]
    张瑞, 吕梅霞, 韩加. 鹰嘴豆膳食纤维对高脂血症大鼠肠道菌群的影响[C]//营养研究与临床实践——第十四届全国营养科学大会暨第十一届亚太临床营养大会、第二届全球华人营养科学家大会论文摘要汇编. 北京: 中国营养学会, 2019: 405-406.
    [67]
    Kelly J, Ryan S, Mckinnon H, et al. Dietary supplementation with a type 3 resistant starch induces butyrate producing bacteria within the gut microbiota of human volunteers[J]. Appetite,2015,91:438−438.
    [68]
    董吉林, 王雷. 膳食纤维对肠道微生物及机体健康影响的研究进展[J]. 粮食与饲料工业,2019(1):36−40.
    [69]
    Zhang C, Zhang R, Li Y M, et al. Cholesterol-lowering activity of tartary buckwheat protein[J]. Journal of Agricultural and Food Chemistry,2017,65(9):1900−1906.
    [70]
    王凤. 燕麦多肽的结构特征及DPP4抑制作用[D]. 北京: 北京林业大学, 2016.
    [71]
    张慧娟, 黄莲燕, 尹梦, 等. 燕麦多肽降血糖功能的研究[J]. 食品工业科技,2017,38(10):360−363, 384.
    [72]
    孙桂菊, 柳和春, 许登峰, 等. n-3多不饱和脂肪酸的抗炎作用和2型糖尿病[J]. 健康教育与健康促进,2020,15(2):116−119.
    [73]
    张敏佳, 刘文颖, 贾福怀, 等. 豌豆肽对环磷酰胺致免疫抑制小鼠免疫功能的影响[J]. 食品与发酵工业,2018,44(8):135−140.
    [74]
    李睿珺, 秦勇, 周雅琳, 等. 鹰嘴豆肽对免疫低下小鼠免疫功能的影响[J]. 食品科学,2020,41(21):133−139. doi: 10.7506/spkx1002-6630-20190127-346
    [75]
    付媛, 张美莉, 高韶辉, 等. 裸燕麦球蛋白源多肽对D-半乳糖致衰老小鼠抗氧化能力的影响[J]. 食品科学,2019,40(23):137−141. doi: 10.7506/spkx1002-6630-20190113-151
    [76]
    Peng L X, Zou L, Tan M L, et al. Free amino acids, fatty acids and phenolic compounds in tartary buckwheat of different hull colour[J]. Czech Journal of Food Sciences,2017,35(No.3):214−222.
    [77]
    李文婷, 邹安迪, 李红艳, 等. 黑色小扁豆中不同结合态酚类含量、花青素组成及其抗氧化活性研究[J]. 中国食品学报,2020,20(2):299−306.
    [78]
    车富红, 冯声宝, 李善文, 等. 几个青稞主产区不同青稞品种的微量成分差异分析[J]. 酿酒科技,2019(11):113−118.
    [79]
    高文俊. 青稞酒重要风味成分及其酒醅中香气物质研究[D]. 无锡: 江南大学, 2014.
    [80]
    王丹, 张岚, 王佳鑫, 等. HS-SPME-GC-MS法分析发酵过程中荞麦和小麦面团香气成分变化[J]. 食品科学,2018,39(20):207−217. doi: 10.7506/spkx1002-6630-201820031
    [81]
    Fok J S, Kette F, Smith W B, et al. Buckwheat allergy in Australia[J]. Internal Medicine Journal,2019,49(12):1552−1553.
    [82]
    Hl S. Buckwheat-poisoning with report of a case in man(1909)[J]. Allergy and Asthma Proceedings,1990,11(4):193−196.
    [83]
    Nakamura S, Yamaguchi M Y. Studies on buckwheat allergose report 2: Clinical investigation on 169 cases with the buckwheat allergose gathered from the whole country of Japan[J]. Allerg Immunol (Paris),1974,20(21):457−465.
    [84]
    Lee S Y, Lee K S, Hong C H, et al. Three cases of childhood nocturnalasthma due to buckwheat allergy[J]. Allergy,2001,56(8):763−766.
    [85]
    陈夏威, 何伦发, 郭艳, 等. 一起扁豆食物中毒的现场流行病学调查[J]. 中国食品卫生杂志,2015,27(S1):62−65.
    [86]
    王晋斌, 侯书文, 张丽萍. 56例豆角中毒患者的临床救治[J]. 中国医药指南,2015,13(13):185−186.
    [87]
    Daverio M, Cavicchiolo M E, Grotto P, et al. Bitter lupine beans ingestion in a child: A disregarded cause of acute anticholinergic toxicity[J]. European Journal of Pediatrics,2014,173(12):1549−1551.
