LIU He, JIAO Junhua, TIAN You, et al. Hot Air Drying Characteristics and Shrinkage Dynamics Model of Potato Chips[J]. Science and Technology of Food Industry, 2022, 43(11): 58−64. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080327.
Citation: LIU He, JIAO Junhua, TIAN You, et al. Hot Air Drying Characteristics and Shrinkage Dynamics Model of Potato Chips[J]. Science and Technology of Food Industry, 2022, 43(11): 58−64. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080327.

Hot Air Drying Characteristics and Shrinkage Dynamics Model of Potato Chips

More Information
  • Received Date: August 29, 2021
  • Available Online: April 06, 2022
  • In order to improve the drying efficiency and quality of potato chips, and to control the shrinkage deformation during hot air drying, the effects of temperature (45, 55, 65, 75 ℃) and slice thickness (3, 5, 7, 9 mm) on the drying characteristic curve, effective moisture diffusivity and activation energy of potato chips were studied. The results showed that the drying rate would increase with the increase of the hot air temperature or the decrease of the slice thickness of potato chips. Within the scope of the study, the effective moisture diffusivity of potato chips was between the range of 5.02×10−10~11.53×10−10 m2/s. And its value would increase with the increase of the hot air temperature and/or the decrease of slice thickness. Besides, it was found that the Weibull distribution function could describe the reduction rate stage of drying and shrinkage dynamics model of potato chips. According to Arrhenius equation, the activation energy of drying and shrinkage of potato slices were 27.35 and 46.44 kJ/mol, respectively, indicating that the activation energy of drying was less than that of shrinkage of potato slices. This work provided theoretical basis and technical support for the prediction of moisture transfer and shrinkage deformation of potato chips during hot air drying.
  • [1]
    徐进, 朱杰华, 杨艳丽, 等. 中国马铃薯病虫害发生情况与农药使用现状[J]. 中国农业科学,2019,52(16):2800−2808. [XU J, ZHU J H, YANG Y L, et al. Status of major diseases and insect pests of potato and pesticide usage in China[J]. Scientia Agricultura Sinica,2019,52(16):2800−2808. doi: 10.3864/j.issn.0578-1752.2019.16.006
    [2]
    ZHANG H, XU F, WU Y, et al. Progress of potato staple food research and industry development in China[J]. Journal of Integrative Agriculture,2017,16(12):2924−2932. doi: 10.1016/S2095-3119(17)61736-2
    [3]
    ONWUDE D I, HASHIM N, ABDAN K, et al. Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying[J]. Computers and Electronics in Agriculture,2018,150:178−187. doi: 10.1016/j.compag.2018.04.015
    [4]
    吕朝燕, 高智席, 马秀情, 等. 不同热风干燥温度对方竹笋品质的影响[J]. 食品工业科技,2021,42(11):23−29. [LYU C Y, GAO Z X, MA X Q, et al. Effect of different hot air drying temperatures on quality of chimonobambusa quadrangularis shoots[J]. Science and Technology of Food Industry,2021,42(11):23−29.
    [5]
    SALEH R M, KULIG B, EMILIOZZI A, et al. Impact of critical control-point based intermittent drying on drying kinetics and quality of carrot (Daucus carota var. laguna)[J]. Thermal Science and Engineering Progress,2020,20:100682. doi: 10.1016/j.tsep.2020.100682
    [6]
    扈梦尧. 菌类对流干燥过程的实验及模拟研究[D]. 郑州: 郑州轻工业大学, 2021

