• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

物理方法对病原真菌及其产毒的防控作用研究进展

姜楠, 王瑶, 姜冬梅, 韦迪哲, 王蒙

姜楠, 王瑶, 姜冬梅, 韦迪哲, 王蒙. 物理方法对病原真菌及其产毒的防控作用研究进展[J]. 食品工业科技, 2017, (22): 346-352. DOI: 10.13386/j.issn1002-0306.2017.22.067
引用本文: 姜楠, 王瑶, 姜冬梅, 韦迪哲, 王蒙. 物理方法对病原真菌及其产毒的防控作用研究进展[J]. 食品工业科技, 2017, (22): 346-352. DOI: 10.13386/j.issn1002-0306.2017.22.067
JIANG Nan, WANG Yao, JIANG Dong-mei, WEI Di-zhe, WANG Meng. Progress on prevention and control of physical methods on pathogenic fungi and its toxins[J]. Science and Technology of Food Industry, 2017, (22): 346-352. DOI: 10.13386/j.issn1002-0306.2017.22.067
Citation: JIANG Nan, WANG Yao, JIANG Dong-mei, WEI Di-zhe, WANG Meng. Progress on prevention and control of physical methods on pathogenic fungi and its toxins[J]. Science and Technology of Food Industry, 2017, (22): 346-352. DOI: 10.13386/j.issn1002-0306.2017.22.067

物理方法对病原真菌及其产毒的防控作用研究进展

基金项目: 

2017年北京市农林科学院青年基金(QNJJ201710); 公益性行业(农业)科研专项(201303075); 国家农产品质量安全风险评估重大专项(GJFP2017013);

详细信息
    作者简介:

    姜楠 (1988-) , 女, 硕士, 助理研究员, 研究方向:农产品质量安全与标准, E-mail:jiangnan_fx@163.com。;

    王蒙 (1980-) , 女, 博士, 副研究员, 研究方向:农产品质量安全与标准, E-mail:ameng-001@163.com。;

  • 中图分类号: TS201.3

Progress on prevention and control of physical methods on pathogenic fungi and its toxins

  • 摘要: 农产品受病原真菌侵染发生腐烂变质,失去感官品质、营养品质、商用品质,进而造成严重的经济损失。虽然病原真菌生长和病原真菌产毒是两种不同的生理过程,但是有效的防控措施对两种生理过程均会产生抑制作用。物理防控方法是一种操作简单、无化学污染、绿色的防控手段,某些技术处理农产品后,不仅有效去除病原真菌,抑制其产毒,还可以增强农产品自身组织抗性,起到改善食品品质、贮藏保鲜、延长货架期的作用。本文就应用广泛的热处理、辐射处理、紫外处理等物理技术的应用现状进行综述,并重点阐述了三种物理技术对病原真菌生长及其产毒的防控作用,以期为该领域的研究者提供理论参考。 
    Abstract: Agro-products were decayed easily after infected by pathogenic fungi which can lead to decline of sensory, nutrition and commercial quality.Although fungi growth and mycotoxin-producing are two different processes, the effective prevention and control measures can inhibit both physiological processes.The physical method is easy-to-use and it's also a green control measure without any chemical pollution. Some physical techniques can not only remove the pathogenic fungi and inhibit the production of their toxins effectively, but also can enhance the resistance to the fungus, improve quality, and extend the storage and shelf life of agro-products. In this paper, the present situation of widely applicable physical techniques included heat, radiation and UV treatment were reviewed, and the control effect of the three physical technologies for fungus and mycotoxin were also summarized, so as to provide theoretical reference for other researchers in this field.
  • [1]

    Facett HS.Packing house control of brown rot[J].Cofof Citrogo, 1922, 7:232-254.

    [2] 毕阳.果蔬采后病害原理与控制[M].北京:科学出版社, 2016.
    [3]

    Nesher I, Minz A, Kokkelink L, et al.Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides[J].Eukaryot Cell, 2011, 10:1122-1130.

    [4]

    Ramos B, González-melendi P, Sánchez-vallet A, et al.Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana[J].Molecular Plant Pathology, 2013, 14:44-57.

