YAN Xiang, ZHANG Shao-fei, WANG Du-liu, PEI Ping, WANG Wen-jian, LI Juan, LI Fei, ZHAO Yan-xia. Study on Preparation of Activated Carbon from Soybean Straw and Its Adsorption Performance on Cu2+[J]. Science and Technology of Food Industry, 2021, 42(1): 68-74. DOI: 10.13386/j.issn1002-0306.2019080216
Citation: YAN Xiang, ZHANG Shao-fei, WANG Du-liu, PEI Ping, WANG Wen-jian, LI Juan, LI Fei, ZHAO Yan-xia. Study on Preparation of Activated Carbon from Soybean Straw and Its Adsorption Performance on Cu2+[J]. Science and Technology of Food Industry, 2021, 42(1): 68-74. DOI: 10.13386/j.issn1002-0306.2019080216

Study on Preparation of Activated Carbon from Soybean Straw and Its Adsorption Performance on Cu2+

More Information
  • Received Date: August 22, 2019
  • Available Online: January 07, 2021
  • The activated carbon was prepared from soybean straw by using ZnCl2 as the activation agent and analysis methods such as SEM and FT-IR were used to characterize the SSAC. The influence of activation time and activation temperature on methylene blue adsorption value for soybean straw activated carbon were studied,and the adsorption characteristics of Cu2+ using the SSAC in water solution were studied through static experiments,the influence of solution pH value,temperature and time were investigated. The results showed that the optimum preparation conditions were determined as follows: The activation concentration of ZnCl2was 3 mol/L,carbonization temperature was 700 ℃,carbonization time was 40 min. Under this condition,the methylene blue adsorption value for SSAC was 1.84 mL/0.1 g. When the initial concentration of Cu2+ was 10 mg/L,the dosage of SSAC was 0.2 g,SSAC had the best adsorption effect when pH was 5.0,temperature was 50 ℃ and time was 50 min. The maximum adsorption capacity of SSAC was 4.589 mg/g,the removal rate was 91.77%. The morphology and structure of active carbon were observed by SEM and FT-IR,the activated carbon had rich and developed fracture structure based on multi-layer graphite,which was rich in oxygen-containing functional groups such as hydroxyl carboxyl ketonic carbonyl aliphatic ether and ester group on the surface. Therefore,this activated carbon has a good adsorption performance for Cu2+ ions,it is suitable for treating wastewater containing Cu2+ and metal ion adsorption.
  • [1]
    邱阳.含铜废水处理法的研究进展[J].污染防治技术,2015,28(3):22-24.
    [2]
    Murray A,Örmeci B.Use of polymeric sub-micron ion-exchange resins for removal of lead,copper,zinc,and nickel from natural waters[J].Journal of Environmental Sciences,2019,75:247-254.
    [3]
    Ye L J,Chai L Y,Li Q Z,et al. Chemical precipitation granular sludge(CPGS)formation for copper removal from wastewater[J].RSC Advances,2016,6(115):114405-114411.
    [4]
    Swain B,Mishra C,Hong H S,et al. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process:Understanding their chemistry and comparisons of sustainable valorization processes[J].Environmental Research,2016,147:249-258.
    [5]
    Zhang X B,Dong W Y,Sun F Y,et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J].Journal of Hazardous Materials,2014,276:77-87.
    [6]
    Hunsom M,Pruksathorn K,Damronglerd S,et al. Electrochemical treatment of heavy metals(Cu2+,Cr6+,Ni2+)from industrial effluent and modeling of copper reduction[J]. Water Research,2005,39(4):610-616.
    [7]
    Conceição F T,Pichinelli B C,Silva M S G,et al. Cu(Ⅱ)adsorption from aqueous solution using red mud activated by chemical and thermal treatment[J].Environmental Earth Sciences,2016,75(5):1-7.
    [8]
    李想,吴雅琴,张高旗,等.含铜废水治理及资源化利用技术新进展[J].环境科学与技术,2018,41(8):34-40

    ,86.
    [9]
    Yuen F K,Hameed B H.Recent developments in the preparation and regeneration of activated carbons by microwaves[J].Advances in Colloid and Interface Science,2009,149(1/2):19-27.
    [10]
    郑秋生,李龙,胡雪玉.农作物秸秆用于制备活性炭的研究进展[J].纤维素科学与技术,2010,18(3):68-76.
    [11]
    崔纪成,杨瑛.棉秆基活性炭的表征及其Cu2+吸附特性[J].江苏农业科学,2017,45(9):245-248.
    [12]
    张悦悦.南疆棉秆分段制备活性炭工艺及对Cu2+吸附性研究[D]. 阿拉尔:塔里木大学,2018.
    [13]
    向松明,杨海涛,姚兰.大豆秸秆成分与结构分析[J].湖北造纸,2012(4):35-37.
    [14]
    纪楠.大豆秸秆木质素和纤维素含量与近红外光谱相关性模型研究[D].哈尔滨:东北农业大学,2016.
    [15]
    田龙.高中孔率木质素基活性炭的制备及表征[J].太阳能学报,2019,40(3):877-883.
    [16]
    何佳闻,何春霞,郭航言,等.5种秸秆生物炭吸附亚甲基蓝及其性能对比研究[J].南京农业大学学报,2019,42(2):382-388.
    [17]
    田叶顺.基于微波热解活化的生物质活性炭制备及其脱硫性能研究[D].济南:山东大学,2019.
    [18]
    朱波.用于重金属离子吸附的生物吸附剂的初步研究[D].上海:上海交通大学,2008.
    [19]
    高银东,王淑花,于晓颖,等.氯化锌活化棉纤维制备成型活性炭工艺研究[J].应用化工,2019,48(4):853-856