    HU M Y. Experimental and simulated study on convective drying process of fungi[D]. Zhengzhou: Zhengzhou University of Light Industry, 2021.
    [7]
    CHAHBANI A, FAKHFAKH N, BALTI M A, et al. Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.)[J]. Food Bioscience,2018,25:32−38. doi: 10.1016/j.fbio.2018.07.004
    [8]
    CUCCURULLO G, GIORDANO L, METALLO A, et al. Influence of mode stirrer and air renewal on controlled microwave drying of sliced zucchini[J]. Biosystems Engineering,2017,158:95−101. doi: 10.1016/j.biosystemseng.2017.03.012
    [9]
    MAHAYOTHEE B, THAMSALA T, KHUWIJITJARU P, et al. Effect of drying temperature and drying method on drying rate and bioactive compounds in cassumunar ginger (Zingiber montanum)[J]. Journal of Applied Research on Medicinal and Aromatic Plants,2020,18:100262. doi: 10.1016/j.jarmap.2020.100262
    [10]
    尹慧敏, 聂宇燕, 沈瑾, 等. 基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J]. 农业工程学报,2016,32(17):252−258. [YIN H M, NIE Y Y, SHEN J, et al. Drying characteristics of diced potato with thin-layer by hot-wind based on Weibull distribution function[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(17):252−258. doi: 10.11975/j.issn.1002-6819.2016.17.033
    [11]
    朱文学, 尤泰斐, 白喜婷, 等. 基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J]. 农业机械学报,2018,49(12):364−370. [ZHU W X, YOU T F, BAI X T, et al. Analysis of moisture transfer of potato slices during drying using low-field NMR[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):364−370. doi: 10.6041/j.issn.1000-1298.2018.12.043
    [12]
    SANDOVAL T S, SOLEDAD T A, HERNANDEZ B E. Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage[J]. Journal of Food Engineering,2017,214:147−157. doi: 10.1016/j.jfoodeng.2017.06.014
    [13]
    SINGH P, TALUKDAR P. Design and performance evaluation of convective drier and prediction of drying characteristics of potato under varying conditions[J]. International Journal of Thermal Sciences,2019,142:176−187. doi: 10.1016/j.ijthermalsci.2019.04.019
    [14]
    DHALSAMANT K, TRIPATHY P P, SHRIVASTAVA S L. Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: Numerical simulation and experimental validation[J]. Food and Bioproducts Processing,2018,109:107−121. doi: 10.1016/j.fbp.2018.03.005
    [15]
    郑超, 王月秋. 食品中水分的测定方法[J]. 黑龙江科技信息,2016(22):8. [ZHENG C, WANG Y Q. Method for determination of moisture in food[J]. Heilongjiang Science and Technology Information,2016(22):8.
    [16]
    陈衍男, 王晓, 穆岩, 等. 天麻蒸制后红外干燥特性及失水动力学研究[J]. 食品工业科技,2018,39(22):30−34,40. [CHEN Y N, WANG X, MU Y, et al. Drying characteristics and kinetics research of gastrodia elata blume under infrared blast drying after steaming[J]. Science and Technology of Food Industry,2018,39(22):30−34,40.
    [17]
    OJEDIRAN J O, OKONKWO C E, ADEYI A J, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics[J]. Heliyon,2020,6(3):e03555. doi: 10.1016/j.heliyon.2020.e03555
    [18]
    ELMIZADEH A, SHAHEDI M, HAMDAMI N. Comparison of electrohydrodynamic and hot-air drying of the quince slices[J]. Innovative Food Science & Emerging Technologies,2017,43:130−135.
    [19]
    LI X, LIU Y, GAO Z, et al. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control[J]. Journal of Food Engineering,2021,292:110253. doi: 10.1016/j.jfoodeng.2020.110253
    [20]
    王怡, 董继先, 王栋, 等. 微波烫漂预处理下百合热风干燥特性及动力学模拟[J]. 食品工业科技,2021,42(3):186−190, 200. [WANG Y, DONG J X, WANG D, et al. Drying characteristics and dynamics of simulation lily under microwave blanching pretreatment[J]. Science and Technology of Food Industry,2021,42(3):186−190, 200.
    [21]
