JIAO Anni, YU Min, GUAN Yue, et al. Study on the Interaction between the Saponins of Ilex latifolia Thunb and Bovine Serum Albumin[J]. Science and Technology of Food Industry, 2021, 42(19): 8−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2019080180.
Citation: JIAO Anni, YU Min, GUAN Yue, et al. Study on the Interaction between the Saponins of Ilex latifolia Thunb and Bovine Serum Albumin[J]. Science and Technology of Food Industry, 2021, 42(19): 8−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2019080180.

Study on the Interaction between the Saponins of Ilex latifolia Thunb and Bovine Serum Albumin

More Information
  • Received Date: August 15, 2019
  • Available Online: August 09, 2021
  • In order to study the interaction between Latifoloside G, Latifoloside C and Kudinoside G and bovine serum albumin (BSA) at different temperatures, and to provide experimental basis for the study of the transport and mechanism of Latifoloside in vivo, this paper used fluorescence spectroscopy to study the binding mechanism, binding mode, binding constants and binding sites of small molecules and proteins, and used circular dichroism to study the conformational changes of proteins. The results showed that all three saponins can effectively quench the endogenous fluorescence of BSA. Kudinoside G was static quenching, andLatifoloside G and Latifoloside C were dynamic quenching. With the increased of the concentration of the three small molecules, the endogenous fluorescence intensity of BSA decreases and the maximum emission peak of BSA was slightly blue-shifted (from 347 nm to 345 nm) at both temperatures, and the order of the binding ability of three saponins to BSA could be determined as Latifoloside G>Latifoloside C>Kudinoside G. The main types of forces between Kudinoside G and BSA were hydrogen bonding and Van der Waals forces, and the main forces between Latifoloside G and Latifoloside C and BSA were hydrophobic. The binding capacity of Latifoloside G and Kudinoside G with BSA was related to the polar group connected to C-28, and then Latifoloside C of alkane type was easier to insert into the hydrophobic cavity of BSA than Kudinoside G. The circular dichroism spectrum showed that the combination of three saponins with BSA could change the internal structural environment of BSA, the α-helix content increases, the microenvironment polarity decreases, and the hydrophobicity increased.
  • [1]
    易帆, 彭勇, 许利嘉, 等. 大叶苦丁茶的研究进展[J]. 中国现代中药,2013,15(8):710−717. [Yi F, Peng Y, Xu L J, et al. Research progress of big leaf Kuding tea[J]. Modern Chinese Medicine,2013,15(8):710−717.
    [2]
    姚兰. 大叶冬青化学成分及其生物活性研究[D]. 长春: 吉林农业大学, 2018.

    Yao L. Studies on the chemical components of Ilex latifolia Thunb and its bioactivities[D]. Changchun: Jilin Agricultural University, 2018.
    [3]
    何丽君, 霍彩霞, 李生英, 等. 荧光光谱法研究绞股蓝皂苷与人血清白蛋白的相互作用[J]. 甘肃联合大学学报: 自然科学版,2012,26(6):49−51. [He L J, Huo C X, Li S Y, et al. Study on the interaction between stevenleaf and human serum albumin by fluorescence spectroscopy[J]. Journal of Gansu Lianhe University: Natural Science Edition,2012,26(6):49−51.
    [4]
    左天, 孙悦阳, 薛稳来, 等. 人参皂苷Rg1, Rb1和Ro与牛血清蛋白的相互作用关系研究[J]. 中国中药杂志, 2019, 44(12):145-151.

    Zuo T, Sun Y Y, Xue W L, et al. Study on interaction between ginsenosides Rg1, Rb1 and Ro and bovine serum protein[J]. China Journal of Chinese Materia Media, 2019, 44(12):145-151.
    [5]
    倪帅帅. 苦丁茶冬青化学成分及其与蛋白质相互作用机理研究[D]. 吉林: 吉林农业大学, 2017.

    Ni S S. Studies on the chemical constituents of Ilex kudingcha C. J. tseng and its interaction with proteins[D]. Jilin: Jilin Agricultural University, 2017.
    [6]
    范春林. 大叶冬青的化学成分研究[D]. 广州: 暨南大学, 2010.

    Fan C L. Study on the chemical constitution of Ilex latifolia Thunb[D]. Guangzhou: Jinan University, 2010.
    [7]
    Ouyang M A, Liu Y Q, Wang H Q, et al. Triterpenoid saponins from Ilex latifolia[J]. Phytochemistry,1998,49(8):2483−2486. doi: 10.1016/S0031-9422(98)00164-2
    [8]
    Ouyang M A, Wang H Q, Liu Y Q, et al. Triterpenoid saponins from the leaves of Ilex Latifolia [J]. Phytochemistry,1997,45(7):1501−1505. doi: 10.1016/S0031-9422(97)00175-1
    [9]
    胡雪娇, 李彦周, 熊宇迪, 等. 光谱学方法应用于小分子与牛血清白蛋白相互作用研究进展[J]. 理化检验-化学分册,2010,46(5):583−587. [Hu X J, Li Y Z, Xiong Y D, et al. Progress of study on interaction of small molecules with bovine serum albumin by spectroscopy[J]. Ptca(Part B: Chem. Anal.),2010,46(5):583−587.
    [10]
    易丽. 光谱法研究对硝基苯酚、苏丹红Ⅲ与牛血清白蛋白的相互作用[D]. 沈阳: 辽宁大学, 2013.

