SHI Zao, ZHANG Fusheng, YANG Jinlai, et al. Effect of Superfine Grinding on Physicochemical Properties and Microstructure of Chimonobambusa quadrangularis Shoot Powder[J]. Science and Technology of Food Industry, 2021, 42(24): 40−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040079.
Citation: SHI Zao, ZHANG Fusheng, YANG Jinlai, et al. Effect of Superfine Grinding on Physicochemical Properties and Microstructure of Chimonobambusa quadrangularis Shoot Powder[J]. Science and Technology of Food Industry, 2021, 42(24): 40−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040079.

Effect of Superfine Grinding on Physicochemical Properties and Microstructure of Chimonobambusa quadrangularis Shoot Powder

More Information
  • Received Date: April 08, 2021
  • Available Online: October 12, 2021
  • To explore the effect on the physicochemical properties and microstructure of Chimonobambusa quadrangularis shoot powder (CQSP), superfine grinding of dried Chimonobambusa quadrangularis was conducted for different grinding time (10, 20 and 30 min). Results showed that when superfine grinding for 30 min, compared with the coarse powder control group, the protein and total sugar content of CQSP increased by 7.48% and 44.76% respectively, the water holding capacity, oil holding capacity and swelling capacity decreased by 29.34%, 26.43% and 22.87% respectively, and the average particle size of the powder reached the minimum of 17.15 μm. After superfine grinding, the slip angle and repose angle of CQSP increased by 38.24% and 20.63% respectively, the brightness value increased by 13.93%, the red green value and yellow blue value decreased by 24.21% and 16.51%, respectively. The fluidity of the powder became poor, but the powder was more delicate, the color was more uniform and bright. Superfine grinding would not change the functional groups of CQSP, but destroy the cellulose in powder, part of the long chain would become short chain, and reduce the thermal stability. Scanning electron microscopy (SEM) showed that the surface structure of the CQSP was destroyed via superfine grinding, making the samples tiny, uniform and fragmented. In conclusion, the superfine grinding technology could effectively improve the sensory properties, functions and processing characteristics of CQSP, and would provide a theoretical basis for improving the utilization rate and expanding the application.
  • [1]
    鲍丽然, 贾中民, 李瑜, 等. 南川金佛山方竹笋营养安全品质和立地土壤评价[J]. 物探与化探,2018,42(5):1089−1094. [BAO L R, JIA Z M, LI Y, et al. Evaluation of nutritional and safe quality of Chimonobambusa utilis bamboo shoots and the surrounding soil in Nanchuan, Chongqing[J]. Geophysical and Geochemical Exploration,2018,42(5):1089−1094.
    [2]
    张喜, 张佐玉, 王先华. 林地覆盖糠壳对金佛山方竹笋量的影响[J]. 竹子研究汇刊,1997(3):50−53. [ZHANG X, ZHANG Z Y, WANG X H. Effect of chaff-cover on bamboo stand land on shoot yield of Chimonobambusa utilis[J]. Journal of Bamboo Research,1997(3):50−53.
    [3]
    杨春瑜, 柳双双, 梁佳钰, 等. 超微粉碎对食品理化性质影响的研究[J]. 食品研究与开发,2019,40(1):220−224. [YANG C Y, LIU S S, LIANG J Y, et al. Effects of superfine grinding technology on physical and chemical properties of food[J]. Food Research and Development,2019,40(1):220−224. doi: 10.3969/j.issn.1005-6521.2019.01.036
    [4]
    郝竞霄, 石福磊, 惠靖茹, 等. 普通粉碎与超微粉碎对茶树菇粉体加工物理特性的影响[J]. 食品与发酵工业,2021,47(3):95−100. [HAO J X, SHI F L, HUI J R, et al. Effects of common grinding and ultrafine grinding on physical properties of Agrocybe cylindracea powder[J]. Food and Fermentation Industries,2021,47(3):95−100.
    [5]
    赵萌萌, 党斌, 张文刚, 等. 超微粉碎对青稞麸皮粉微观结构及功能特性的影响[J]. 农业工程学报,2020,36(8):278−286. [ZHAO M M, DANG B, ZHANG W G, et al. Effects of ultrafine crushing on microstructure and functional properties of highland barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(8):278−286. doi: 10.11975/j.issn.1002-6819.2020.08.034
    [6]
