LI Wei, WANG Yihan, JIANG Jie, LIN Li. Determination of 23 Low-molecular-weight Organic Components Content in Infant Formulas by Quantitative Nuclear Magnetic Resonance with Global Spectral Deconvolution[J]. Science and Technology of Food Industry, 2021, 42(3): 241-246. DOI: 10.13386/j.issn1002-0306.2020050061
Citation: LI Wei, WANG Yihan, JIANG Jie, LIN Li. Determination of 23 Low-molecular-weight Organic Components Content in Infant Formulas by Quantitative Nuclear Magnetic Resonance with Global Spectral Deconvolution[J]. Science and Technology of Food Industry, 2021, 42(3): 241-246. DOI: 10.13386/j.issn1002-0306.2020050061

Determination of 23 Low-molecular-weight Organic Components Content in Infant Formulas by Quantitative Nuclear Magnetic Resonance with Global Spectral Deconvolution

More Information
  • Received Date: May 07, 2020
  • Available Online: February 02, 2021
  • To establish the quantification method for 23 low-molecular-weight organic components(nucleotides,nucleosides,organic acids and amino acids)in infant formulas,quantitative nuclear magnetic resonance(qNMR)technique was employed based on processing approach of global spectral deconvolution(GSD).The results revealed that it showed a good linear correlation for 23 components in the given concentration ranges(R2=0.9960~0.9997),with the RSD of precision between 1.02%~3.72%,the RSD of repeatability between 1.34%~3.68%,the RSD of stability between 1.62%~3.20%,and the recovery rate between 85.02%~110.00%.The choline content determined by this method was compared with the national standard method,and the results were consistent(RSD<15%).The results indicated that GSD-qNMR method was better than the traditional qNMR method,and was more suitable for the quantitative detection of low-molecular-weight organic components in complex food matrix such as infant formula.
  • [1]
    Bouhnik Y,Raskine L,Simoneau G,et al. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans:A double-blind,randomized,placebo-controlled,parallel-group,dose-response relation study[J].The American Journal of Clinical Nutrition,2004,80(6):1658-1664.
    [2]
    Xu M H,Zhao M,Yang R Y,et al. Effect of dietary nucleotides on immune function in Balb/C mice[J].International Immunopharmacology,2013,17(1):50-56.
    [3]
    Fu L J,Huang M R,Chen S B.Primary carnitine deficiency and cardiomyopathy[J].Korean Circulation Journal,2013,43(12):785.
    [4]
    Liu J,Liu L,Chen H.Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction[J].Neuroscience,2011,181:265-270.
    [5]
    Zhang Z Y,Adelman A,Rai D,et al. Amino acid profiles in term and preterm human milk through lactation:A systematic review[J].Nutrients,2013,5(12):4800-4821.
    [6]
    李玮,杨红梅,王浩,等.基于1H-NMR代谢组学初步比较真蜂蜜和掺假蜂蜜差异成分[J].食品工业科技,2019,40(7):218-223

    ,227.
    [7]
    李玮,贾婧怡,李龙,等.核磁共振代谢组学技术鉴别天然奶油与人造奶油[J].食品科学,2017,38(12):278-285.
    [8]
    李玮,姜洁,杨红梅,等.核磁共振氢谱结合PCA-SVM算法分类鉴别食用植物油[J].食品工业科技,2018,39(8):205-209.
    [9]
    李玮,杨红梅,王浩,等.核磁共振氢谱-PCA-SVM回归法用于稀奶油中植脂奶油掺假定量分析[J].中国油脂,2020,45(1):38-42

    ,114.
    [10]
    国家卫生和计划生育委员会.GB 5413.20-2013食品安全国家标准婴幼儿食品和乳品中胆碱的测定[S].北京:中国标准出版社,2014.
    [11]
    国家卫生和计划生育委员会.GB 29989-2013婴幼儿食品和乳品中左旋肉碱的测定[S].北京:中国标准出版社,2014.
    [12]
    中华人民共和国国家卫生和计划生育委员会.GB 5413.40-2016食品安全国家标准婴幼儿食品和乳品中核苷酸的测定[S].北京:中国标准出版社,2017.
    [13]
    Ok H E,Choi S W,Kim M,et al. HPLC and UPLC methods for the determination of Zearalenone in noodles,cereal snacks and infant formula[J].Food Chemistry,2014,163:252-257.
    [14]
    中华人民共和国卫生部.GB 5413.15-2010食品安全国家标准婴幼儿食品和乳品中烟酸和烟酰胺的测定[S].北京:中国标准出版社,2010.
    [15]
    Sabater C,Prodanov M,Olano A,et al. Quantification of prebiotics in commercial infant formulas[J].Food Chemistry,2016,194:6-11.
    [16]
    Liu Z Q,Cocks B,Patel A,et al. Identification and quantification of phosphatidylinositol in infant formulas by liquid chromatography-mass spectrometry[J].Food Chemistry,2016,205:178-186.
    [17]
    姜洁,李玮,路勇,等.核磁共振脉冲宽度法测定婴幼儿乳粉中乳糖、蔗糖含量[J].食品工业科技,2015,36(8):68-71

    ,77.
    [18]
    Bernstein M A,Sykora S,Peng C,et al. Optimization and automation of quantitative NMR data extraction[J].Analytical Chemistry,2013,85(12):5778-5786.
    [19]
    Wu J F,Domellöf M,Zivkovic A M,et al. NMR-based metabolite profiling of human milk:A pilot study of methods for investigating compositional changes during lactation[J]. Biochemical and Biophysical Research Communications,2016,469(3):626-632.
    [20]
    Klein M S,Buttchereit N,Miemczyk S P,et al. NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis[J].Journal of Proteome Research,2012,11(2):1373-1381.
    [21]
    Hermansson K,Jansson P E,Kenne L,et al. A1H and13C NMR study of oligosaccharides from human milk.Application of the computer program CASPER[J].Carbohydrate Research,1992,235:69-81.
    [22]
    Marincola F C,Noto A,Caboni P,et al. A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis:Preliminary results[J].The Journal of Maternal-Fetal & Neonatal Medicine,2012,25(sup5):62-67.
    [23]
    李玮,姜洁,路勇,等.NMR氢谱定量测定奶酪中总共轭亚油酸的含量[J].食品科学,2015,36(10):134-138.
    [24]
    李玮,贾婧怡,姜洁,等.NMR氢谱法分析市售奶油中的脂肪酸[J].食品工业科技,2016,37(23):319-323.
    [25]
    Zhao Y R,Chen H,Feng J H,et al. 1H NMR-based compositional identification of different powdered infant formulas[J].Food Chemistry,2017,230:164-173.

Catalog

    Article Metrics

    Article views (250) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return