LIU Zhen, LÜ Yuxiu, ZHANG Jingwen, et al. Antioxidant Activity and Tyrosinase Inhibitory Activity of Three Phenolic Compounds from Quezui Tea[J]. Science and Technology of Food Industry, 2023, 44(8): 405−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070024.
Citation: LIU Zhen, LÜ Yuxiu, ZHANG Jingwen, et al. Antioxidant Activity and Tyrosinase Inhibitory Activity of Three Phenolic Compounds from Quezui Tea[J]. Science and Technology of Food Industry, 2023, 44(8): 405−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070024.

Antioxidant Activity and Tyrosinase Inhibitory Activity of Three Phenolic Compounds from Quezui Tea

More Information
  • Received Date: July 03, 2022
  • Available Online: February 13, 2023
  • In order to deeply explore the utilization value of Quezui tea, the antioxidant activity and tyrosinase inhibitory activity of its three phenolic compounds including 6'-O-caffeoylarbutin (CA), β-arbutin, and chlorogenic acid were analyzed in this study. The results indicated that all three phenolic compounds of Quezui tea had excellent antioxidation activity. The IC50 values of CA, β-arbutin, and chlorogenic acid on DPPH radical scavenging were 13.56±0.14, 104.41±6.52 and 8.42±0.21 μg/mL, respectively. The IC50 values of ABTS+ radical scavenging were 18.01±0.06, 50.60±1.25 and 26.93±0.38 µg/mL, respectively. The IC50 values of OH radical scavenging were 2.64±0.06, >10.00 and <1.00 mg/mL, respectively. The intensity of total iron reduction was in the order of chlorogenic acid>CA>β-arbutin. In addition, the inhibitory activities of all three phenolic compounds of Quezui tea were significantly different. CA had inhibitory effects on both monophenolase and diphenolase activities with IC50 values of 1.114±0.035 and 95.198±1.117 μmol/L, respectively. β-arbutin only had inhibitory effects on monophenolase activities with IC50 value of 681.335±17.975 μmol/L, and chlorogenic acid had no inhibitory effect on either monophenolase activity or diphenolase activity. The results would provide an important foundation for the development and utilization of the active compounds from Quezui tea.
  • [1]
    罗旭璐. 樟叶越桔原植物及其组织培养系的化学成分分析[D]. 昆明: 西南林业大学, 2015

    LUO X L. Analysis of chemical constituents of the original plant of bilberry camphor and its tissue culture line[D]. Kunming: Southwest Forestry University, 2015.
    [2]
    孔令朋. 雀嘴茶化学成分及其生物活性研究[D]. 昆明: 昆明理工大学, 2019

