Citation: | HUANG Houpei, YUAN Yuan, WANG Zhuo, et al. Immunostimulatory Activity of Tilapia-head Chondroitin Sulfate in RAW 264.7 Cells and Mice[J]. Science and Technology of Food Industry, 2024, 45(23): 381−387. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120214. |
[1] |
AHLMANN M, HEMPEL G. The effect of cyclophospha-mide on the immune system:Implications for clinical cancer therapy[J]. Cancer Chemotherapy and Pharmacology,2016,78(4):661−671. doi: 10.1007/s00280-016-3152-1
|
[2] |
YU Q, NIE S P, WANG J Q, et al. Molecular mechanism underlying chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced immunosuppressed mice[J]. Jou-rnal of Functional Foods,2015,15:52−60. doi: 10.1016/j.jff.2015.03.015
|
[3] |
YU H, YI X, GAO X, et al. Tilapia-head chondroitin sulfate protects against nonalcoholic fatty liver disease via modulating the gut-liver axis in high-fat-diet-fed C57BL/6 Mice[J]. Foods,2022,11(7):922. doi: 10.3390/foods11070922
|
[4] |
WANG X, YANG Y, ZOU J, et al. Chondroitin sulfate E alleviates β-amyloid toxicity in transgenic Caenorhabditis elegans by inhibiting its aggregation[J]. International Journal of Biological Macromolecules,2022,209:1280−1287. doi: 10.1016/j.ijbiomac.2022.04.124
|
[5] |
ZOU Y F, LI C Y, FU Y P, et al. Restorative effects of inulin from Codonopsis pilosula on intestinal mucosal immunity, anti-inflammatory activity and gut microbiota of immunosuppressed mice[J]. Front Pharmacol,2022,13:786141. doi: 10.3389/fphar.2022.786141
|
[6] |
WU G, MA F, XUE Y, et al. Chondroitin sulfate zinc with antibacterial properties and anti-inflammatory effects for skin wound healing[J]. Carbohydrate Polymers,2022,278:118996. doi: 10.1016/j.carbpol.2021.118996
|
[7] |
RONG H, DONG Y, ZHAO J, et al. Fetal milieu-simulating hyaluronic acid-dopamine-chondroitin sulfate hydrogel promoting angiogenesis and hair regeneration for wound healing[J]. International Journal of Biological Macromolecules, 2023:125739.
|
[8] |
GALUS A, MALLET J M, LEMBO D, et al. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity[J]. Carbohydrate Polymers,2016,136:113−120. doi: 10.1016/j.carbpol.2015.08.054
|
[9] |
LI L, LI Y, FENG D, et al. Preparation of low molecular weight chondroitin sulfates, screening of a high anti-complement capacity of low molecular weight chondroitin sulfate and its biological activity studies in attenuating osteoarthritis[J]. International Journal of Molecular Sciences,2016,17(10):1685. doi: 10.3390/ijms17101685
|
[10] |
VOLPI N. Chondroitin sulfate safety and quality[J]. Molecules,2019,24(8):1447. doi: 10.3390/molecules24081447
|
[11] |
杭瑜瑜, 于淑池, 商文慧, 等. 百香果皮粉对非漂洗罗非鱼鱼糜凝胶品质的影响[J]. 食品工业科技,2022,43(19):92−97. [HANG Yuyu, YU Shuchi, SHANG Wenhui, et al. Effect of passion fruit peel powder on the gelation characteristics of non-rinsed tilapia surimi[J]. Science and Technology of Food Industry,2022,43(19):92−97.]
HANG Yuyu, YU Shuchi, SHANG Wenhui, et al. Effect of passion fruit peel powder on the gelation characteristics of non-rinsed tilapia surimi[J]. Science and Technology of Food Industry, 2022, 43(19): 92−97.