    [5]

    Fallik E, Aharoni Y, Copel A, et al.Reduction of postharvest losses of Galia melon by a short hot-water rinse[J].Plant Pathology, 2000, 49 (3) :333-338.

    [6]

    Araujo R, Rodrigues AG, Pina-vaz C.Susceptibility pattern among pathogenic species of Aspergillus to physical and chemical treatments[J].Medical Mycology, 2006, 44:439-443.

    [7]

    Sui Y, Droby S, Zhang D, et al.Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment[J].Environmental Science and Pollution Research, 2014, 21:13956-13963.

    [8]

    Chen HZ, Cheng Z, Wisniewski M, et al.Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit[J].Environmental Science and Pollution Research, 2015, 22:15037-15045.

    [9]

    Castejón-Mu1oz M, Bollen GJ.Induction of heat resistance in Fusarium oxysporum and Verticillium dahliae caused by exposure to sublethal heat treatments[J].European Journal of Plant Pathology, 1993, 99 (2) :77-84.

    [10]

    Maxin P, Weber RWS, Pedersen HL, et al.Hot-water dipping of apples to control Penicillium expansum, Neonectria galligena and Botrytis cinerea:effects of temperature on spore germination and fruit rots[J].European Journal of Horticultural Science, 2012, 77:S1-S9.

    [11] 胡美姣, 李敏, 高兆银, 等.热处理对果蔬采后品质及病虫害的影响[J].果树学报, 2005, 22 (2) :143-148.
    [12]

    Barkai-golan R.Postharvest heat treatment to control Alternaria tenuis Auct.Rot in tomato[J].Phytopathologia Mediterranea, 1973, 12:108-111.

    [13]

    Gabler FM, Mansour MF, Smilanick JL, et al.Survival of spores of Rhizopus stolonifer, Aspergillus niger, Botrytis cinerea and Alternaria alternata after exposure to ethanol solutions at various temperatures[J].Journal of Applied Microbiology, 2004, 96:1354-1360.

    [14]

    Kabak B.The fate of mycotoxins during thermal food processing[J].Journal of the Science of Food and Agriculture, 2009, 89 (4) :549-554.

    [15]

    Cazzaniga D, Basoalico JC, González RJ, et al.Mycotoxins inactivation by extrusion cooking of corn flour[J].Letters in Applied Microbiology, 2001, 33 (2) :144-147.

    [16]

    Samarajeewa U, Sen AC, Cohen MD, et al.Detoxification of aflatoxins in foods and feeds by physical and chemical methods[J].Journal of Food Protection, 1990, 53:489-501.

    [17]

    Rustomiys.Aflatoxin in food and feed:occurrence, legislation and inactivation by physical methods[J].Food Chemistry, 1997, 59:57-67.

    [18]

    Combina M, Dalcero A, Varsavsky E, et al.Effect of heat treatments on stability of altemariol, alternariol monomethyl ether and tenuazonic acid in sunflower flour[J].Mycotoxin Research, 1999, 15 (1) :33-38.

    [19]

    Yazdanpanah H, Mohammadi T, Abouhossain G, et al.Effect of roasting on degradation of aflatoxins in contaminated pistachio nuts[J].Food and Chemical Toxicology, 2005, 43:1135-1139.

    [20]

    Shakerardekani A, Karim R, Mirdamadiha F.The effect of sorting on aflatoxin reduction of pistachio nuts[J].Journal of Food Agriculture and Environment, 2012, 10 (1) :459-461.

    [21]

    Womack ED, Brown AE, Sparks DL.A recent review of nonbiological remediation of aflatoxin-contaminated crops[J].Journal of the Science of Food and Agriculture, 2014, 94 (9) :1706-1714.

    [22]

    Suárez-quiroz M, De louise B, Gonzalez-rios O, et al, The impact of roasting on the ochratoxin A content of coffee[J].International Journal of Food Science and Technology, 2005, 40:605-611.

    [23]

    Samar M, Resnik SL, González HHL, et al.Deoxynivalenol reduction during the frying process of turnover pie covers.[J]Food Control, 2007, 18 (10) :1295-1299.