    KONG L P. Study on chemical constituents and biological activities of Vaccinium dunalianum wight[D]. Kunming: Kunming University of Science and Technology, 2019.
    [3]
    KAZAZIC M, ALIMAN J, DJOGIC S, et al. Phenol content and antioxidant activity of different blueberry species from prozor region[J]. IFMBE Proceedings,2020,78:268−274.
    [4]
    WANG Y, TIAN L, WANG Y, et al. Protective effect of Que Zui tea hot-water and aqueous ethanol extract against acetaminophen-induced liver injury in mice via inhibition of oxidative stress, inflammation, and apoptosis[J]. Food & Function,2021,12(6):2468−2480.
    [5]
    ZHANG J K, ZHOU X L, WANG X Q, et al. Que Zui tea ameliorates hepatic lipid accumulation and oxidative stress in high fat diet induced nonalcoholic fatty liver disease[J]. Food Research International,2022,156:111196. doi: 10.1016/j.foodres.2022.111196
    [6]
    GAO S H, ZHAO T R, LIU Y P, et al. Phenolic constituents, antioxidant activity and neuroprotective effects of ethanol extracts of fruits, leaves and flower buds from Vaccinium dunalianum wight[J]. Food Chemistry,2022,374:131752. doi: 10.1016/j.foodchem.2021.131752
    [7]
    ZHAO P, TANAKA T, HIRABAYASHI K, et al. Caffeoyl arbutin and related compounds from the buds of Vaccinium dunalianum[J]. Phytochemistry,2008,69(18):3087−3094. doi: 10.1016/j.phytochem.2008.06.001
    [8]
    LUO X L, LI N, XU M, et al. HPLC simultaneous determination of arbutin, chlorogenic acid and 6’-O-caffeoylarbutin in different parts of Vaccinium dunalianum wight[J]. Natural Product Research,2015,29(20):1963−1965. doi: 10.1080/14786419.2015.1013472
    [9]
    LI N, ZENG W L, LUO X L, et al. A new arbutin derivative from the leaves of Vaccinium dunalianum wight[J]. Natural Product Research,2018,32(1):65−70. doi: 10.1080/14786419.2017.1333993
    [10]
    XU W H, LIANG Q, ZHANG Y J, et al. Naturally occurring arbutin derivatives and their bioactivities[J]. Chemistry and Biodiversity,2015,12(1):54. doi: 10.1002/cbdv.201300269
    [11]
    LIU F F, LIU H L, CAO J X. Effect of Vaccinium dunalianum glycoside on platelet aggregation in animals[J]. Advanced Materials Research,2013,2203(634-638):1229−1235.
    [12]
    凌琳. 雀嘴茶降低血清尿酸的物质基础及机制研究[D]. 福州: 福建医科大学, 2021

    LING L. The treatment and mechanism study of Vaccinium dunalianum W. in lowering serum uric acid[D]. Fuzhou: Fujian Medical University, 2021.
    [13]
    XU M, LAO Q C, ZHAO P, et al. 6'-O-caffeoylarbutin inhibits melanogenesis in zebrafish[J]. Natural Product Research,2014,28(12):932−934. doi: 10.1080/14786419.2014.883395
    [14]
    张颖君, 李春启, 许敏, 等. 6'-O-咖啡酰基熊果苷及其衍生物和复方在制备化妆品或药物中的应用: 云南, CN103120624A[P]. 2013-05-29

