HOU Lei, HUI Guoqiang, NAN Zhirun, et al. Optimization of Ultrasound-assisted Extraction Process of Millet Bran Oil[J]. Science and Technology of Food Industry, 2021, 42(8): 186−193. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060214.
Citation: HOU Lei, HUI Guoqiang, NAN Zhirun, et al. Optimization of Ultrasound-assisted Extraction Process of Millet Bran Oil[J]. Science and Technology of Food Industry, 2021, 42(8): 186−193. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060214.

Optimization of Ultrasound-assisted Extraction Process of Millet Bran Oil

More Information
  • Received Date: June 17, 2020
  • Available Online: January 31, 2021
  • This study explored the effects of millet bran pretreatment methods and fresh level on the extraction rate of millet bran oil. The ultrasonic assist technology was used, and the optimal extraction solvent was selected. The extraction process of millet bran oil was optimized through single-factor experiments and response surface analysis. The main physical and chemical properties of millet bran oil were determined, and the fatty acid composition was analyzed. The results showed that fresh millet bran need be selected and treated with infrared heating at 121 ℃ for 15 min. Anhydrous ethanol could be used as the best extraction solvent. The optimized extraction conditions were the extraction time 2 h, the material to solvent ratio 1:6.5 g/mL, and the extraction temperature 56 ℃. Under this condition, the extraction rate of millet bran oil was 78.57%. The order of various factors on the extraction rate of millet bran oil was: Material to solvent ratio > extraction temperature > extraction time. The acid value and peroxide value of millet bran oil extracted under this conditions were in line with the National Food Safety Standard (GB2716-2018) indicators for rice bran oil. The main fatty acid components of millet bran oil contained palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. The content of unsaturated fatty acid accounted for 90.58% of the total fatty acid content, of which the linoleic acid content was as high as 72.31%. The ultrasonic-assisted extraction process of millet bran oil with anhydrous ethanol proposed in this study was feasible and could provide important theoretical support for the further development and utilization of millet bran.
  • [1]
    许洁. 小米谷糠蛋白的提取及其保健功能的研究[D]. 太原: 山西大学, 2012.
    [2]
    吴妙鸿, 黄薇, 刘兰英, 等. 米糠营养成分分析及其在鲍鱼饲料中的应用价值研究[J]. 粮食与饲料工业,2018(3):34−37.
    [3]
    李兴峰, 宁亚维, 缪铭, 等. 中国小米全谷物食品的研究现状及发展方向[J]. 河北科技大学学报,2014,35(3):250−254. doi: 10.7535/hbkd.2014yx03007
    [4]
    杨敏, 张羽霄, 杜宣利, 等. 小米糠中亚油酸的提取工艺研究[J]. 粮食与食品工业,2019,26(2):14−18. doi: 10.3969/j.issn.1672-5026.2019.02.004
    [5]
    Seema A, Ghufran S S M, Saied S Z, et al. Potential nutraceutical benefits of basmati rice bran oil as analgesic, anti-inflammatory and anti-arthritis[J]. Pakistan Journal of Pharmaceutical Sciences,2019,32(6):2545−2551.
    [6]
    Liu F M, Shan S H, Li H Q, et al. Treatment of peroxidase derived from Foxtail millet Bran attenuates atherosclerosis by inhibition of CD36 and STAT3 in vitro and in vivo[J]. Journal of Agricultural and Food Chemistry,2020,68(5):1276−1285. doi: 10.1021/acs.jafc.9b06963
    [7]
    孙青山, 王常青, 张生万, 等. 小米油复合饮料降血脂作用的实验研究[J]. 食品工业科技,2016,37(17):332−334, 339.
    [8]
    Dong J L, Wang L, Lv J, et al. Structural, antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran[J]. Journal of the Science of Food and Agriculture,2019,99(8):3886−3894. doi: 10.1002/jsfa.9611
    [9]
    王喜英, 吴宿慧, 李寒冰. 小米油对小鼠烫伤皮肤的修复作用[J]. 河南中医,2018,38(5):694−698.
    [10]
    赵陈勇, 王常青, 许洁, 等. 小米谷糠油降血脂和抗氧化作用的研究[J]. 中国粮油学报,2012,27(7):67−70. doi: 10.3969/j.issn.1003-0174.2012.07.014
    [11]
    杨敏, 杜宣利, 魏永峰, 等. 小米糠液压榨油工艺的研究[J]. 粮食与食品工业,2020,27(1):13−17. doi: 10.3969/j.issn.1672-5026.2020.01.004
    [12]
    赵陈勇, 王常青, 许洁, 等. 富含甾醇小米谷糠油提取工艺研究[J]. 中国油脂,2011,36(7):12−14.
    [13]
    周麟依, 肖志刚, 于金平, 等. 挤压膨化辅助水酶法提取米糠油工艺研究[J]. 中国粮油学报,2014,29(7):68−72.
    [14]
    薛晋. CO2超临界萃取小米糠油的工艺研究[J]. 食品工程,2017(1):25−27, 47. doi: 10.3969/j.issn.1673-6044.2017.01.009
    [15]
    叶展, 罗质, 何东平, 等. 超声波技术在油脂适度精炼中的应用研究进展[J]. 食品工业,2015,36(7):231−236.
    [16]
    邓博心. 预烘烤对花生水酶法制油油脂释放行为及品质的影响[D]. 无锡: 江南大学, 2018.
    [17]
    秦可欣, 程文红, 张光, 等. 米糠稳定化技术的研究进展[J]. 农产品加工(学刊),2014,362(16):50−53.
    [18]
    曾秋梅. 山茶属三组植物油脂组成分析及其图像标记开发[D]. 厦门: 华侨大学, 2016.
    [19]
    谢庆方. 红麻籽油提取工艺及其氧化稳定性研究[D]. 郑州: 河南工业大学, 2018.
    [20]
    韩思萌, 刘昆仑, 陈复生. 米糠稳定化研究进展[J]. 粮食与油脂,2019,32(11):4−6.
    [21]
    苏丹, 李树君, 赵凤敏, 等. 红外加热米糠稳定化研究[J]. 食品科技,2012,37(4):142−146.
    [22]
    Yilmaz N. Middle infrared stabilization of individual rice bran milling fractions[J]. Food Chemistry,2016,190(1):179−185.
    [23]
    程叶停, 刘元法, 李进伟, 等. 米糠近红外稳定化处理过程研究与评价[J]. 中国油脂,2016,41(12):50−54. doi: 10.3969/j.issn.1003-7969.2016.12.011
    [24]
    谢莹. 米糠油制取及精炼工艺的研究[D]. 长沙: 中南林业科技大学, 2013.
    [25]
    马蕴欣. 小米谷糠稳定化及谷糠油提取工艺的研究[D]. 济南: 齐鲁工业大学, 2016.
    [26]
    杜亚军. 小米糠深加工研究进展[J]. 粮食与饲料工业,2016(3):31−34, 39.
    [27]
    宁芯, 韦静, 黎梓玉, 等. 百香果果籽油提取工艺优化及其调和油的调配研究[J]. 中国粮油学报,2020,35(2):77−82. doi: 10.3969/j.issn.1003-0174.2020.02.014
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (347) PDF downloads (95) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return