    [24]

    Kadakal C, Nas S.Effect of heat treatment and evaporation on patulin and some other properties of apple juice[J].Journal of the Science of Food and Agriculture, 2003, 83:987-990.

    [25]

    Boudra H, Le BP, Le BJ.Thermostability of ochratoxin A in wheat under two moisture conditions[J].Applied and Environmental Microbiology, 1995, 61:1156-1158.

    [26]

    Ozkarsli M.Effect of traditional-roasting and microwaveroasting on aflatoxin B1in peanuts[D].MSc Thesis, Cukurova University Institute of Natural and Applied Sciences, Adana, Turkey, 2003.

    [27]

    Farkas J, Mohácsi-farkas C.History and future of food irradiation[J].Trends in Food Science and Technology, 2011, 22:121-126.

    [28]

    Calado T, Venancio A, Abrunhosa L.Irradiation for mold and mycotoxin control:a review[J].Comprehensive Reviews in Food Science and Food Safety, 2014, 13 (5) :1049-1061.

    [29]

    Maity JP, Kar S, Banerjee S, et al.Effects of gamma radiation on fungi-infected rice (in vitro) [J].International Journal of Radiation Biology, 2011, 87:1097-1102.

    [30]

    Geweely NSI, Nawar LS.Sensitivity to gamma irradiation of post-harvest pathogens of pear[J].International Journal of Agriculture and Biology, 2006, 8:710-716.

    [31]

    Aziz NH, Moussa LAA.Reduction of fungi and mycotoxins formation in seeds by gamma-radiation[J].Journal of Food Safety, 2004, 24:109-127.

    [32]

    Ribeiro J, Cavaglieri L, Vital H, et al.Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production[J].Radiation Physics and Chemistry, 2011, 80:658-663.

    [33] 钟凯, 高翔, 计融.60Coγ射线对生理盐水和玉米中黄曲霉孢子的辐照效应研究[J].卫生研究, 2011, 40 (3) :352-354.
    [34]

    Ribeiro JMM, Cavaglieri lr, Vital HD, et al.Gamma radiation on the mycoflora of poultry feed and Aspergillus species[J].Ciencia Rural, 2009, 39:1452-1458.

    [35] 彭春红, 周林燕, 李淑荣, 等.60Co-γ射线对赭曲霉毒素A辐照的降解效果[J].中国食品学报, 2015, 15 (7) :174-179.
    [36]

    Wang F, Xie F, Xue X, et al.Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B1in methanol-water solution[J].Journal of Hazardous Materials, 2011, 192 (3) :1192-1202.

    [37]

    Frank HK, Grunewald T.Radiation resistance of aflatoxins[J].Irradiat Aliments, 1970, 11 (1/2) :15-20.

    [38]

    Aquino S, Ferreira F, Ribeiro DHB, et al.Evaluation of viability of Aspergillus flavus and aflatoxins degradation in irradiated samples of maize[J].Brazilian Journal of Microbiology, 2005, 36:352-356.

    [39]

    Kumar S, Kunwar A, Gautam S, et al.Inactivation of A.ochraceus spores and detoxification of ochratoxin A in coffee beans by gamma irradiation[J].Journal of Food Science, 2012, 77 (2) :44-51.

    [40]

    O’neill K, Damoglou AP, Patterson MF.The stability of deoxynivalenol and 3-acetyl deoxynivalenol to gamma irradiation[J].Food Additives and Contaminants, 1993, 10 (2) :209-215.

    [41]

    Mutluer B, Erko9 FU.Effects of gamma irradiation on aflatoxins[J].European Food Research and Technology, 1987, 185 (5) :398-401.

    [42]

    Jalili M, Jinap S, Noranizan MA.Aflatoxins and ochratoxin A reduction in black and white pepper by gamma radiation[J].Radiation Physics and Chemistry, 2012, 81:1786-1788.

    [43] 刘斌, 熊善柏, 熊光权, 等.辐照技术在食品污染物控制方面的研究进展[J].核农学报, 2010, 24 (4) :784-789.
    [44]

    Aziz NH, Youssef BM.Inactivation of naturally occurring of mycotoxins in some egyptian foods and agricultural commodities by gamma irradiation[J].Egyptian Journal of Food Science, 2002, 30 (1) :167-177.