    ZHANG Y J, LI C Q, XU M, et al. Application of 6'-O-caffeoyl arbutin and its derivatives and compounds in the preparation of cosmetics or medicines: Yunnan, CN103120624A[P]. 2013-05-29.
    [15]
    李娜, 但汉龙, 刘云, 等. 雀嘴茶咖啡酰熊果苷水提工艺的优化[J]. 食品工业科技,2015,36(17):140−144,149. [LI N, DAN H L, LIU Y, et al. Optimization of the water extraction process of 6'-O-caffeoylarbutin from Vaccinium dunalianum[J]. Science and Technology of Food Industry,2015,36(17):140−144,149. doi: 10.13386/j.issn1002-0306.2015.17.028
    [16]
    尹继庭, 孙浩, 丁勇, 等. 樟叶越桔ITS序列及6'-O-咖啡酰熊果苷含量分析[J]. 西部林业科学,2013,42(4):52−57. [YI J T, SHUN H, DING Y, et al. ITS sequence analysis of 6'-O-caffeoylarbutin in high-yielding plant of Vaccinium dunalianum var. dunalianum[J]. Journal of Western China Forestry Science,2013,42(4):52−57. doi: 10.3969/j.issn.1672-8246.2013.04.009
    [17]
    张孟琴, 徐路, 张俊波, 等. 三叶木通果皮主要营养成分, 活性成分含量测定及果皮提取物抗氧化活性评价[J]. 食品工业科技,2022,43(10):388-394. [ZHANG M Q, XUE L, ZHANG J B, et al. Determination of contents of the main nutritional components, functional components of Akebia trifoliata pericarp and the antioxidant activity of its extracts[J]. Science and Technology of Food Industry,2022,43(10):388-394.
    [18]
    马妮, 刘慧燕, 方海田, 等. 红枣多酚提取工艺优化, 成分及抗氧化活性分析[J]. 食品工业科技,2022,43(16):246−254. [MA N, LIU H Y, FANG H T, et al. Optimization of polyphenol extraction process, analysis of components and antioxidant activity of jujube[J]. Science and Technology of Food Industry,2022,43(16):246−254.
    [19]
    刘晓丽, 杨冰鑫, 陈柳青, 等. HPLC测定余甘子茶中3种多酚成分及抗氧化活性研究[J]. 食品工业科技,2020,41(13):315−320,327. [LIU X L, YANG B X, CHEN L Q, et al. Determination of three polyphenol components in Phyllanthus emblica L. tea by high performance liquid chromatography and their antioxidant activity[J]. Science and Technology of Food Industry,2020,41(13):315−320,327. doi: 10.13386/j.issn1002-0306.2020.13.050
    [20]
    普天磊, 韩学琴, 邓红山, 等. 辣木抗氧化成分提取方法和抗氧化能力研究进展[J]. 食品工业科技,2019,40(19):310−315. [PU T L, HAN X Q, DENG H S, et al. Research progress of extraction method of antioxidant components and antioxidant activity of Moringa oleifera[J]. Science and Technology of Food Industry,2019,40(19):310−315.
    [21]
    YU Q, FAN L, DUAN Z. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking[J]. Food Chem,2019,297:124910. doi: 10.1016/j.foodchem.2019.05.184
    [22]
    YANG Y, SUN X, NI H, et al. Identification and characterization of the tyrosinase inhibitory activity of caffeine from Camellia pollen[J]. J Agr Food Chem,2019,67(46):12741−12751. doi: 10.1021/acs.jafc.9b04929
    [23]
    杨怡萌, 陈星宇, 吴娅, 等. 蒲公英黄酮抗氧化活性的构效关系分析[J]. 化学通报,2020,83(11):7. [YANG Y M, CHEN X Y, WU Y, et al. Structure and antioxidant activities relationship of dandelion flavonoids[J]. Chemistry,2020,83(11):7. doi: 10.14159/j.cnki.0441-3776.2020.11.011
    [24]
    梁洁怡, 王志强, 徐阳纯, 等. 棠梨果实中绿原酸提取工艺的优化及抗氧化作用[J]. 食品工业,2021,42(4):4. [LIANG J Y, WANG Z Q, XU Y C, et al. Optimization of extraction technology of chlorogenic acid from Pyrus calleryana decne and antioxidant activity[J]. The Food Industry,2021,42(4):4.
    [25]
    张华, 周志钦, 席万鹏. 15种柑橘果实主要酚类物质的体外抗氧化活性比较[J]. 食品科学,2015,36(11):64−70. [ZHANG H, ZOU Z Q, XI W P. Comparison of antioxidant activity in vitro of 15 major phenolic compounds in citrus fruits[J]. Food Science,2015,36(11):64−70. doi: 10.7506/spkx1002-6630-201511013
    [26]
    袁博, 曹健, 秦朗, 等. 四种酚类化合物体外抗氧化活性的比较研究[J]. 食品工业,2018,39(9):200−204. [YUAN B, CAO J, QIN L, et al. Study on the comparison of antioxidant activity in vitro of four phenolic compounds[J]. The Food Industry,2018,39(9):200−204.
    [27]
    李莉莉, 邢蕊, 邓阳阳, 等. 酪氨酸酶抑制剂的研究新进展[J]. 食品工业,2016,37(8):235−239. [LI L L, XING R, DENG Y Y, et al. New developments of tyrosinase inhibitors[J]. The Food Industry,2016,37(8):235−239.
    [28]
    HRIDYA H, AMRITA A, SANKARI M, et al. Inhibitory effect of brazilein on tyrosinase and melanin synthesis: Kinetics and in silico approach[J]. International Journal of Biological Macromolecules,2015(81):228−234.
    [29]
    LVARO SÁNCHEZ-FERRER, JN RODRÍGUEZ-LÓPEZ, F GARCÍA-CÁNOVAS, et al. Tyrosinase: A comprehensive review of its mechanism[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1995,1247(1):1−11. doi: 10.1016/0167-4838(94)00204-T
    [30]
    胡治明. 氢醌及其结构类似物抑制皮肤黑素生成和抗氧化作用研究[D]. 武汉: 武汉大学, 2011

