QIAO Shuangyu, LONG Minghua, ZHAO Tiyue, ZHANG Huimin, SUN Qiaojian, HE Jianan, XIONG Huashu, LIANG Yongsheng. Absorption and Enrichment Characteristics of PAHs in Vegetables and the Screening of Cleaning Agents for PAHs[J]. Science and Technology of Food Industry, 2021, 42(3): 191-200. DOI: 10.13386/j.issn1002-0306.2020040068
Citation: QIAO Shuangyu, LONG Minghua, ZHAO Tiyue, ZHANG Huimin, SUN Qiaojian, HE Jianan, XIONG Huashu, LIANG Yongsheng. Absorption and Enrichment Characteristics of PAHs in Vegetables and the Screening of Cleaning Agents for PAHs[J]. Science and Technology of Food Industry, 2021, 42(3): 191-200. DOI: 10.13386/j.issn1002-0306.2020040068

Absorption and Enrichment Characteristics of PAHs in Vegetables and the Screening of Cleaning Agents for PAHs

More Information
  • Received Date: April 07, 2020
  • Available Online: February 02, 2021
  • The purpose of this project was to study the absorption and enrichment characteristics of polycyclic aromatic hydrocarbons(PAHs)in vegetables,and to optimize the cleaning agent for PAHs degradation. In this experiment,tomato,pepper,eggplant,cucumber,radish,beans,Lactuca sativa were selected as experimental samples and soaked in 500 μg/kg PAHs solution for 2,4 h respectively. PAHs concentration characteristics of different vegetables were analyzed by detecting PAHs content in the exposed part of the peel and the pulp of vegetables. By comparing the coefficient of variation of PAHs average content in different vegetables,the uniform experimental materials were screened,and then the appropriate conditions of soaking were determined through further experiments. Eight kinds of cleaning agents were used to treat the toxic vegetables,and then chose the degradation effect as the evaluation standard to select the best cleaning agent. After soaking treatment,most of the vegetables showed that the PAHs enrichment ability of the peel was stronger than that of the pulp,and the PAHs migration ability decreased with the increase of PAHs ring number. By comparing the variation coefficient of PAHs content,except the Lactuca sativa,the changes of contents of vegetables were not consistent,and the average content of fruit pulp fluctuated greatly. With Lactuca sativa as the experimental material,the results showed that the appropriate immersion condition was 500 μg/kg of PAHs solution and 60 min of immersion time. The degradation rate of lightweight PAHs was higher than that of heavy PAHs in Lactuca sativa treated with five cleaning agents. By comparing the degradation rate of PAHs of different cleaning agents,and the results showed that detergents and ozone water had the worst degradation ability,and ultrasonic cleaning only had good degradation effect on light PAHs,with the degradation rate up to 72.72%. There were 7 groups of the optimal cleaning agent treatments,all of which were oxidant treatments. The degradation rate of each treatment group was compared,it was found that the best degradation effect was achieved when the concentration of Fenton(nH2O2∶nFeSO4=8∶1)reagent was 800 mg/L,with an average degradation rate of 79.29% for light and 59.07% for heavy PAHs in Lactuca sativa. By exploring the enrichment characteristics of vegetables for PAHs and comparing the degradation effects of different cleaning treatments on PAHs,this experiment provided theoretical guidance for effective pollution control and consumers to select the reasonable and efficient cleaning agents.
  • [1]
    刘宜奇,胡长鹰. 食品中多环芳烃的安全性研究进展[J]. 食品科学,2019,40(19):353-362.
    [2]
    Wei Y,Han I K,Hu M,et al. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans[J]. Chemosphere,2010,81(10):1280-1285.
    [3]
    Hopf N B,Spring P,Hirt-Burri N,et al. Polycyclic aromatic hydrocarbons(PAHs)skin permeation rates change with simultaneous exposures to solar ultraviolet radiation(UV-S)[J]. Toxicology Letters,2018,287:122-130.
    [4]
    米辰炀,许仲妍,谢嘉渝,等. 多环芳烃暴露致女性生殖毒性及其分子机制[J]. 环境与职业医学,2019,36(1):49-55.
    [5]
    殷婧. 临汾市食物中多环芳烃的污染特征及暴露风险评价[D]. 南京:南京师范大学,2016:15-47.
    [6]
    田垚,杨永刚,韩自玉,等. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报,2019,13(10):2336-2346.
    [7]
    Juhasz A L,Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:A review of the microbial degradation of benzo[a]pyrene[J]. International Biodeterioration and Biodegradation,2000,45(1-2):57-88.
    [8]
    Gong Z,Alef K,Wilke B M,et al. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation[J]. Journal of Hazardous Materials,2006,143(1-2):372-378.
    [9]
    Guermouche M A,Bensalah F,Gury J,et al. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons[J]. Environmental Science & Pollution Research International,2015,22(20):15332-15346.
    [10]
    张俊亭. 蔬菜水果清洗剂对农药残留洗除率的测定及效果[J]. 农业环境科学学报,1998,17(6):258-259.
    [11]
    赵鹏,闵光,张燕,等. 不同洗涤方法对果蔬中农药残留去除率的研究[J]. 食品科学,2006,27(12):467-468.
    [12]
    程璨,赵迪,何天宇,等. 超声波清洗对不同蔬菜中农药残留的去除效果探究[J]. 中国农学通报,2017,33(2):138-143.
    [13]
    Man X,Ning X A,Zou H,et al. Removal of polycyclic aromatic hydrocarbons(PAHs)from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system[J]. Chemosphere,2017,191:839-847.
    [14]
    Chen J Y,Lin Y J,Kuo W C. Pesticide residue removal from vegetables by ozonation[J]. Journal of Food Engineering,2013,114(3):404-411.
    [15]
    Saini R,Mondal M K,Kumar P. Fenton oxidation of pesticide methyl parathion in aqueous solution:Kinetic study of the degradation[J]. Environmental Progress & Sustainable Energy,2016,36(2):420-427.
    [16]
    阳如春,万平玉,许惠敏,等. 高铁酸钾降解农药敌敌畏及其残留检测方法[J]. 北京化工大学学报(自然科学版),2005,32(5):81-83,87.
    [17]
    赵启红. 过碳酸钠对有机磷农药的降解研究[D]. 南京:南京师范大学,2007.
    [18]
    Affam A C,Chaudhuri M,Kutty S R M. Comparison of five advanced oxidation processes for degradation of pesticide in aqueous solution[J]. Bulletin of Chemical Reaction Engineering & Catalysis,2018,13(1):179-186.
    [19]
    Misra N N. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues[J].Trends in Food Science & Technology,2015,45(2):229-244.
    [20]
    乔双雨,龙明华,张会敏,等. 正交试验优化蔬菜中多环芳烃检测前处理工艺[J]. 食品工业科技,2019,40(23):104-110