    ,859.
    [20]
    李慧琴.汉麻杆基活性炭的制备及表征[D].北京:北京化工大学,2007.
    [21]
    颜涛.稻草秸秆活性炭的制备及性能研究[D].武汉:武汉工业学院,2009.
    [22]
    张会平,叶李艺,杨立春.氯化锌活化法制备木质活性炭研究[J].材料科学与工艺,2006,14(1):42-45.
    [23]
    毛宇,马承愚,范艺苑,等.废弃辣椒秸秆高比表面积活性炭的制备及表征[J].应用化工,2012,41(5):766-770.
    [24]
    张传涛,邢宝林,黄光许,等.水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J].材料导报,2018,32(4):1088-1093.
    [25]
    颜婷婷,吴东辉,严雪峰,等. 黄麻和红麻纤维磨木木质素的红外光谱特征[J].中国麻业科学,2008,30(6):316-320.
    [26]
    刘羽,邵国强,许炯.竹纤维与其它天然纤维素纤维的红外光谱分析与比较[J].竹子研究汇刊,2010,29(3):42-46.
    [27]
    夏雯.生物炭的制备及对土壤重金属吸附特性研究[D]. 南京:南京师范大学,2016.
    [28]
    刘忠晓. 浒苔活性炭对重金属离子Cu2+的吸附性能研究[J].绿色科技,2018(16):84-85,87.
    [29]
    李本盛,吴彩斌,倪帅男,等.柚皮残渣制备活性炭对Cu2+吸附性能[J].有色金属科学与工程,2018,9(6):38-44.
    [30]
    吴昱,张骥,张立波,等.废弃纤维板制备的活性炭对含铜离子废水的吸附[J].东北林业大学学报,2012,40(10):120-123.
    [31]
    Villaescusa I,Fiol N,Martínez M,et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes[J].Water Research,2004,38(4):992-1002.
    [32]
    Li Y H,Ding J,Luan Z K,et al. Competitive adsorption of Pb2+,Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J].Carbon,2003,41(14):2787-2792.
    [33]
    李瑛,李洪军,张桂银,等.几种电解质对土壤吸附Cu2+的影响[J].生态环境,2003,12(1):8-11.
    [34]
    陈丽萍,司秀荣,李凌云.磷酸活化活性炭对Cu2+的吸附特征研究[J].生态环境学报,2011,20(2):353-358.
    [35]
    刘晓东,李沅,熊杰,等.改性玉米秸秆对铜离子的吸附性能[J].大连工业大学学报,2018,37(2):100-104.
    [36]
    李慧卿,孙泽臣,常丹,等.毛建对重金属Ni2+和Cu2+吸附的研究[J].食品研究与开发,2016,37(10):42-45

    ,46.
  • Cited by

    Periodical cited type(13)

    1. 沙琦,孙未一,范兴丽. 肠道菌群代谢物与抑郁症发病机制关系的研究. 浙江医学教育. 2025(01): 60-64 .
    2. 姜浩,赵杰,王铁云. “微生物-肠-脑轴”理论下述中医治疗郁症的研究进展. 中医临床研究. 2024(03): 27-31 .
    3. 姜浩,赵杰,王铁云. “微生物-肠-脑轴”理论下述中医治疗郁症的研究进展. 中医临床研究. 2024(09): 135-138 .
    4. 张红娟,王崴,高敏,安邦,范雅娟,贾敏,李强. 抑郁症患者血清短链脂肪酸水平与症状及生化指标的相关性. 山西医科大学学报. 2024(06): 777-781 .
    5. 康艳宝,赵龙友. 抗抑郁药联合肠道菌群调节剂治疗抑郁症疗效分析. 中国基层医药. 2024(08): 1144-1148 .
    6. 徐曼华,李平,何兰英,高丽梅. 老年抑郁症患者应用微生态制剂辅助认知行为干预的效果. 国际精神病学杂志. 2024(06): 1784-1787 .
    7. 赵佳,沈馨,刘红霞,郭艳荣,高广琦,孙志宏. 益生菌缓解亚健康相关症状的研究进展. 中国食品学报. 2024(12): 432-440 .
    8. 胡科,张同同,张凯,王国强. 首发抑郁症患者肠道菌群多样性与抑郁症状的相关性分析. 微生物学通报. 2023(03): 1040-1051 .
    9. 任煜,张童,李宁,裴环,赵童,袁嘉丽. 基于“脾与小肠相通”理论探讨脾-肠-肠道微生态治疗抑郁症. 世界中西医结合杂志. 2023(05): 1031-1035 .
    10. 吴振宁,王琦,秦雪梅,田俊生. 肠道菌群及其代谢产物在中药治疗抑郁症中的研究进展. 中草药. 2023(14): 4713-4721 .
    11. 李秋颖,冯静,刘婕,杨蓉蓉,骆华正,蔡伦,韦理萍. 肠道菌群在抑郁症发病机制及中医药治疗中研究进展. 辽宁中医药大学学报. 2023(12): 96-101 .
    12. 袁霞红,刘林. 肠道菌群调节抑郁症机制及中医药防治研究进展. 中华中医药学刊. 2022(09): 167-170 .
    13. 徐慧慧,陈煦,赵芳,毛若曦,王文利,程智美,张雅丽. 饮食结构、营养成分对抑郁症的影响研究进展. 食品科学. 2022(23): 346-355 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (388) PDF downloads (37) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return