DUAN Xuejuan, ZHANG Tong, ZENG Jieying, et al. Study of the Fumigation Antimicrobial Activity and Mechanism of Essential Oil[J]. Science and Technology of Food Industry, 2023, 44(9): 135−145. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050047.
Citation: DUAN Xuejuan, ZHANG Tong, ZENG Jieying, et al. Study of the Fumigation Antimicrobial Activity and Mechanism of Essential Oil[J]. Science and Technology of Food Industry, 2023, 44(9): 135−145. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050047.

Study of the Fumigation Antimicrobial Activity and Mechanism of Essential Oil

More Information
  • Received Date: May 08, 2022
  • Available Online: February 28, 2023
  • In this study, the antibacterial effects of six plant essential oils against four common bacteria in the vapor phase was investigated by plate fumigation method with the measurement of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The combination of essential oils with better bactericidal effect was studied and applied to keep fresh of capsicum frutescens. The antibacterial mechanism of cinnamon essential oil against Escherichia coli (E. coli) was also determined by transmission electron microscopy (TEM) and electric conductivity. The results showed that citronella essential oil, cinnamon essential oil and basil essential oil had more significant antibacterial effect, which could inhibit all tested bacteria at the concentration of 0.125 μL/mL. Citronella essential oil and cinnamon essential oil had better bactericidal effect, which could kill all the tested bacteria except Pseudomonas aeruginosa at the concentration of 0.125 μL/mL. Blended essential oils with the ratio of citronella essential oil, cinnamon essential oil and basil essential oil being 4:1:8, demonstrated the best antibacterial activity. The blended essential oils showed synergistic effects on E. coli and Salmonella, but antagonistic effect on Staphylococcus aureues. GC-MS indicated that the antibacterial ability of citronella essential oil mainly came from citronellal, geraniol and citronellol, cinnamon essential oil came from cinnamaldehyde and basil essential oil came from estragole and linalool. The application of blended essential oil in modified atmosphere preservation of capsicum frutescens had a better preservative and fresh-keeping effects when the spatial concentration of blended essential oil was 0.125 μL/mL. TEM showed morphological changes and cell membrane shrinkage of E. coli after fumigation with cinnamon essential oil. The conductivity test showed that the membrane permeability of E. coli increased after fumigation, which resulted in electrolyte leakage. In conclusion, the possible antibacterial mechanism of vapor-phase cinnamon essential oil against E. coli is to change the cell morphology and membrane permeability.
  • [1]
    TULLIO V, NOSTRO A, MANDRAS N, et al. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods[J]. Journal of Applied Microbiology,2007,102(6):1544−1550. doi: 10.1111/j.1365-2672.2006.03191.x
    [2]
    PINA-VAZ C, GONCALVES RODRIGUES A, PINTO E, et al. Antifungal activity of thymus oils and their major compounds[J]. Journal of the European Academy of Dermatology and Venereology,2004,18(1):73−78. doi: 10.1111/j.1468-3083.2004.00886.x
    [3]
    MUTLU-INGOK A, DEVECIOGLU D, DIKMETAS D N, et al. Antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review[J]. Molecules,2020,25(20):4711. doi: 10.3390/molecules25204711
    [4]
    COX S D, GUSTAFSON J E, MANN C M, et al. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli[J]. Letters in Applied Microbiology,1998,26(5):355−358. doi: 10.1046/j.1472-765X.1998.00348.x
    [5]
    LOPEZ-ROMERO J C, GONZALEZ-RIOS H, BORGES A, et al. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus[J]. Evidence-Based Complementary and Alternative Medicine,2015:795435.
    [6]
    OUSSALAH M, CAILLET S, LACROIX M. Mechanism of action of spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes[J]. Journal of Food Protection,2006,69(5):1046−1055. doi: 10.4315/0362-028X-69.5.1046
    [7]
    LAIRD K, PHILLIPS C. Vapour phase: A potential future use for essential oils as antimicrobials?[J]. Letters in Applied Microbiology,2012,54(3):169−174. doi: 10.1111/j.1472-765X.2011.03190.x
    [8]
    BOUKHATEM M N, KAMELI A, SAIDI F. Essential oil of algerian rose-scented geranium (Pelargonium graveolens): Chemical composition and antimicrobial activity against food spoilage pathogens[J]. Food Control,2013,34(1):208−213. doi: 10.1016/j.foodcont.2013.03.045
    [9]
    刘晓丽, 钟少枢, 吴克刚, 等. 丁香和肉桂精油气相抑菌活性研究[J]. 食品与发酵工业,2010,36(1):21−24, 38. [LIU X L, ZHONG S S, WU K G, et al. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils[J]. Food and Fermentation Industries,2010,36(1):21−24, 38. doi: 10.13995/j.cnki.11-1802/ts.2010.01.033
    [10]
    TYAGI A K, MALIK A. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens[J]. International Journal of Food Microbiology,2010,143(3):205−210. doi: 10.1016/j.ijfoodmicro.2010.08.023
    [11]
    JI H, KIM H, BEUCHAT L R, et al. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky[J]. International Journal of Food Microbiology,2019,291:104−110. doi: 10.1016/j.ijfoodmicro.2018.11.023
    [12]
    钟少枢, 吴克刚, 柴向华, 等. 七种单离食用香料对食品腐败菌抑菌活性的研究[J]. 食品工业科技,2009,30(5):68−71. [ZHONG S S, WU K G, CHAI X H, et al. Study on bacteriostasis of seven isolate spices to food spoilage organism[J]. Science and Technology of Food Industry,2009,30(5):68−71. doi: 10.13386/j.issn1002-0306.2009.05.014
    [13]
    田双娥, 赵晶. 7种植物精油对霉菌的抑制作用研究[J]. 中国文物科学研究,2021,3:60−64. [TIAN S E, ZHAO J. Study on the inhibitory effect of seven plant essential oils on fungi[J]. China Cultural Heritage Scientific Research,2021,3:60−64. doi: 10.3969/j.issn.1674-9677.2021.02.010
    [14]
    宁亚维, 苏丹, 付浴男, 等. 抗菌肽brevilaterin与柠檬酸联用对大肠杆菌的协同抑菌机理[J]. 食品科学,2020,41(19):31−37. [NING Y W, SU D, FU Y N, et al. Antibacterial mechanism of antimicrobial peptide brevilaterin combined with citric acid against Escherichia coli[J]. Food Science,2020,41(19):31−37. doi: 10.7506/spkx1002-6630-20191008-026
    [15]
    刘雅夫, 符腾飞, 刘宸成, 等. 低温等离子体对金黄色葡萄球菌和铜绿假单胞菌杀菌效果及动力学特性性[J]. 现代食品科技,2021,37(12):127−135. [LIU Y F, FU T F, LIU C C, et al. Study on bactericidal efficacy and kinetics of cold plasma on Staphylococcus aureus and Pseudomonas aeruginosa[J]. Modern Food Science and Technology,2021,37(12):127−135.
    [16]
    LIU S Q, BRUL S, ZAAT S A J. Bacterial persister-cells and spores in the food chain: Their potential inactivation by antimicrobial peptides (AMPs)[J]. International Journal of Molecular Sciences,2020,21(23):8967. doi: 10.3390/ijms21238967
    [17]
    祁迪亚, 孔佳仪, 钱志浩, 等. 食品中不同环境条件对沙门氏菌持留菌形成的影响[J]. 生物加工过程, 2023, 21(1): 91-97.