    ,118.
    [21]
    王丽萍,夏忠欢,吴敏敏,等. 徐州市售蔬菜中多环芳烃污染与健康危害[J]. 生态毒理学报,2017,12(3):526-534.
    [22]
    张会敏,龙明华,乔双雨,等. 瓜类蔬菜体内多环芳烃的分布特征及健康风险评估[J]. 华南农业大学学报,2019,40(2):89-99.
    [23]
    王海凤,王俊斌,王娟,等. 不同处理方法对3种蔬菜中毒死蜱去除效果的研究[J]. 食品研究与开发,2015,36(16):162-165.
    [24]
    洪有为. 典型多环芳烃在红树林湿地模拟系统中的迁移规律及其毒性效应研究[D]. 厦门:厦门大学,2009.
    [25]
    段秋虹,王小玲,游新侠,等. 不同清洗方式对瓜茄类蔬菜有机磷农药去除效果研究[J]. 食品工业,2018,39(4):247-251.
    [26]
    张亚琼,罗金凤,王磊,等. 不同清洗剂对叶类蔬菜五种残留农药的洗涤效果研究[J]. 食品工业科技,2013,34(17):110-114.
    [27]
    刘浩,邓慧萍,刘铮. 臭氧多相催化氧化技术处理水中多环芳烃的进展[J]. 水处理技术,2010,36(8):1-5.
    [28]
    巩宗强,胡筱敏,徐新阳,等. 用高级氧化技术去除植物油中的多环芳烃[J]. 东北大学学报(自然科学版),2008,29(9):1338-1341.
    [29]
    Oh J Y,Choi S D,Kwon H O,et al. Leaching of polycyclic aromatic hydrocarbons(PAHs)from industrial wastewater sludge by ultrasonic treatment[J]. Ultrasonics Sonochemistry,2016,33:61-66.
    [30]
    何天宇,程璨,赵迪. 叶类蔬菜中氨基甲酸酯类农药残留的超声波清洗条件优化[J]. 中国农学通报,2016,32(26):80-86.
    [31]
    潘玉兰. Fenton试剂氧化降解水和土壤中多环芳烃[D]. 南京:南京农业大学,2014:9-37.
    [32]
    李婷,陈冰,马虹. UV-Fenton催化氧化法对采油废水中多环芳烃的处理效果[J]. 环境工程学报,2012,6(10):119-124.
    [33]
    Chiron S,Fernandez-Alba A R,Rodriguez A. Pesticide chemical oxidation processes:An analytical approach[J]. Trends in Analytical Chemistry,1997,16(9):518-527.
    [34]
    戚惠民. 异位类Fenton化学氧化在多环芳烃污染场地修复中的应用[J]. 环境工程学报,2018,12(11):264-272.
    [35]
    金小鸥. Fenton法处理染料废水中多环芳烃的研究[D]. 大连:大连海事大学,2013:19-35.
    [36]
    Khan S,He X,Khan J A,et al. Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system[J]. Chemical Engineering Journal,2017,318:135-142.
    [37]
    Peng L,Deng D,Guan M,et al. Remediation HCHs POPs-contaminated soil by activated persulfate technologies:Feasibility,impact of activation methods and mechanistic implications[J]. Separation and Purification Technology,2015,150:215-222.
    [38]
    张宏玲,李森,张杨,等. 活化过硫酸盐体系原位模拟去除土壤中多环芳烃[J]. 浙江农业学报,2018,30(6):1044-1049.
    [39]
    马俊华. 过硫酸钠高级氧化技术降解苯类有机污染物的研究[D]. 天津:天津理工大学,2018:6-15.
    [40]
    陈垚,张凤娥,董良飞. 活化过硫酸钠氧化修复有机氯农药污染土壤[J]. 环境工程学报,2017,11(10):5715-5721.
    [41]
    何则强,滕瑶,胡文勇,等. 高铁酸钾的超声辅助化学合成及其对餐厨垃圾渗滤液的处理效果[J]. 环境工程学报,2016,10(2):551-558.
    [42]
    Sharma V K. Potassium ferrate(VI):An environmentally friendly oxidant[J]. Advances in Environmental Research,2002,6(2):143-156.
    [43]
    孙敬权,尚鸿艳. 高铁酸钾氧化处理高浓度农药废水的研究[J]. 环境科技,2017,30(3):36-39.
    [44]
    刘红玉,陈振德,汪东风,等. 高铁酸钾对菠菜中3种有机磷农药残留降解的影响[J]. 生态毒理学报,2009,4(2):282-288.
  • Related Articles