    张一鸣, 陈义伦, 葛邦国, 等. 超微粉碎对银杏果粉特性及成分的影响[J]. 中国果菜,2020,40(11):28−33. [ZHANG Y M, CHEN Y L, GE B G, et al. Effects of ultrafine smashing on the characteristics and components of ginkgo biloba fruit powder[J]. China Fruit & Vegetable,2020,40(11):28−33.
    [7]
    YANG C, KAMESHWAR A K S, ZHANG J N, et al. Ultrafine grinding a promising method for improving the total dietary fiber content and physic-chemical properties of potato peel waste[J]. Waste and Biomass Valorization,2020,11(4):3057−3070.
    [8]
    GAO W J, CHEN F, ZHANG L F, et al. Effects of superfine grinding on asparagus pomace. Part I: Changes on physicochemical and functional properties[J]. Journal of Food Science,2020,85(6):1827−1833. doi: 10.1111/1750-3841.15168
    [9]
    陈如, 何玲. 超微粉碎对苹果全粉物化性质的影响[J]. 食品科学,2017,38(13):150−154. [CHEN R, HE L. Effect of superfine grinding on physicochemical properties of apple powder[J]. Food Science,2017,38(13):150−154. doi: 10.7506/spkx1002-6630-201713025
    [10]
    周晚霞, 黎怡红, 陈炎, 等. 不同粒径小麦全粉的营养及加工特性比较[J]. 现代食品科技,2020,36(9):172−180. [ZHOU W X, LI Y H, CHEN Y, et al. Comparison of nutrition and processing characteristics of whole wheat flours with different particle sizes[J]. Modern Food Science and Technology,2020,36(9):172−180.
    [11]
    刘颖, 高帅, 张云亮, 等. 超微粉碎对大豆、玉米、发芽糙米物化特性影响[J]. 食品科技,2020,45(9):168−173. [LIU Y, GAO S, ZHANG Y L, et al. Effect of superfine grinding on physicochemical properties of soybean, corn and germinated rice[J]. Food Science and Technology,2020,45(9):168−173.
    [12]
    WANG F, SUKMANOV V, ZENG J. Effect of ultrafine grinding on functional properties of soybean by-products[J]. Food Technology,2019,8(4):687−698.
    [13]
    ZHANG J T, DONG Y S, NISAR T, et al. Effect of superfine-grinding on the physicochemical and antioxidant properties of Lycium ruthenicum Murray powders[J]. Powder Technology,2020,372(C):68−75.
    [14]
    ZHAO X Y, DU F L, ZHU Q J, et al. Effect of superfine pulverization on properties of Astragalus membranaceus powder[J]. Powder Technology,2010,203(3):620−625. doi: 10.1016/j.powtec.2010.06.029
    [15]
    SHI H, ZHANG M, BHANDARI B, et al. Effects of superfine grinding on the properties and qualities of Cordyceps militaris and its spent substrate[J]. Journal of Food Processing and Preservation,2019,43(11):14169.
    [16]
    LU M Q, YAN L, WANG B, et al. Effect of vibrating-type ultrafine grinding on the physicochemical and antioxidant properties of Turkish galls in Uyghur medicine[J]. Powder Technology,2018,339:560−568. doi: 10.1016/j.powtec.2018.07.095
    [17]
    李洁丽, 蒋纬, 胡颖. 超微竹笋粉酸乳的研制[J]. 食品科技,2017,42(5):90−94. [LI J L, JIANG W, HU Y. The development of the superfine bamboo shoot powder yogurt[J]. Food Science and Technology,2017,42(5):90−94.
    [18]
    王晓芳, 邓瑶筠, 龚霄, 等. 竹笋超微粉无矾木薯粉条加工技术[J]. 热带农业工程,2016,40(C1):27−28. [WANG X F, DENG Y J, GONG X, et al. Cassava vermicelli processing technology of ultrafine powder bamboo shoots without alum[J]. Tropical Agricultural Engineering,2016,40(C1):27−28.
    [19]
    周倩, 孙汉巨, 王静, 等. 竹笋复合固体饮料的工艺研究[J]. 农产品加工(学刊),2012(12):75−79. [ZHOU Q, SUN H J, WANG J, et al. Technology of bamboo shoots compound solid beverage[J]. Academic Periodical of Farm Products Processing,2012(12):75−79.
    [20]
    张耀雷, 黄立新, 张彩虹, 等. 不同干燥方式对壶瓶枣粉品质的影响[J]. 食品工业科技,2016,37(1):76−79. [ZHANG Y L, HUANG L X, ZHANG C H, et al. Effects of different drying methods on the quality of Ziziphus jujube Mill. cv. Hupingzao[J]. Science and Technology of Food Industry,2016,37(1):76−79. doi: 10.1590/1678-457x.07716
    [21]
    李凤. UHP处理对小麦膳食纤维的改性研究[J]. 食品科学,2007,28(9):96−98. [LI F. Study on modifying wheat dietary fiber by ultra high pressure treatment[J]. Food Science,2007,28(9):96−98. doi: 10.3321/j.issn:1002-6630.2007.09.018
    [22]
    易甜, 崔文文, 王明锐, 等. 锦橙皮渣膳食纤维微粉化及其功能特性分析[J]. 食品科学,2019,40(10):8−14. [YI T, CUI W W, WANG M R, et al. Functional and structural properties of micronized dietary fiber powder extracted from peel and pomace of jincheng sweet oranges[J]. Food Science,2019,40(10):8−14. doi: 10.7506/spkx1002-6630-20180615-330