    QI D Y, KONG J Y, QIAN Z H, et al. Influence of different food environmental conditions on the formation of Salmonella persisters[J]. Chinese Journal of Bioprocess Engineering, 2023, 21(1): 91-97.
    [18]
    翁宗昱, 李紫晗, 孙琴, 等. 肉桂抑菌活性部位提取工艺优化及HPLC定量研究[J]. 亚太传统医药,2020,16(12):59−62. [WENG Z Y, LI Z H, SUN Q, et al. Optimization of extraction process and HPLC quantitative study on the antibacterial active part of Cinnamomi cortex[J]. Asia-Pacific Traditional Medicine,2020,16(12):59−62.
    [19]
    陈悦, 胡璇, 于福来, 等. 18种芳香植物精油抑菌活性的比较研究[J]. 中国调味品,2020,16(12):59−62. [CHEN Y, HU X, YU F L, et al. Comparative study on the antibacterial activity of 18 kinds of aromatic plant essential oils[J]. China Condiment,2020,16(12):59−62. doi: 10.3969/j.issn.1000-9973.2020.12.013
    [20]
    董路路, 任春涛, 张新华, 等. 6种植物精油对果蔬灰霉菌和青霉菌的抑菌效果[J]. 食品科技,2019,44(8):211−216. [DONG L L, REN C T, ZHANG X H, et al. Antibacterial effect of six plant essential oil on Botrytis cinerea and Penicillium of fruits and vegetables[J]. Food Science and Technology,2019,44(8):211−216. doi: 10.13684/j.cnki.spkj.2019.08.038
    [21]
    王昭人, 韩露露, 牛月月, 等. 水包油型茶树油纳米乳的制备及其体外抑菌活性研究(英文)[J]. 河南大学学报(医学版),2022,41(1):22−28. [WANG Z R, HAN L L, NIU Y Y, et al. Studies on O/W tea tree oil nano-emulsions preparation and its bacteriostatic activity in vitro[J]. Journal of Henan University Medical Science,2022,41(1):22−28. doi: 10.3969/j.issn.1672-7606.2022.1.hndxxb-yxkxb202201004
    [22]
    柴向华, 董艳, 吴克刚, 等. 植物精油对食品中常见有害微生物的抑菌活性研究[J]. 现代食品科技,2016,32(8):123−127, 114. [CHAI X H, DONG Y, WU K G, et al. Antibacterial activity of plant essential oils against common harmful microorganisms in foods[J]. Modern Food Science and Technology,2016,32(8):123−127, 114. doi: 10.13982/j.mfst.1673-9078.2016.8.019
    [23]
    LOPEZ P, SANCHEZ C, BATTLE R, et al. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms[J]. Journal of Agricultural and Food Chemistry,2007,55(11):4348−4356. doi: 10.1021/jf063295u
    [24]
    刘欢, 赵巨堂, 何力, 等. 金盏花精油的微波辅助提取及其成分与抗氧化活性研究[J]. 食品工业科技,2022,43(10):180−188. [LIU H, ZHAO J T, HE L, et al. Microwave-assisted extraction of essential oil from Calendula officinalis L. and its components and antioxidant activity[J]. Science and Technology of Food Industry,2022,43(10):180−188. doi: 10.13386/j.issn1002-0306.2021060062
    [25]
    石小翠, 曹冬花, 李佳, 等. 三种香茅精油的化学成分及体外抗氧化和抗炎活性评价[J]. 食品工业科技,2021,42(21):83−90. [SHI X C, CAO D H, LI J, et al. Chemical composition, antioxidant and anti-inflammatory activities of essential oils of three cymbopogon plants[J]. Science and Technology of Food Industry,2021,42(21):83−90. doi: 10.13386/j.issn1002-0306.2021030051
    [26]
    段雪娟, 吴克刚, 柴向华. 香辛料精油成分对生鲜食品中有害菌杀灭活性研究[J]. 林产化学与工业,2022,32(3):87−91. [DUAN X J, WU K G, CHAI X H. Bactericidal activities of spicy essential oils on microorganisms in crude foods[J]. Chemistry and Industry of Forest Products,2022,32(3):87−91.
    [27]
    LEE S, KIM H, BEUCHAT L R, et al. Synergistic antimicrobial activity of oregano and thyme thymol essential oils against Leuconostoc citreum in a laboratory medium and tomato juice[J]. Food Microbiology,2020,90:103489. doi: 10.1016/j.fm.2020.103489
    [28]
    李南薇, 刘佳, 刘锐, 等. 32种食品添加剂对蜡样芽孢杆菌的协同抑菌作用[J]. 中国食品学报,2015,15(2):138−142. [LI N W, LIU J, LIU R, et al. Synergistic inhibitory effect of food additives against Bacillus cereus[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(2):138−142. doi: 10.16429/j.1009-7848.2015.02.021
    [29]
    段雪娟, 韩雅莉, 刘泽璇, 等. 肉桂精油气相熏蒸金黄色葡萄球菌的抗菌机理[J]. 现代食品科技,2021,37(9):50−58. [DUAN X J, HAN Y L, LIU Z X, et al. Antibacterial mechanism of cinnamon essential oil vapor fumigation against Staphylococcus aureus[J]. Modern Food Science and Technology,2021,37(9):50−58. doi: 10.13982/j.mfst.1673-9078.2021.9.1210
    [30]
    吴克刚, 赵欣欣, 段雪娟, 等. 芳樟醇气相抗菌活性与作用机制[J]. 食品科学,2020,41(1):61−67. [WU K G, ZHAO X X, DUAN X J, et al. Antibacterial activity and mechanism of action of vapor-phase linalool[J]. Food Science,2020,41(1):61−67. doi: 10.7506/spkx1002-6630-20181130-365
    [31]
    马培培, 苏梦茹, 李鑫鑫, 等. 大肠埃希菌细菌计数分光光度计法的建立及应用[J]. 动物医学进展,2020,41(5):29−33. [MA P P, SU M R, LI X X, et al. Establishment and application of Escherichia coli counting method based on spectrophotometer[J]. Progress in Veterinary Medicine,2020,41(5):29−33. doi: 10.3969/j.issn.1007-5038.2020.05.006
    [32]
    ZHANG Z, HUBER D, QU H, et al. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols[J]. Food Chemistry,2015,171:191−199. doi: 10.1016/j.foodchem.2014.09.001
    [33]
    潘莹, 齐军航, 谭联, 等. 暴马丁香花提取物对辣椒贮藏期间理化指标的影响[J/OL]. 吉林农业大学学报: 1−4 [2023-02-06]. https://doi.org/10.13327/j.jjlau.2020.5544.