    [88]
    梁叶星, 张玲, 高飞虎, 等. 杂粮中的抗营养因子检测技术研究进展[J]. 南方农业,2016,10(34):39−43.
    [89]
    Shang R, Wu H, Guo R, et al. The diversity of four anti-nutritional factors in common bean[J]. Horticultural Plant Journal,2016,2(2):97−104.
    [90]
    赵金龙. 质子化诱导调控黑芸豆凝集素蛋白致敏性的构效关系研究[D]. 合肥: 合肥工业大学, 2019.
    [91]
    葛平珍, 余莉, 王昭礼, 等. 芸豆籽粒中胰蛋白酶抑制剂的研究进展[J]. 食品工业科技,2018,39(8):348−351.
    [92]
    于雪慧. 新疆奶花芸豆中α-淀粉酶抑制剂及凝集素的提取、分离、鉴定[D]. 石河子: 石河子大学, 2018.
    [93]
    李笑梅, 韩春然. 菜豆凝集素血凝活性与品种的关系及稳定性的研究[J]. 中国食品学报,2009,9(6):66−71. doi: 10.3969/j.issn.1009-7848.2009.06.011
    [94]
    申剑, 崔晓东, 李玉英, 等. 苦荞凝集素的纯化及性质鉴定[J]. 食品科学,2015,36(3):1−5. doi: 10.7506/spkx1002-6630-201503001
    [95]
    陈婧宜. 刀豆凝集素提取分离钝化及性质研究[D]. 无锡: 江南大学, 2008.
    [96]
    高泽磊, 田童童, 张建. 新疆白芸豆中凝集素的提取及纯化工艺[J]. 江苏农业科学,2017,45(6):191−196.
    [97]
    鲍锦库. 植物凝集素的功能[J]. 生命科学,2011,23(6):533−540.
    [98]
    Moses T, Papadopoulou K K, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives[J]. Critical Reviews in Biochemistry and Molecular Biology,2014,49(6):439−462.
    [99]
    张静, 姜淑卿, 张书婧, 等. 食用豆科植物皂苷和植物凝集素毒性试验[J]. 预防医学,2019,31(7):754−756.
    [100]
    黄海燕. 苦荞黄酮与皂苷的研究[D]. 无锡: 江南大学, 2008.
    [101]
    吴英思, 郭占斌, 杜文亮, 等. 藜麦脱出物的物料特性研究[J]. 农机化研究,2017,39(9):184−189.
    [102]
    吴立根, 屈凌波, 王岸娜, 等. 加工方式对藜麦营养及生物活性影响的研究进展[J]. 粮食与油脂,2020,33(2):10−13. doi: 10.3969/j.issn.1008-9578.2020.02.004
    [103]
    智秀娟, 李栋, 曹新杰, 等. 苦荞总皂苷的提取工艺优化[J]. 中国粮油学报,2015,30(7):97−103. doi: 10.3969/j.issn.1003-0174.2015.07.019
    [104]
    Phillippy B Q. Inositol phosphates in foods[J]. Advances in Food and Nutrition Research,2003,45:1−60.
    [105]
    Kim O H, Booth C J, Choi H S, et al. High-phytate/low-calcium diet is a risk factor for crystal nephropathies, renal phosphate wasting, and bone loss[J]. Elife,2020:9.
    [106]
    Petra Vojtíšková, Stanislav Kráčmar. Crude protein, fibre and phytic acid in vitro digestibility of selected legume and buckwheat samples[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,2013,61(1):227−232.
    [107]
    Ruales J, Nair B M. Saponins, phytic acid, tannins and protease inhibitors in quinoa (Chenopodium quinoa Willd) seeds[J]. Food Chemistry,1993,48(2):137−143.
    [108]
    陈园, 仇农学, 熊犍. 植酸的体内抗氧化活性研究[J]. 现代食品科技,2011,27(2):131−134.
    [109]
    樊艳平. 绿豆胰蛋白酶抑制剂的提取纯化及抗豆象机理研究[D]. 晋中: 山西农业大学, 2018.
    [110]
    阮景元. 苦荞麦胰蛋白酶抑制剂的分离纯化、基因克隆表达及其抗病虫害研究[D]. 雅安: 四川农业大学, 2011.
    [111]
    Chan Y S, Zhang Y, Ng T B. Brown kidney bean bowman-birk trypsin inhibitor is heat and ph stable and exhibits anti-proliferative activity[J]. Applied Biochemistry and Biotechnology,2013,169(4):1306−1314.
    [112]
    Li Y Y, Zhang Z, Wang Z H, et al. rBTI induces apoptosis in human solid tumor cell lines by loss in mitochondrial transmembrane potential and caspase activation[J]. Toxicology Letters,2009,189(2):16−75.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (565) PDF downloads (80) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return