|
[12] |
PEÑARUBIA O, TOPPE J, AHERN M, et al. How value addition by utilization of tilapia processing by-products can improve human nutrition and livelihood[J]. Reviews in Aquaculture,2023,15(S1):32−40. doi: 10.1111/raq.12737
|
[13] |
DOS SANTOS E A, CHAVES RIBEIRO A E, BARCELLOS T T, et al. Exploitation of byproducts from the passion fruit juice and tilapia filleting industries to obtain a functional meat product[J]. Food Bioscience,2021,41:101084. doi: 10.1016/j.fbio.2021.101084
|
[14] |
DE FREITAS S J, TORREZAN R, FURTADO A A L, et al. Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) sausages developed from mechanically separated meat (MSM) and enriched with pineapple (Ananas comosus (L.) Merril) fibers[J]. Journal of Aquatic Food Product Technology,2022,31(8):801−813. doi: 10.1080/10498850.2022.2106806
|
[15] |
左格格, 钟赛意, 陈菁, 等. 罗非鱼加工副产物不同部位硫酸软骨素的制备、理化性质及结构表征[J]. 食品科学,2022,43(24):67−73. [ZUO Gege, ZHONG Saiyi, CHEN Jing, et al. Preparation, physicochemical properties and structural characterization of chondroitin sulfate from tilapia processing by-products[J]. Food Science,2022,43(24):67−73.] doi: 10.7506/spkx1002-6630-20211013-119
ZUO Gege, ZHONG Saiyi, CHEN Jing, et al. Preparation, physicochemical properties and structural characterization of chondroitin sulfate from tilapia processing by-products[J]. Food Science, 2022, 43(24): 67−73. doi: 10.7506/spkx1002-6630-20211013-119
|
[16] |
VOLPI N. Disaccharide mapping of chondroitin sulfate of different origins by high-performance capillary electrophoresis and high-performance liquid chromatography[J]. Carbohydrate Polymers,2004,55(3):273−281. doi: 10.1016/j.carbpol.2003.09.010
|
[17] |
DUERKOP B A, VAISHNAVA S, HOOPER L V. Immune responses to the microbiota at the intestinal mucosal surface[J]. Immunity,2009,31(3):368−376. doi: 10.1016/j.immuni.2009.08.009
|
[18] |
PORTER N T, MARTENS E C. The critical roles of polysaccharides in gut microbial ecology and physiology[J]. Annual Review of Microbiology,2017,71(1):349−369. doi: 10.1146/annurev-micro-102215-095316
|
[19] |
YIN H, LI R, LIU J, et al. Fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus alleviate the intestinal barrier injury and oxidative stress damage in vitro and in vivo[J]. Carbohydrate Polymers,2024,328:121722. doi: 10.1016/j.carbpol.2023.121722
|
[20] |
WU G. Intestinal mucosal amino acid catabolism12[J]. The Journal of Nutrition,1998,128(8):1249−1252. doi: 10.1093/jn/128.8.1249
|
[21] |
赵明明. 黑灵芝多糖对小鼠肠道黏膜免疫及黏膜损伤的影响[D]. 南昌:南昌大学, 2018. [ZHAO Mingming. Effect of polysaccharide from Ganoderma atrum on intestinal mucosal immunity and mucosal injury in mice[D]. Nanchang:Nanchang University, 2018.]
ZHAO Mingming. Effect of polysaccharide from Ganoderma atrum on intestinal mucosal immunity and mucosal injury in mice[D]. Nanchang: Nanchang University, 2018.
|
[22] |
HAN M, SONG P, HUANG C, et al. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model[J]. Oncotarget,2016,7(49):80313−80326. doi: 10.18632/oncotarget.13450
|
[23] |
LIU Z, LIU Z, LI L, et al. Immunomodulatory effects of the polysaccharide from Sinonovacula constricta on RAW264.7 macr-ophage cells[J]. Food Science & Nutrition,2022,10(4):1093−1102.
|
[24] |
WANG G, YAN X, YANG X, et al. Structural characterization and immunomodulatory activity of an acidic polysaccharide from walnut green husk[J]. Journal of Functional Foods,2023,110:105877. doi: 10.1016/j.jff.2023.105877
|
[25] |
CHEN S, WANG J, FANG Q, et al. A polysaccharide from natural Cordyceps sinensis regulates the intestinal immunity and gut microbiota in mice with cyclophosphamide-induced intestinal injury[J]. Food Funct,2021,12(14):6271−6282. doi: 10.1039/D1FO00596K
|
[26] |
BAI Y, ZENG Z, XIE Z, et al. Effects of polysaccharides from Fuzhuan brick tea on immune function and gut microbiota of cyclophosphamide-treated mice[J]. J Nutr Biochem,2022,101:108947. doi: 10.1016/j.jnutbio.2022.108947
|
[27] |
LIAO W, LUO Z, LIU D, et al. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macro-phage immunomodulatory activities[J]. Journal of Agricultural and Food Chemistry,2015,63(2):535−544. doi: 10.1021/jf504677r
|
[28] |
JANG A Y, MONMAI C, ROD-IN W, et al. Immune-modulation effect of Halocynthia aurantium tunic lipid on RAW264.7 cells[J]. Food Science and Biotechnology,2022,31(1):101−110. doi: 10.1007/s10068-021-01017-4
|
[29] |
AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell,2006,124(4):783−801. doi: 10.1016/j.cell.2006.02.015
|
[30] |
DINARELLO C A. Immunological and inflammatory functions of the interleukin-1 family[J]. Annu Rev Immunol,2009,27:519−550. doi: 10.1146/annurev.immunol.021908.132612
|
[31] |
王长山, 李丽, 朱喜科. 胸腺增龄性萎缩分子机制研究进展[J]. 国际免疫学杂志,2011(4):257−261. [WANG Changshan, LI Li, ZHU Xike. Progress in study on the molecular mechanism of age-related thymic involution[J]. The International Journal of Immunology,2011(4):257−261.] doi: 10.3760/cma.j.issn.1673-4394.2011.04.004
WANG Changshan, LI Li, ZHU Xike. Progress in study on the molecular mechanism of age-related thymic involution[J]. The International Journal of Immunology, 2011(4): 257−261. doi: 10.3760/cma.j.issn.1673-4394.2011.04.004
|
[32] |
CAI G, YANG Y, GU P, et al. The secretion of sIgA and dendritic cells activation in the intestinal of cyclophosphamide-induced immunosuppressed mice are regulated by Alhagi honey poly-saccharides[J]. Phytomedicine,2022,103:154232. doi: 10.1016/j.phymed.2022.154232
|
[33] |
GRAUBALLE P C, HJELT K, KRASILNIKOFF P A, et al. Elisa for Rotavirus-specific secretory IgA in human sera[J]. The Lancet,1981,318(8246):588−589. doi: 10.1016/S0140-6736(81)90981-8
|