    PAN Y, QI J H, TAN L, et al. Effect of extract from the flowers of Syringa reticulata (Blume) hara var. on physicochemical indexes of hot pepper during storage[J/OL]. Journal of Jilin Agricultural University: 1−4 [2023-02-06]. https://doi.org/10.13327/j.jjlau.2020.5544.
    [34]
    KALLEL I, HADRICH B, GARGOURI B, et al. Optimization of cinnamon (Cinnamomum zeylanicum blume) essential oil extraction: Evaluation of antioxidant and antiproliferative effects[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019:6498347.
    [35]
    VASCONCELOS N G, CRODA J, SIMIONATTO S. Antibacterial mechanisms of cinnamon and its constituents: A review[J]. Microbial Pathogenesis,2018,120:198−203. doi: 10.1016/j.micpath.2018.04.036
    [36]
    FRAŇKOVÁ A, MAROUNEK M, MOZROVÁ V, et al. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus[J]. Foodborne Pathogens and Disease,2014,11(10):795−797. doi: 10.1089/fpd.2014.1737
    [37]
    蒋小龙, 寸东义, 杨晶焰. 香茅精油、香茅醛、香茅醇对储粮霉菌和害虫抑制与熏杀效果的试验研究[J]. 郑州粮食学院学报,1994(1):39−47. [JIANG X L, CUN D Y, YANG J Y. Study on the inhibition and fumigation effects of citronella, citronellal and citronellol on stored grain mold and pests[J]. Journal of Henan University of Technology (Natural Science Edition),1994(1):39−47.
    [38]
    陈晓晶. 香茅精油对番木瓜果实采后保鲜及作用机制研究[D]. 海口: 海南大学, 2021.