    ONWUDE D I, HASHIM N, ABDAN K, et al. The effectiveness of combined infrared and hot-air drying strategies for sweet potato[J]. Journal of Food Engineering,2019,241:75−87. doi: 10.1016/j.jfoodeng.2018.08.008
    [22]
    DEHGHANNYA J, KADKHODAEI S, HESHMATI M K, et al. Ultrasound-assisted intensification of a hybrid intermittent microwave-hot air drying process of potato: Quality aspects and energy consumption[J]. Ultrasonics,2019,96:104−122. doi: 10.1016/j.ultras.2019.02.005
    [23]
    白竣文, 田潇瑜, 刘宇婧, 等. 大野芋薄层干燥特性及收缩动力学模型研究[J]. 中国食品学报,2018,18(4):124−131. [BAI J W, TIAN X Y, LIU Y J, et al. Studies on drying characteristics and shrinkage kinetics modelling of colocasia gigantea slices during thin layer drying[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(4):124−131.
    [24]
    徐庚, 马月虹, 王庆惠, 等. 芜菁干燥特性及收缩动力学模型研究[J]. 农机化研究,2021,43(10):142−149. [XU G, MA Y H, WANG Q H, et al. Study on drying characteristics and shrinkage dynamics modelling of turnip[J]. Journal of Agricultural Mechanization Research,2021,43(10):142−149. doi: 10.3969/j.issn.1003-188X.2021.10.027
    [25]
    田伏锦, 刘云宏, 黄隽妍, 等. 马铃薯超声强化冷风干燥及品质特性[J]. 食品科学,2019,40(5):85−94. [TIAN F J, LIU Y H, HUANG J Y, et al. Drying characteristics and quality of potato slices subjected to ultrasound-assisted cold air drying[J]. Food Science,2019,40(5):85−94. doi: 10.7506/spkx1002-6630-20171120-241
    [26]
    刘艳, 陶胜达, 唐小闲, 等. 马铃薯片热风干燥特性及动力学模型[J]. 保鲜与加工,2019,19(4):82−88. [LIU Y, TAO S D, TANG X X, et al. Hot air drying characteristics and kinetics model of potato slices[J]. Storage and Process,2019,19(4):82−88. doi: 10.3969/j.issn.1009-6221.2019.04.013
    [27]
    冯晞, 胡巧群, 诸爱士. 马铃薯片热风对流干燥模型与特性[J]. 粮食与油脂,2018,31(7):52−55. [FENG X, HU Q Q, ZHU A S. Model and character of hot air convection drying of potato slice[J]. Cereals & Oils,2018,31(7):52−55. doi: 10.3969/j.issn.1008-9578.2018.07.016
    [28]
    周罗娜, 王辉, 刘嘉, 等. 马铃薯片的热泵干燥与干燥动力学拟合[J]. 江苏农业科学,2019,47(16):208−213. [ZHOU L N, WANG H, LIU J, et al. Heat pump drying and drying kinetics fitting of potato chips[J]. Jiangsu Agricultural Sciences,2019,47(16):208−213.
    [29]
    李叶贝, 任广跃, 屈展平, 等. 燕麦马铃薯复合面条热风干燥特性及其数学模型研究[J]. 食品与机械,2018,34(1):49−53,208. [LI Y B, REN G Y, QU Z P, et al. Hot air drying characteristics and mathematical model of oat and potato composite noodles[J]. Food & Machinery,2018,34(1):49−53,208.
    [30]
    张卫鹏, 高振江, 肖红伟, 等. 基于Weibull函数不同干燥方式下的茯苓干燥特性[J]. 农业工程学报,2015,31(5):317−324. [ZHANG W P, GAO Z J, XIAO H W, et al. Drying characteristics of poria cocos with different drying methods based on Weibull distribution[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(5):317−324. doi: 10.3969/j.issn.1002-6819.2015.05.044
    [31]
    PU Y Y, SUN D W. Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution[J]. Biosystems Engineering,2017,156:108−119. doi: 10.1016/j.biosystemseng.2017.01.006
    [32]
    DOYMAZ I. Thin-layer drying characteristics of sweet potato slices and mathematical modelling[J]. Heat and Mass Transfer,2011,47(3):277−285. doi: 10.1007/s00231-010-0722-3
    [33]
    CHONG C H, LAW C L, CLOKE M, et al. Drying kinetics and product quality of dried chempedak[J]. Journal of Food Engineering,2008,88(4):522−527. doi: 10.1016/j.jfoodeng.2008.03.013
    [34]
    汤尚文, 马雪伟, 于博, 等. 马铃薯红外干燥特性研究[J]. 保鲜与加工,2018,18(1):76−81,89. [TANG S W, MA X W, YU B, et al. Infrared radiation drying characteristics of potato[J]. Storage and Process,2018,18(1):76−81,89. doi: 10.3969/j.issn.1009-6221.2018.01.013

Catalog

    Article Metrics

    Article views (272) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return