    HU Z M. Effects of hydroquinone and its structural analogues on melanogenesis and antioxidation[D]. Wuhan: Wuhan University, 2011.
  • Related Articles

    [1]XU Jiaxin, LUO Zhe, HE An, HUANG Pantian, SHEN Jinpeng, GUO Junbin, MIAO Jianyin. Preparation of Antioxidant Peptides Derived from Nacre of Nanzhu Shell and Their Inhibitory Activity against Tyrosinase[J]. Science and Technology of Food Industry, 2025, 46(6): 242-251. DOI: 10.13386/j.issn1002-0306.2024040262
    [2]HUANG Shu'an, DING Hongxia, YANG Yuanfan, NI Hui. Optimization of the Enzyme-assisted Extraction and Tyrosinase Inhibition of the Flavonoids from Thinned Fruits of Guanxi Pummelo (Citrus grandis (L.) Osbeck)[J]. Science and Technology of Food Industry, 2024, 45(11): 159-166. DOI: 10.13386/j.issn1002-0306.2023060298
    [3]WU Ying, WANG Shuangdan, TANG Wen, LIU Qing, WANG Jiaqi, ZHANG Beiting. Phenolic Ketone Contents and Antioxidant, Antibacterial Properties and Inhibitory Tyrosinase Activity of the Ethyl Acetate Extracted from Calendula officinalis L.[J]. Science and Technology of Food Industry, 2023, 44(19): 347-355. DOI: 10.13386/j.issn1002-0306.2022110304
    [4]ZHANG Peiyue, TANG Minmin, SONG Fei, LIU Can, CHEN Hua. Bioactive Composition, Antioxidant, and α-Glucosidase Inhibition of Edible Areca catechu Waste Seed[J]. Science and Technology of Food Industry, 2022, 43(12): 253-260. DOI: 10.13386/j.issn1002-0306.2021090023
    [5]ZHOU Huiji, LI Tingzhao, LI Bo. Identification of Antioxidant Components and Tyrosinase Specific Inhibitors from Osmanthus fragrans Flower by Using Online UPLC-ABTS+·-assay and UF- LC-MS Technology[J]. Science and Technology of Food Industry, 2022, 43(7): 67-79. DOI: 10.13386/j.issn1002-0306.2021070130
    [6]LI Xiao-yan, HE Wan-ying, PENG Ying, LIU Chang, PAN Si-yi. Antioxidant and tyrosinase inhibitory activity in B16 cells of Guanxi pomelo essential oil[J]. Science and Technology of Food Industry, 2018, 39(5): 86-89.
    [7]NING Ya- ping, DONG Shi- bin, LI Jian- xia, YANG Zhe, ZHANG Qiao- hui, DONG Jie- qiong, WANG Jian- zhong. Antioxidant activity and inhibitory activity on Tyrosinase of total flavonoids from Siberian Apricot flowers[J]. Science and Technology of Food Industry, 2016, (05): 104-108. DOI: 10.13386/j.issn1002-0306.2016.05.012
    [8]LIU Wan-ling, LONG Jun-min, XIAO Jian-hui, NIU Li-ya. Study on the antioxidant and inhibiting non-enzyme glycation activities of crude flavonoids from wheat germ in vitro[J]. Science and Technology of Food Industry, 2015, (23): 59-62. DOI: 10.13386/j.issn1002-0306.2015.23.003
    [9]WANG Ya, ZHAO Chun-meng, XIE Jie, ZHAO Ping, MA Jian-ping, GUO Tao. Ultrasonic assisted extraction technology and its antioxidant and tyrosinase inhibition activities of the alkaloid from Zanthoxylum bungeanum[J]. Science and Technology of Food Industry, 2014, (20): 303-307. DOI: 10.13386/j.issn1002-0306.2014.20.058
    [10]ZHENG Zong-ping, LAN Shan, QIN Chuan, YUAN Kun, CHEN Jie. Research progress in natural tyrosinase inhibitors:types and structure-activity relationships[J]. Science and Technology of Food Industry, 2014, (08): 374-378. DOI: 10.13386/j.issn1002-0306.2014.08.077
  • Cited by