    CHEN X J. Study on fresh-keeping and mechanism of citronella essential oil on papaya fruit[D]. Haikou: Hainan University, 2021.
    [39]
    KOBA K, POUTOULI P W, RAYNAUD C, et al. Chemical composition and antimicrobial properties of different basil essential oils chemotypes from Togo[J]. Bangladesh Journal of Pharmacology,2009,4(1):1−8.
    [40]
    HUSSAIN A I, ANWAR F, HUSSAIN SHERAZI S T, et al. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations[J]. Food Chemistry,2008,108(3):986−995. doi: 10.1016/j.foodchem.2007.12.010
    [41]
    鞠健. 丁香酚和柠檬醛对娄地青霉和黑曲霉的协同抑菌机理探究[D]. 无锡: 江南大学, 2021.

    JU J. Study on the synergistic inhibitory mechanism of eugenol and citral against Penicillium roqueforti[D]. Wuxi: Jiangnan University, 2021.
    [42]
    郝文凤, 田玉红, 董菲, 等. 植物精油协同抑菌的研究进展[J]. 中国调味品,2020,45(3):172−175. [HAO W F, TIAN Y H, DONG F, et al. Research progress on synergistic bacteriostasis of plant essential oil[J]. China Condiment,2020,45(3):172−175. doi: 10.3969/j.issn.1000-9973.2020.03.035
    [43]
    SHEN S, ZHANG T, YUAN Y, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Control,2015,47:196−202. doi: 10.1016/j.foodcont.2014.07.003
    [44]
    魏彤竹. 三种植物精油对六种食源性致病菌的抑菌活性研究[D]. 沈阳: 沈阳农业大学, 2019.

