CHEN Suo, LIU Tao, WANG Shuai, WANG Yanyang, XU Shuai, PAN Weiyi, LI Li. The Stability of Yellow and Orange Monascus Pigments[J]. Science and Technology of Food Industry, 2021, 42(3): 19-24. DOI: 10.13386/j.issn1002-0306.2020040208
Citation: CHEN Suo, LIU Tao, WANG Shuai, WANG Yanyang, XU Shuai, PAN Weiyi, LI Li. The Stability of Yellow and Orange Monascus Pigments[J]. Science and Technology of Food Industry, 2021, 42(3): 19-24. DOI: 10.13386/j.issn1002-0306.2020040208

The Stability of Yellow and Orange Monascus Pigments

More Information
  • Received Date: April 16, 2020
  • Available Online: February 02, 2021
  • In order to understand the difference in stability of different MPs components,a yellow fraction F1 which mainly contained monascin and ankaflavin,and a orange fraction F2 which mainly contained monascorubrin and rubropunctatin,were separated from crude MPs extract by macroporous resin column chromatography. The yellow fraction F1 and orange fraction F2 were then used to analyze to the stability of yellow MPs(YMPs)and orange MPs(OMPs)under varying pH,temperature and light conditions based on UV-Vis spectra and residual values. Results showed that YMPs were stable in the pH range of 2~9,while OMPs were stable in the pH range of 2~4. When pH≥ 5,the λmax of OMPs shifted obviously. Both of the YMPs and OMPs exhibited good UV-light stability. After 270 min UV-light exposure,no shift of λmax was observed in UV-Vis spectra of YMPs and OMPs,and the residual percentages of YMPs and OMPs were 70.4%±0.2% and 64.4%±0.9%,respectively,which were significantly higher than that of curcumin(7.9%±0.7%). The thermal stability of YMPs was better than that of OMPs. After heated at 80 ℃ for 120 min,there was an obvious change in the shape of the UV-Vis spectrum of OMP,but not in that of YMPs. Additionally,residual percentage of OMPs after heating was 40.8%±1.9%,which was significantly lower than that of YMPs(87.4%±3.2%)and curcumin(90.9%±4.5%). These results suggested that YMPs was the stable components of MPs and could be used to develop MPs products with high stability.
  • [1]
    Chen W P,Chen R F,Liu Q P,et al. Orange,red,yellow:Biosynthesis of azaphilone pigments in Monascus fungi[J]. Chemical Science,2017,8(7):4917-4925.
    [2]
    Ntrallou K,Gika H,Tsochatzis E.Analytical and sample preparation techniques for the determination of food colorants in food matrices[J].Foods,2020,9(1):58.
    [3]
    Manan M A.Monascus spp.:A source of natural microbial color through fungal biofermentation[J].Journal of Microbiology & Experimentation,2017,5(3):148-166.
    [4]
    Agboyibor C,Kong W B,Chen D,et al. Monascus pigments production,composition,bioactivity and its application:A review[J].Biocatalysis and Agricultural Biotechnology,2018,16:433-447.
    [5]
    Lin C H,Lin T H,Pan T M.Alleviation of metabolic syndrome by monascin and ankaflavin:The perspective of Monascus functional foods[J].Food & Function,2017,8(6):2102-2109.
    [6]
    Zhou W B,Guo R,Guo W L,et al. Monascus yellow,red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet[J].Food & Function,2019,10(2):1073-1084.
    [7]
    Chen W P,Feng Y L,Molnár I,et al. Nature and nurture:Confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments[J].Natural Product Reports,2019,36(4):561-572.
    [8]
    Shi K,Song D,Chen G,et al. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation[J].Journal of Bioscience and Bioengineering,2015,120(2):145-154.
    [9]
    Lv J,Zhang B B,Liu X D,et al. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture:The relationship between fermentation conditions and mycelial morphology[J].Journal of Bioscience and Bioengineering,2017,124(4):452-458.
    [10]
    Mapari S A S,Meyer A S,Thrane U.Photostability of natural orange-red and yellow fungal pigments in liquid food model systems[J].Journal of Agricultural and Food Chemistry,2009,57(14):6253-6261.
    [11]
    Jung H,Kim C,Shin C S.Enhanced photostability of Monascus pigments derived with various amino acids via fermentation[J].Journal of Agricultural and Food Chemistry,2005,53(18):7108-7114.
    [12]
    Lin T F,Yakushijin K,Büchi G H,et al. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes[J].Journal of Industrial Microbiology,1992,9(3/4):173-179.
    [13]
    Jung H,Kim C,Kim K,et al. Color characteristics of Monascus pigments derived by fermentation with various amino acids[J].Journal of Agricultural and Food Chemistry,2003,51(5):1302-1306.
    [14]
    张晓伟,李培睿,王昌禄,等.温度、pH对红曲米中红曲色素溶解性及稳定性的影响[J].食品科技,2013,38(11):242-245

    ,250.
    [15]
    张晓伟,王昌禄,陈勉华,等.理化因子对红曲色素色价的影响及桔霉素的光降解性[J].食品科学,2013,34(15):17-21.
    [16]
    蒋琼凤,陈莫林,袁志辉.红曲米中红曲色素的提取及稳定性研究[J].中国调味品,2014,39(9):1-3