    [45]

    Yun H, Lim S, Jo C, et al.Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system[J].Radiation Physics and Chemistry, 2008, 77:830-834.

    [46]

    Ttipathi S, Mishra HN.Studies on the efficacy of physical, chemical and biological aflatoxin B1detoxification approaches in red chilli powder[J].International Journal of Food Safety, Nutrition and Public Health, 2009, 2 (1) :69-77.

    [47]

    Gómez PL, Alzamora SM, Castro MA, et al.Effect of ultraviolet C light dose on quality of cut-apple:Microorganism, color and compression behavior[J].Journal of Food Engineering, 2010, 98:60-70.

    [48] 芦菲, 南海娟, 孙俊良, 等.短波紫外线照射在果蔬和食用菌保鲜中的应用研究[J].食品工业科技, 2013, 34 (22) :355-358.
    [49]

    Terry LA, Joyce DC.Elicitors of induced disease resistance in postharvest horticultural crops:a brief review[J].Postharvest Biology and Technology, 2004, 32:1-13.

    [50]

    Guo DQ, Zhu LX, Hou XJ.Combination of UV-C treatment and Metschnikowia pulcherrimas for controlling Alternaria rot in postharvest winter jujube fruit[J].Journal of Food Science, 2015, 80:M137-M141.

    [51]

    García-cela E, Marin S, Sanchis V, et al.Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media[J].Fungal Biology, 2015, 119 (1) :67-78.

    [52]

    Hussein HZ, Tuama RH, Ali AM.Study the effect of ozone gas and ultraviolet radiation and microwave on the degradation of aflatoxin B1produce by Aspergillus flavus on stored maize grains[J].IOSR Journal of Agriculture and Veterinary Science, 2015, 5 (8) :5-12.

    [53]

    Valero A, Begum M, Leong S, et al.Fungi isolated from grapes and raisins as affected by germicidal UVC light[J].Letters in Applied Microbiology, 2007, 45:238-243.

    [54]

    Begum MARIAM, Hocking AD, Miskelly D.Inactivation of food spoilage fungi by ultra violet (UVC) irradiation[J].International Journal of Food Microbiology, 2009, 129 (1) :74-77.

    [55] 张小勇, 倪芳妍, 方晓璞, 等.不同波长紫外灯对油脂中AFB1去除效果的比较[J].粮食与食品工业, 2015, 22 (6) :41-43.
    [56]

    Mazaheri M.Effect of UV radiation on different concentrations of aflatoxin B1in pistachio[J].Acta Horticulturae, 2012, 963:41-46.

    [57]

    Liu RJ, Jin QZ, Tao GJ, et al.LC-MS and UPLC-quadrupole time-of-flight MS for identification of photodegradation products of Aflatoxin B1[J].Chromatographia, 2010a, 71 (1/2) :107-112.

    [58]

    Liu RJ, Jin QZ, Tao GJ, et al.Photodegradation kinetics and byproducts identification of the Aflatoxin B1in aqueous medium by UPLC-Q-TOF MS[J].Journal of Mass Spectrometry, 2010b, 45:553-559.

    [59]

    Cheong KK, Strub C, Montet D, et al.Effect of different light wavelengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae[J].Fungal Biology, 2016, 120 (5) :745-751.

    [60]

    Ibarz R, Garvín A, Azuar E, et al.Modelling of ochratoxin A photo-degradation by a UV multi-wavelength emitting lamp[J].Food Science and Technology, 2015, 61 (2) :385-392.

    [61]

    Murata H, Mitsumatsu M, Shimada N.Reduction of feedcontaminating mycotoxins by ultraviolet irradiation:an in vitro study[J].Food Additives and Contaminants, 2008, 25 (9) :1107-1110.

    [62]

    Zhu Y, Koutchma T, Warriner K, et al.Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range[J].Journal of Food Protection, 2014, 77 (6) :963-971.

计量
  • 文章访问数:  124
  • HTML全文浏览量:  15
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01

目录

    /

    返回文章
    返回