    WEI T Z. Study on the antibacterial activities of three plant essential oils against six foodborne pathogens[D]. Shenyang: Shenyang Agricultural University, 2019.
    [45]
    王媛. 猕猴桃展青霉素产生菌的识别分析及控制机制研究[D]. 西安: 西北农林科技大学, 2017.

    WANG Y. Identification and analysis of patulin-producing fungi from kiwifruit and the study of their control mechanism[D]. Xi’an: Northwest Agriculture and Forestry University, 2017.
    [46]
    萨仁高娃, 胡文忠, 冯可, 等. 植物精油及其成分对病原微生物抗菌机理的研究进展[J]. 食品科学,2020,41(11):285−294. [SARENGAOWA, HU W Z, FENG K, et al. Antimicrobial mechanisms of essential oils and their components on pathogenic bacteria: A review[J]. Food Science,2020,41(11):285−294. doi: 10.7506/spkx1002-6630-20190603-018
    [47]
    KANG J M, JIN W Y, WANG J F, et al. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus[J]. LWT-Food Science and Technology,2019,101:639−645. doi: 10.1016/j.lwt.2018.11.093
    [48]
    孔繁渊, 段杨峰, 吴新, 等. 草莓果实热空气和茉莉酸甲酯复合处理保鲜条件优化[J]. 食品科学,2011,32(18):323−328. [KONG F Y, DUAN Y F, WU X, et al. Conditions optimization of preservation of strawberry fruits by combinatorial treatment of hot air and methyl jasmonate[J]. Food Science,2011,32(18):323−328.
  • Related Articles

    [1]LI Mengyang, CHE Xiaoxue, SUN Qingshen. Purification, Characterization and Antibacterial Mechanism of Plantaricin 2-1[J]. Science and Technology of Food Industry, 2025, 46(4): 136-146. DOI: 10.13386/j.issn1002-0306.2024030258
    [2]ZHANG Jie, DANG Bin, YANG Xijuan. Research Progress on Physiological Activity, Antibacterial Mechanism of Plant Polyphenols and Its Application in Food Preservation[J]. Science and Technology of Food Industry, 2022, 43(24): 460-468. DOI: 10.13386/j.issn1002-0306.2022010070
    [3]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [4]SONG Yue, LI Bai-liang, LI Na, YUE Ying-xue, WANG Na-na, CHEN Zi-yu, HUO Gui-cheng, GUO Ling. Screening and Identification of Lactic Acid Bacteria for Inhibiting Bovine Mastitis and Preliminary Study of Antibacterial Mechanism[J]. Science and Technology of Food Industry, 2019, 40(20): 120-126. DOI: 10.13386/j.issn1002-0306.2019.20.020
    [5]WANG Cui, LI Ping, ZHU Hua-ping, LI Chao, YANG Qiang-qiang, SUI Bao-bin. Preliminary Study on Antibacterial Activity of Benzyl Isothiocyanate and Its Analogues[J]. Science and Technology of Food Industry, 2019, 40(16): 84-89. DOI: 10.13386/j.issn1002-0306.2019.16.014
    [6]SHU Hui-zhen, TANG Zhi-ling, LIU Xue, CHEN Wei-jun, CHEN Hai-ming, HU Yue-ying, CHEN Wen-xue. Antibacterial Activity and Mechanism of Limonene against Pseudomonas fluorescens[J]. Science and Technology of Food Industry, 2019, 40(12): 134-140. DOI: 10.13386/j.issn1002-0306.2019.12.022
    [7]LIU Xue, WANG Jing-nan, CHEN Wen-xue, CHEN Rong-hao, ZHANG Guan-fei. Antibacterial activity and mechanism of limonene against Pseudomonas aeruginosa[J]. Science and Technology of Food Industry, 2018, 39(7): 1-5. DOI: 10.13386/j.issn1002-0306.2018.07.001
    [8]LIANG Ying, ZHU Jun-ya, ZHANG Gong-liang, GAN Wei-qi, SUN Li-ming, HOU Hong-man. Antibacterial activity of oxygen-containing sulfide flavors against some common pathogenic bacteria in vitro[J]. Science and Technology of Food Industry, 2015, (18): 108-112. DOI: 10.13386/j.issn1002-0306.2015.18.013
    [9]REN Xian-wei, WEI Xiao-lu, HUANG Xin, LIU Li, FENG Yue, XIA Xue-shan. Antibacterial activity and mechanism of walnut green husk ' extract[J]. Science and Technology of Food Industry, 2015, (18): 93-98. DOI: 10.13386/j.issn1002-0306.2015.18.010
    [10]ZHENG Cui-ping, QUAN Mei-ping, KANG Li-na, MA Ting-ting, ZHAO Pei, TIAN Cheng-rui. Study on the antibacterial activity and its mechanism of acetone extract from Rubia Cordifolia[J]. Science and Technology of Food Industry, 2015, (09): 116-119. DOI: 10.13386/j.issn1002-0306.2015.09.016
  • Cited by