    Yi L. Studies on the interactions between PNP, Su DanⅢ and bovine serum albumin by spectroscopic methods[D]. Shenyang: Liaoning University, 2013.
    [11]
    Lu S, Yu X, Yang Y, et al. Spectroscopic investigation on the intermolecar interaction between N-confused porphyrins-(3-methylisoxazole) diad and bovine serum albumin[J]. Spectrochimica Acta Part A: Molecar and Biomolecar Spectroscopy,2012,99:116−121. doi: 10.1016/j.saa.2012.09.012
    [12]
    沈亮亮. 苦丁茶中苯丙素苷类药物小分子与蛋白质相互作用机理研究[D]. 深圳: 深圳大学, 2015.

    Shen L L. Study on the interaction mechanism between several protein and phenylpropanoid glycoside from Kudingcha[D].Shenzhen: Shenzhen University, 2015.
    [13]
    曹娟, 黄燕, 张岐, 等. 基于低聚壳聚糖的希夫碱化合物与BSA的相互作用[J]. 光谱学与光谱分析,2016,36(4):1090−1094. [Cao J, Huang Y, Zhang Q. Study on the Interaction between low molecular weight chitosan-based schiff bases and bovine serum albumin[J]. Spectroscopu and Spectral Analysis,2016,36(4):1090−1094.
    [14]
    岳鑫, 包怡红. 基于荧光及紫外光谱法对红松种鳞多酚与乳清蛋白相互作用的研究[J]. 现代食品科技,2019,35(7):114−120. [Yue X, Bao Y H. Interaction between the polyphenols from Pinus koraiensis seeds scales and whey protein studied by fluorescence and ultraviolet spectroscopy[J]. Modern Food Science and Technology,2019,35(7):114−120.
    [15]
    张冰卫, 李博, 夏文水, 等. 用荧光光谱法研究分子间结合常数和结合位点数时的公式选择[J]. 药学进展,2011,35(7):296−303. [Zhang B W, Li B, Xia W S, et al. Selection of models in the calculation of binding constants in the study of interaction between molecules by fluorescence spectroscopy[J]. progress in Pharmaceutical Sciences,2011,35(7):296−303.
    [16]
    王琳. 若干植物活性成分与蛋白质的相互作用研究[D]. 南昌: 南昌大学, 2012.

    Wang L. Study on interaction of some plant active components with protein[D]. Nanchang: Nanchang University, 2012.
    [17]
    Wu X H, Liu J J, Wang Q, et al. Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA[J]. Spectrochim Acta A,2011,79(5):1202−1209. doi: 10.1016/j.saa.2011.04.043
    [18]
    韩永光, 梁保林, 寿先苗, 等. 光谱法研究卡比多巴与牛血清蛋白相互作用[J]. 国际药学研究杂志,2018,45(6):443−448. [Han Y G, Liang B L, Shou X M, et al. Interaction between carbidopa and bovine serum albumin by spectroscopy[J]. Int Pharm Res,2018,45(6):443−448.
    [19]
    郭清莲, 何欢, 潘凌立, 等. BCBP与牛血清白蛋白相互作用热力学[J]. 物理化学学报,2016,32(6):1383−1390. [Guo Q L, He H, Pan L L, et al. Thermodynamics of the interaction of BCBP with bovine serum albumin[J]. Acta Physico-Chimica Sinica,2016,32(6):1383−1390. doi: 10.3866/PKU.WHXB201603093
    [20]
    孙萍, 李鸿丽, 王修中. 光谱法研究硝基苯与牛血清蛋白的相互作用[J]. 化学研究与应用,2014,26(6):804−808. [Sun P, Li H L, Wang X Z. Investigation of interaction between nitrobenzeneand bovine serum albumin by spectroscopic methods[J]. Chemical Research and Application,2014,26(6):804−808. doi: 10.3969/j.issn.1004-1656.2014.06.005
    [21]
    Li D J, Zhu M, Xu C, et al. The effect of Cu2+ or Fe3+ on the noncovalent binding of rutin with bovine serum albumin by spectroscopic analysis[J]. Spectrochim Acta A,2011,78(1):74−79. doi: 10.1016/j.saa.2010.08.069
    [22]
    徐洪亮. 小分子药物与牛血清白蛋白相互作用研究[D]. 长春: 吉林大学, 2013.

