QU Shuaijie, LIU Shuji, SU Yongchang, et al. Optimization of Polypeptides Extraction from Takifugu flavidus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(12): 133−138. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2019110133.
Citation: QU Shuaijie, LIU Shuji, SU Yongchang, et al. Optimization of Polypeptides Extraction from Takifugu flavidus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(12): 133−138. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2019110133.

Optimization of Polypeptides Extraction from Takifugu flavidus by Response Surface Methodology

More Information
  • Received Date: November 13, 2019
  • Available Online: April 15, 2021
  • In order to optimize the enzymatic preparation technology of peptide from the muscle Takifugu flavidus, the response surface methodology was used to study the preparation technology. Taking the degree of hydrolysis as the index, six kinds of proteases, such as acid protease, alkaline protease, trypsin, neutral protease, flavor protease, papain, was screened by the preparation ability, and flavor protease was identified as the target enzyme for the further experiments. The single factor method was used to investigate the effects of solid-liquid ratio, pH value, hydrolysis time, temperature and enzyme concentration on the preparation of polypeptides from the muscle of Takifugu flavidus. The results showed that temperature had the greatest influence on the degree of hydrolysis, enzyme concentration was the second and pH value was third. The optimum preparation conditions were as follows: Enzyme concentration was 4521.96 U/g, the temperature was 55 ℃, the pH value was 7, the solid-liquid ratio was 1:10, and enzymolysis time was 4 h. Under these conditions, the degree of hydrolysis of protein in muscle was 26.26%, while the predicted value was 26.66%, and the relative error was 1.48%, and the predicted result was basically consistent with actual measurement result. It could be seen that the response surface methodology would be reasonable and feasible to optimize the preparation process of polypeptides.
  • [1]
    吉娜, 张爱鸿, 丛建华, 等. “豉辣蒜香河豚”烹调工艺研究[J]. 扬州大学烹饪学报,2014(2):19−22.
    [2]
    郑春波, 宋颜亮, 滕照军, 等. 利用井海水进行菊黄东方鲀越冬试验[J]. 齐鲁渔业,2011(3):10−11.
    [3]
    郭芮, 张晓梅, 苏红, 等. 河豚鱼的营养价值及副产物可利用性的研究现状[J]. 食品科技,2018,43(3):113−116.
    [4]
    林连升, 彭珊. 河豚的加工和综合利用研究[J]. 中国水产,2005(2):72−73. doi: 10.3969/j.issn.1002-6681.2005.02.046
    [5]
    宋晓光, 李秉润, 王少平, 等. 水蛭活性肽的纯化工艺[J]. 中国医院药学杂志,2017,37(23):2322−2325.
    [6]
    HirofumiMotoi, Toshiaki Kodama. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate[J]. Molecular Nutrition & Food Research,2003,47(5):354−358.
    [7]
    Gobbetti M, Stepaniak L, De Angelis M, et al. Latent bioactive peptides in milk proteins: Proteolytic activation and significance in dairy processing[J]. Critical Reviews in Food Science and Nutrition,2002,42(3):223−239. doi: 10.1080/10408690290825538
    [8]
    方富永, 苗艳丽, 劳秋燕, 等. 长牡蛎肉三酶水解工艺优化及水解物抗疲劳实验[J]. 中国药学杂志,2011,46(8):579−584.
    [9]
    陈义明, 曹文红, 章超桦, 等. 圆鮀鲣暗色肉蛋白酶解物的抗疲劳作用[J]. 食品工业科技,2018,39(10):315−319, 323.
    [10]
    Yoshikawa M, Takahashi M, Yng S. Delta opioid peptides derived from plant proteins[J]. Curr Pharm Des,2003,9:1325−1330. doi: 10.2174/1381612033454838
    [11]
    李超柱, 陈艳华, 陈艳辉, 等. 牡蛎活性肽的分离及其免疫抑制作用的实验研究[J]. 海洋科学,2013,37(4):52−56.
    [12]
    Kondo K, Iwamoto T, Hosoda K, et al. Inhibition of low-density lipoprotein oxidation by fish protein and antioxidants[J]. Atherosclerosis,2000,151(1):113.
    [13]
    Jang W S, Kim K N, Lee Y S, et al. Halocidin: A new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium[J]. FEBS Lett,2002,521:81−86. doi: 10.1016/S0014-5793(02)02827-2
    [14]
    卢连华, 周景洋, 颜燕, 等. 海参肽对小鼠免疫调节及抗疲劳能力的影响[J]. 山东医药,2009(25):40−42. doi: 10.3969/j.issn.1002-266X.2009.25.014
    [15]
    Li Zhe, Zhang Bin, Gu Ming, Wang Changhai. Isolation and purification of antibacterial peptides from mussel[J]. Agricultural Biotechnology,2012,1(2):20−23.
    [16]
    陈丽娜, 温宇旗, 韩国庆, 等. 生物活性肽制备工艺的研究进展[J]. 农产品加工,2018,463(17):63−68.
    [17]
    雷鸣, 李志忠. 大豆多肽制备中蛋白酶的选择[J]. 甘肃农业大学学报,2006,41(6):122−126. doi: 10.3969/j.issn.1003-4315.2006.06.027
    [18]
    刘海军, 乐超银, 邵伟, 等. 生物活性肽研究进展[J]. 中国酿造,2010,29(5):5−8. doi: 10.3969/j.issn.0254-5071.2010.05.002
    [19]
    Prakash Maran J, Sivakumar V, Sridhar R. Optimization of microwave assisted extraction of pectin from orange peel[J]. Carbohydr Polym,2013,97(2):703−709.
    [20]
    梁彬, 李娟, 余杰, 等. 响应面法优化海蓬子皂苷提取工艺条件与生物活性研究[J]. 食品科学,2014,35(2):102−107. doi: 10.7506/spkx1002-6630-201402019
    [21]
    Yang W J, Fang Y, Liang J, et al. Optimization of ultrasonic extraction of Flammulina velutipes polysaccharides and evaluation of its acetylcholinesterase inhibitory activity[J]. Food Research International,2011, 44(5):1269−1275. doi: 10.1016/j.foodres.2010.11.027
    [22]
    郑志强, 李宝林, 郝利民, 等. 不同蛋白酶对小麦蛋白酶解物抗氧化活性的影响[J]. 食品科学,2017(7):169−174.
    [23]
    蒋婧. 蛋白质水解度测定及其标准曲线绘制研究[J]. 广东轻工职业技术学院学报,2012,11(1):4−6. doi: 10.3969/j.issn.1672-1950.2012.01.003
    [24]
    高露姣, 黄艳青, 夏连军, 等. 不同养殖模式下红鳍东方鲀的品质比较[J]. 水产学报,2011,35(11):1668−1676.
    [25]
    刘振熙, 张风雷, 戴桂勋, 等. 棕腹刺河豚肌肉中三大营养成分的研究[J]. 广东微量元素科学,2005,12(7):59−61. doi: 10.3969/j.issn.1006-446X.2005.07.015
    [26]
    左继红, 刘丽丽, 崔政伟, 等. 微波辅助蛋白酶水解大豆蛋白的工艺研究[J]. 食品研究与开发,2017,38(6):91−94. doi: 10.3969/j.issn.1005-6521.2017.06.021
    [27]
    张少斌, 依晓楠, 林英, 等. 螺旋藻藻胆蛋白不同提取方法的比较[J]. 吉林农业大学学报,2007,29(4):381−383. doi: 10.3969/j.issn.1000-5684.2007.04.008
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (314) PDF downloads (34) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return