    [23]
    李璐, 黄亮, 苏玉, 等. 超微化雷竹笋膳食纤维的结构表征及其功能特性[J]. 食品科学,2019,40(7):74−81. [LI L, HUANG L, SU Y, et al. Structural characterization and functional properties of ultrafine dietary fiber from phyllostachys praecox[J]. Food Science,2019,40(7):74−81. doi: 10.7506/spkx1002-6630-20180306-069
    [24]
    汪楠, 黄山, 张月, 等. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业,2020,46(4):13−18. [WANG N, HUANG S, ZHANG Y, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries,2020,46(4):13−18.
    [25]
    杨茉, 王素雅, 曹崇江, 等. 超微粉碎对竹笋壳粉理化性质的影响[J]. 食品工业科技,2019,40(1):34−39. [YANG M, WANG S Y, CAO C J, et al. Effect of ultrafine grinding on physical and chemical properties of bamboo shell powder[J]. Science and Technology of Food Industry,2019,40(1):34−39.
    [26]
    朱怡婷, 李状, 黄晓兵, 等. 超微粉碎对毛竹笋微观结构及营养成分的影响[J]. 热带作物学报,2015,36(5):937−941. [ZHU Y T, LI Z, HUANG X B, et al. Effect of superfine grinding on microstructure and nutrients of Phyllostachys pubescens shoot[J]. Chinese Journal of Tropical Crops,2015,36(5):937−941. doi: 10.3969/j.issn.1000-2561.2015.05.018
    [27]
    李状, 朱德明, 李积华, 等. 振动超微粉碎对毛竹笋干物化特性的影响[J]. 农业工程学报,2014,30(3):259−263. [LI Z, ZHU D M, LI J H, et al. Influence of micronization on physicochemical properties of driedmoso-bamboo shoots[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(3):259−263.
    [28]
    MIN Z, ZHANG C J, SHRETHA S. Study on the preparation technology of superfine ground powder of Agrocybe chaxingu Huang[J]. Journal of Food Engineering,2005,67(3):333−337. doi: 10.1016/j.jfoodeng.2004.04.036
    [29]
    WANG T, SUN X Y, ZHOU Z X, et al. Effects of microfluidization process on physicochemical properties of wheat bran[J]. Food Research International,2012,48(2):742−747. doi: 10.1016/j.foodres.2012.06.015
    [30]
    AHMED J, AL-ATTAR H, ARFAT Y A. Effect of particle size on compositional, functional, pasting and rheological properties of commercial water chestnut flour[J]. Food Hydrocolloids,2016,52:888−895. doi: 10.1016/j.foodhyd.2015.08.028
    [31]
    李菁, 吴聪聪, 叶沁, 等. 不同处理方法对豆渣膳食纤维结构和降血糖性质的影响[J]. 食品与发酵工业,2021,47(15):178−184. [LI Q, WU C C, YE Q, et al. Different treatments on structure and hypoglycemic properties of okara dietary fibers[J]. Food and Fermentation Industries,2021,47(15):178−184.
    [32]
    YAN X, YE R, CHEN Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran[J]. Food Chemistry,2015,180:106−115. doi: 10.1016/j.foodchem.2015.01.127
    [33]
    CHANG S C, HSU B Y, CHEN B H. Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity[J]. International Journal of Biological Macromolecules,2010,47(4):445−453. doi: 10.1016/j.ijbiomac.2010.06.010
    [34]
    SONI B, HASSAN E B, MAHMOUD B. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks[J]. Carbohydrate Polymers,2015,134(10):581−589.
    [35]
    董文成. 柑橘果实膳食纤维物化特性及其性能表征研究[D]杭州: 浙江大学, 2015.

    DONG W C. Study on the physicochemical properties and characteristics of citrus fruit dietary fiber[D]. Hangzhou: Zhejiang University, 2015.
    [36]
    张洪勋, 李林. 纤维素类生物质热解技术研究进展[J]. 北京联合大学学报(自然科学版),2004(1):16−19. [ZHANG H X, LI L. Research progress in cellulosic biomass pyrolysis[J]. Journal of Beijing Union University,2004(1):16−19.
    [37]
    ZHAO X Y, YANG Z B, GAI G S, et al. Effect of superfine grinding on properties of ginger powders[J]. Journal of Food Engineering,2009,91(2):217−222. doi: 10.1016/j.jfoodeng.2008.08.024
    [38]
    MING J, CHEN L, HONG H, et al. Effect of superfine grinding on the physic-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders[J]. Journal of the Science of Food and Agriculture,2015,95(12):2431−2437. doi: 10.1002/jsfa.6967
  • Cited by

    Periodical cited type(1)

    1. 卢靖辉,温靖,赖慧宁,吕思哲,徐玉娟,余元善,程丽娜,彭健. 不同浓缩方式对枸杞汁品质特性的影响. 食品工业科技. 2025(03): 31-40 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (252) PDF downloads (19) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return