    Periodical cited type(14)

    1. 杨永学,孙晓璐. 基于GC-IMS技术的精酿龙井茶啤酒酿造过程中挥发性风味物质分析. 延边大学农学学报. 2025(01): 87-93 .
    2. 韦金雁,卢志金,韩佳临,刘兴胥,马婷婷. 不同基酒添加对百香果增味精酿啤酒风味影响的对比研究. 食品安全导刊. 2025(09): 109-111+128 .
    3. 何猛超,邬子璇,西玉玲,张德中,陈玉莲,李坤,井会涵,王鸿博,刘海坡,陈杉彬,韩兴林. 通过外源添加芽孢杆菌提升北方地区高温大曲的品质. 食品工业科技. 2024(01): 145-154 . 本站查看
    4. 黄书源,张立强,冉茂芳,魏阳,涂荣坤,杨平,王松涛,宋萍,沈才洪. 不同原料添加提升曲药酱香风味的研究. 中国酿造. 2024(05): 41-46 .
    5. 刘倩,白艳龙,贾建华,肖琳,王晓娟,周小龙,邱然. 基于GC-MS和GC-IMS技术比较不同种类麦芽的挥发性物质. 食品工业科技. 2024(14): 215-223 . 本站查看
    6. 邓仕彬,蔡伊萍,林坍霖,李思瑶. 果酿啤酒的酿造工艺和品质研究进展. 中国酿造. 2023(02): 16-21 .
    7. 宋艺君,庞来祥,袁筱,庞柏均,郭涛. GC-IMS法比较不同酒龄猕猴桃酒特征香气物质差异. 食品与生物技术学报. 2023(02): 58-65 .
    8. 罗跃中,匡燕,李忠英,姚琦. 响应面法优化黄桃精酿啤酒发酵工艺. 武汉轻工大学学报. 2023(06): 99-105 .
    9. 田林平,张琪,李瑞,任小林. 正丁醇处理对‘粉红女士’苹果贮藏期间挥发性物质的影响. 食品工业科技. 2022(18): 337-345 . 本站查看
    10. 邬子璇,杨洋,李美吟,陈礼嘉,许驰,张春艳,林园,王健. 气相色谱-离子迁移谱法结合多元统计学分析不同陈酿时间白兰地的挥发性香气成分差异. 食品安全质量检测学报. 2022(18): 5795-5803 .
    11. 龚霄,陈廷慧,胡小军,范威威,李亚军,赵新强. 基于GC-IMS技术的百香果果啤风味分析. 食品与机械. 2022(11): 46-52+75 .
    12. 方灵,孔宝玉,韦航,颜孙安,刘文静,司瑞茹,史梦竹,梁启富,任丽花,傅建炜. 不同发育阶段黄金百香果挥发性成分差异性研究. 果树学报. 2022(12): 2376-2389 .
    13. 李林波,杭金龙,张士双,杨天佑,王宝石,张明霞. 精酿果啤的酿造工艺及风味影响因素的研究进展. 食品与发酵工业. 2022(24): 337-345 .
    14. 涂京霞,杨青,王玉海,张智皓,陈明. 果酿啤酒酿造工艺与品质的研究. 中外酒业. 2022(21): 28-33 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (304) PDF downloads (25) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return