    [1]SHI Yonggui, YAO Xianchao, JIAO Siyu, LU Xiaona, YANG Maiqiu, LIN Rihui. Hydrophobic Modification of Nanometer Starch and Adsorption of Lutein[J]. Science and Technology of Food Industry, 2023, 44(17): 42-50. DOI: 10.13386/j.issn1002-0306.2022090319
    [2]DU Siqi, WANG Xiaofeng, ZHANG Yifan, YANG Yueyue, LI Jianan, ZHU Minpeng. Preparation of Starch Stearate Ester and Stability of Pickering Emulsion[J]. Science and Technology of Food Industry, 2023, 44(9): 1-9. DOI: 10.13386/j.issn1002-0306.2022090287
    [3]WANG Yan, LI Hongjia, CHENG Meijia, XIE Jinhui, LIU Tianjiao, XIN Jiaying, ZHANG Na. AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester[J]. Science and Technology of Food Industry, 2022, 43(23): 200-209. DOI: 10.13386/j.issn1002-0306.2022020183
    [4]SUN Mengwen, MO Xiaofeng, CHEN Ying, WANG Yajuan, QIU Dan. Preparation Process Optimization and Physicochemical Properties Analysis of Octenyl Succinate Taro Starch Ester[J]. Science and Technology of Food Industry, 2022, 43(20): 204-210. DOI: 10.13386/j.issn1002-0306.2021120217
    [5]HU Yingli, HUANG Jinfu, YANG Jianlin, DING Meng, LEI Fuhou, XIA Lu. Adsorption Characteristics of Rosin-based Macroporous Adsorption Resin for Panax notoginseng Saponin[J]. Science and Technology of Food Industry, 2022, 43(4): 73-81. DOI: 10.13386/j.issn1002-0306.2021060117
    [6]WU Wanqin, JIANG Feng, FAN Xiaolong, ZHU Xiaoling, HUANG Kun, HAN Zhi, LIU Guojiao, ZHANG Yazhen, ZHU Songsong, FAN Zhiyong, WANG Huixia. Determination of Rosin in Meat and Their Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(12): 279-286. DOI: 10.13386/j.issn1002-0306.2020080257
    [7]YANG Ying-qi, ZHAO Ren-yong, TIAN Shuang-qi, CHEN Yi-mei. Research Progress of the Preparation of Starch Ester and Its Effects on Dough Properties and Quality of Flour Product[J]. Science and Technology of Food Industry, 2019, 40(13): 287-292,298. DOI: 10.13386/j.issn1002-0306.2019.13.048
    [8]TIAN Shuang-qi, WANG Zi-liang, MA Bing-xue, ZHAO Ren-yong, WANG Xin-wei. Optimization of development processing parameters of malic acid- modified starch by using RSM[J]. Science and Technology of Food Industry, 2016, (10): 279-282. DOI: 10.13386/j.issn1002-0306.2016.10.048
    [9]YIN Xiu-hua, TAN Yao-yao, WU Heng, XIE Li-yan, GU Bi, LIN Ying. Comparison of Cassava resistant starch made by different kinds of acid on properties[J]. Science and Technology of Food Industry, 2013, (21): 107-110. DOI: 10.13386/j.issn1002-0306.2013.21.052
    [10]Research advances in starch esters[J]. Science and Technology of Food Industry, 2012, (20): 382-385. DOI: 10.13386/j.issn1002-0306.2012.20.094

Catalog

    Article Metrics

    Article views (397) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return