    ,10.
    [17]
    张慧娟,沈良俊,许赣荣,等.红曲橙色素的提取及其稳定性研究[J].食品与发酵工业,2005,31(12):129-133.
    [18]
    连喜军.红曲色素光稳定性的研究[D].天津:天津科技大学,2005.
    [19]
    Zhang L,Zheng D,Zhang Q F.Purification of total flavonoids from Rhizoma Smilacis Glabrae through cyclodextrin-assisted extraction and resin adsorption[J].Food Science & Nutrition,2019,7(2):449-456.
    [20]
    Li L,Chen S,Gao M X,et al. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7[J].Applied Microbiology and Biotechnology,2019,103(20):8393-8402.
    [21]
    石侃.红曲色素的pH敏感性及低pH萃取发酵的代谢调控[D].广州:华南理工大学,2017.
    [22]
    Shi K,Chen G,Pistolozzi M,et al. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties[J].Food Additives & Contaminants.Part A,Chemistry,Analysis,Control,Exposure & Risk Assessment,2016,33(9):1396-1401.
    [23]
    Jia L L,Tu X,He K,et al. Monascorubrin and rubropunctatin:Preparation and reaction characteristics with amines[J].Dyes and Pigments,2019,170:107629.
    [24]
    刘轶.DFT探究红曲色素的光化学特性以及降胆固醇活性[D].新乡:河南师范大学,2016.
    [25]
    徐海笑.液态发酵红曲黄色素的分离鉴定及稳定性研究[D].无锡:江南大学,2019.
    [26]
    甘纯玑.红曲黄色素的热稳定性[J].福建师范大学学报(自然科学版),1988,4(3):63-67.
  • Cited by

    Periodical cited type(17)

    1. 陈昌威,付靖雯,沈祥皓,李湖平,叶静静,谢箭,王灵昭,盘赛昆. 海藻酸钠的流变学特性及影响黏度因素研究. 中国食品添加剂. 2024(01): 99-108 .
    2. 李明娟,王颖,张雅媛,游向荣,周葵,卫萍,韦林艳. 5种干燥方式对木薯酸淀粉性能的影响. 食品工业科技. 2024(08): 134-142 . 本站查看
    3. 刘会佳,刘伟聪,那治国. 絮凝法回收马铃薯淀粉废水中蛋白质工艺优化. 农产品加工. 2024(21): 68-72+79 .
    4. 惠宇晴,沈卉芳,姚鑫淼,周野,李庆全,孙庆申. 不同品种马铃薯雪花全粉品质分析. 食品工业科技. 2023(19): 356-365 . 本站查看
    5. 张婧娟,吴子煜,丁媛,雍雅萍. 马铃薯全粉面条配方的优化. 现代食品. 2023(17): 106-109 .
    6. 祁芳,刘星,钱群丽,周佳欣,姚春霞,宋卫国. 基于稳定同位素的5种蔬菜产地真实性判别. 中国无机分析化学. 2022(01): 171-177 .
    7. 徐忠,陈晓明. 植物乳杆菌发酵对马铃薯全粉结构与性能的影响. 食品与发酵工业. 2022(05): 111-115 .
    8. 刘爽,王滢颖,郭爱良,周晨霞,李慧静. 不同品种马铃薯全粉品质特性分析. 食品工业科技. 2022(07): 59-66 . 本站查看
    9. 辛晶,黄一承,季香青,杨定宽,王玉超,张健,李晓磊,李丹. 黍子粉对小麦面团流变特性和面条品质的影响. 食品工业科技. 2022(19): 69-75 . 本站查看
    10. 徐茹,杨晓清,刘晓波,米雪. 超声波处理对马铃薯全粉面团网状结构的影响. 中国食品学报. 2022(10): 242-251 .
    11. 胡安阳,吕建秋,杜冰. 不同干燥方式对柚子皮粉加工特性及功能成分含量的影响. 食品工业科技. 2021(05): 170-176 . 本站查看
    12. 施杨琪,黄茜蕊,茹炜岽,张瑜,柴立红,钱琼秋,包劲松. 14种不同马铃薯全粉的理化特性差异分析. 核农学报. 2021(07): 1593-1600 .
    13. 刘媛,王健,任丛涛,高清海,刘佳,苗雨田. 新型马铃薯雪花粉饼配方优化. 食品工业. 2021(07): 61-64 .
    14. 李亚,黄敏,吴笛,褚哓锐. 凉山州马铃薯加工发展探究. 南方农业. 2021(21): 144-146 .
    15. 杨晓清,徐茹. 调质马铃薯全粉的稳态流变特性及面条品质评价. 粮油食品科技. 2021(06): 131-138 .
    16. 丁香丽,李婷婷,还璐,钱建亚,周晓燕. 响应面法优化无麸质马铃薯曲奇制作工艺. 美食研究. 2020(01): 34-39 .
    17. 王腾飞,胡志敏,霍梅俊,王志华. 南瓜马铃薯糕加工工艺. 食品工业. 2020(10): 9-13 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (467) PDF downloads (31) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return