    Periodical cited type(14)

    1. 杨永学,孙晓璐. 基于GC-IMS技术的精酿龙井茶啤酒酿造过程中挥发性风味物质分析. 延边大学农学学报. 2025(01): 87-93 .
    2. 韦金雁,卢志金,韩佳临,刘兴胥,马婷婷. 不同基酒添加对百香果增味精酿啤酒风味影响的对比研究. 食品安全导刊. 2025(09): 109-111+128 .
    3. 何猛超,邬子璇,西玉玲,张德中,陈玉莲,李坤,井会涵,王鸿博,刘海坡,陈杉彬,韩兴林. 通过外源添加芽孢杆菌提升北方地区高温大曲的品质. 食品工业科技. 2024(01): 145-154 . 本站查看
    4. 黄书源,张立强,冉茂芳,魏阳,涂荣坤,杨平,王松涛,宋萍,沈才洪. 不同原料添加提升曲药酱香风味的研究. 中国酿造. 2024(05): 41-46 .
    5. 刘倩,白艳龙,贾建华,肖琳,王晓娟,周小龙,邱然. 基于GC-MS和GC-IMS技术比较不同种类麦芽的挥发性物质. 食品工业科技. 2024(14): 215-223 . 本站查看
    6. 邓仕彬,蔡伊萍,林坍霖,李思瑶. 果酿啤酒的酿造工艺和品质研究进展. 中国酿造. 2023(02): 16-21 .
    7. 宋艺君,庞来祥,袁筱,庞柏均,郭涛. GC-IMS法比较不同酒龄猕猴桃酒特征香气物质差异. 食品与生物技术学报. 2023(02): 58-65 .
    8. 罗跃中,匡燕,李忠英,姚琦. 响应面法优化黄桃精酿啤酒发酵工艺. 武汉轻工大学学报. 2023(06): 99-105 .
    9. 田林平,张琪,李瑞,任小林. 正丁醇处理对‘粉红女士’苹果贮藏期间挥发性物质的影响. 食品工业科技. 2022(18): 337-345 . 本站查看
    10. 邬子璇,杨洋,李美吟,陈礼嘉,许驰,张春艳,林园,王健. 气相色谱-离子迁移谱法结合多元统计学分析不同陈酿时间白兰地的挥发性香气成分差异. 食品安全质量检测学报. 2022(18): 5795-5803 .
    11. 龚霄,陈廷慧,胡小军,范威威,李亚军,赵新强. 基于GC-IMS技术的百香果果啤风味分析. 食品与机械. 2022(11): 46-52+75 .
    12. 方灵,孔宝玉,韦航,颜孙安,刘文静,司瑞茹,史梦竹,梁启富,任丽花,傅建炜. 不同发育阶段黄金百香果挥发性成分差异性研究. 果树学报. 2022(12): 2376-2389 .
    13. 李林波,杭金龙,张士双,杨天佑,王宝石,张明霞. 精酿果啤的酿造工艺及风味影响因素的研究进展. 食品与发酵工业. 2022(24): 337-345 .
    14. 涂京霞,杨青,王玉海,张智皓,陈明. 果酿啤酒酿造工艺与品质的研究. 中外酒业. 2022(21): 28-33 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (486) PDF downloads (47) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return