    Xu H L. Study on the interaction between small-molecular drugs and bovine serum albumin[D]. Changchun: Jilin University, 2013.
    [23]
    范金波, 王晓露, 姜海静. 荧光光谱法研究咖啡酸与胰脂肪酶相互作用[J]. 食品工业科技,2017,38(2):152−161. [Fan J B, Wang X L, Jiang H J. Study on the interaction between caffeic acidand pancreatic lipase by fluorescence spectroscopy[J]. Science and Technology of Food Industry,2017,38(2):152−161.
    [24]
    Guo X, Li X, Jiang Y, et al. A spectroscopic study on the interaction between p-nitrophenol and bovine serum albumin[J]. Journal of Luminescence,2014,149:353−360. doi: 10.1016/j.jlumin.2014.01.036
    [25]
    S Hamdani, D Joly, R Carpentier H A, et al. The effect of methylamine on the solution structures of human and bovine serum albumins[J]. Journal of Molecular Structure,2009,936:80−86. doi: 10.1016/j.molstruc.2009.07.019
    [26]
    李改霞, 刘保生, 李志云, 等. 盐酸吡格列酮与BSA反应机理的荧光猝灭法、同步荧光法比较研究[J]. 发光学报,2015,36(6):705−710. [Li G X, Liu B S, Li Z Y, et al. Comparative studies on the reaction mechanism of pioglitazone hydrochloride with bovine serum albumin by fluorescence spectroscopy and synchronous fluorescence spectroscopy[J]. Chinese Journal of Luminescence,2015,36(6):705−710. doi: 10.3788/fgxb20153606.0705
    [27]
    Xu X L, Zhang L Y, Shen D K, et al. Oxygen-dependent oxidation of Fe(II) to Fe(III) and interaction of Fe(III) with bovine serum albumin, leading to a hysteretic effect on the fluorescence of bovine serum albumin[J]. Fluoresc,2008,18:193−201. doi: 10.1007/s10895-007-0263-4
    [28]
    Lou Y Y, Hou K L, Shi J H, et al. Characterizing the binding interaction of fungicide boscalid with bovine serum albumin: A spectroscopic study in combination with molecar docking approach[J]. Phytochemistry,2017,173:589−597.
    [29]
    孙怡. 冬青苦丁茶多酚和多糖的提取、分离纯化、结构与抗氧化活性研究[D].南京: 南京农业大学, 2010.

    Sun Y. Extraction, purificaion, structure and antioxidant activities of polyphenols and polysaccharides in Ilex Kudingcha[D]. Nanjing: Nanjing Agricultural University, 2010.
    [30]
    胡婷. 苦丁茶有效成分的分离纯化、结构鉴定及生物活性评价[D]. 广州: 华南理工大学, 2016.

    Hu T. Isolation and identification of active ingredients from Ilex latifolia Thunb and its biological activities[D]. Guangzhou: South China University of Technology, 2016.
  • Cited by

    Periodical cited type(13)

    1. 沙琦,孙未一,范兴丽. 肠道菌群代谢物与抑郁症发病机制关系的研究. 浙江医学教育. 2025(01): 60-64 .
    2. 姜浩,赵杰,王铁云. “微生物-肠-脑轴”理论下述中医治疗郁症的研究进展. 中医临床研究. 2024(03): 27-31 .
    3. 姜浩,赵杰,王铁云. “微生物-肠-脑轴”理论下述中医治疗郁症的研究进展. 中医临床研究. 2024(09): 135-138 .
    4. 张红娟,王崴,高敏,安邦,范雅娟,贾敏,李强. 抑郁症患者血清短链脂肪酸水平与症状及生化指标的相关性. 山西医科大学学报. 2024(06): 777-781 .
    5. 康艳宝,赵龙友. 抗抑郁药联合肠道菌群调节剂治疗抑郁症疗效分析. 中国基层医药. 2024(08): 1144-1148 .
    6. 徐曼华,李平,何兰英,高丽梅. 老年抑郁症患者应用微生态制剂辅助认知行为干预的效果. 国际精神病学杂志. 2024(06): 1784-1787 .
    7. 赵佳,沈馨,刘红霞,郭艳荣,高广琦,孙志宏. 益生菌缓解亚健康相关症状的研究进展. 中国食品学报. 2024(12): 432-440 .
    8. 胡科,张同同,张凯,王国强. 首发抑郁症患者肠道菌群多样性与抑郁症状的相关性分析. 微生物学通报. 2023(03): 1040-1051 .
    9. 任煜,张童,李宁,裴环,赵童,袁嘉丽. 基于“脾与小肠相通”理论探讨脾-肠-肠道微生态治疗抑郁症. 世界中西医结合杂志. 2023(05): 1031-1035 .
    10. 吴振宁,王琦,秦雪梅,田俊生. 肠道菌群及其代谢产物在中药治疗抑郁症中的研究进展. 中草药. 2023(14): 4713-4721 .
    11. 李秋颖,冯静,刘婕,杨蓉蓉,骆华正,蔡伦,韦理萍. 肠道菌群在抑郁症发病机制及中医药治疗中研究进展. 辽宁中医药大学学报. 2023(12): 96-101 .
    12. 袁霞红,刘林. 肠道菌群调节抑郁症机制及中医药防治研究进展. 中华中医药学刊. 2022(09): 167-170 .
    13. 徐慧慧,陈煦,赵芳,毛若曦,王文利,程智美,张雅丽. 饮食结构、营养成分对抑郁症的影响研究进展. 食品科学. 2022(23): 346-355 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (252) PDF downloads (34) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return