Study on the enrichment of intestinal probiotics to three heavy metal ions under simulated intestinal environment
-
摘要: 本研究考察了嗜酸乳杆菌、嗜热链球菌、双歧杆菌三种肠道益生菌在模拟肠道环境条件下生长情况及对Cr6+、Cd2+、Pb2+的吸附特性。结果显示:嗜酸乳杆菌对Cr6+有较强的吸附和富集作用,最大吸附率为70%,吸附量为0.0021 mg/g;嗜热链球菌对Cr6+、Cd2+均有较强的吸附和富集作用,最大吸附率分别为50%和62%,吸附量分别为0.0015 mg/g和0.1057 mg/g;双歧杆菌对Cr6+、Cd2+均有较强的吸附和富集作用,最大吸附率分别为66.6%和69.9%,吸附量分别为0.0019 mg/g和0.1298 mg/g;三种肠道益生菌在模拟肠道环境下对Pb2+均无明显吸附作用。Abstract: In this paper, the absorption characteristics of Lactobacillus acidophilus, Streptococcus thermophilus and Bifidobacterium to Cr6 +、Cd2 +、Pb2 +under the simulated intestine environment were studied. The results indicated the Lactobacillus acidophilus had strong adsorption and enrichment to Cr6 +, and the adsorption ratio was 70% and the adsorption amount was 0.0021 mg / g.Streptococcus thermophilus also had strong adsorption and enrichment to Cr6 +and Cd2 +, and the adsorption ratio was 50% and 62%, and the adsorption amount was 0.0015 mg /g and0.1057 mg / g, respectively.Bifidobacterium also had strong adsorption and enrichment to Cr6 +and Cd2 +, and the adsorption ratio was 66.6% and 69.9%, and the adsorption amount was 0.0019 mg / g and 0.1298 mg / g, respectively.There was no obvious adsorption of Pb2 +among the three kinds of intestinal probitics under simulated intestinal environment.
-
Keywords:
- intestinal probiotics /
- intestinal environment /
- heavy metal ions /
- enrichment
-
[1] Bagchi D, Bagchi M, Stohs S J.Chromium (VI) -induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene[J].Molecular and Cellular Biochemistry, 2001, 222:149-158.
[2] Shrivastava R, Upreti R K, Seth P K, et al.Chromium on the immune system[J].FEMS Immunology and Medical Microbiology, 2002, 34:1-7.
[3] Mirsalis J C, Hamilton C M, O'Loughlin K G, et al.Chromium (VI) at plausible drinking water concentrations is not genotoxic in the in vivo bone marrow micronucleus or liver unscheduled DNA synthesis assays[J].Environmental and Molecular Mutagenesis, 1996, 28:60-63.
[4] Liu R X, Tang H X, Zhang B W.Removal of Cu, Cd and Hg from wastewater by poly (acylaminophosphonic) -type chelation fiber[J].Chemosphere, 1999, 38 (13) :3169-3179.
[5] Nejmeddine A, Fars S, Echab A.Removal of dissolved and particulate form of metals (Cu, Zn, Pb, Cd) by an anaerobic pond system in Marrakesh[J].Environmental Technology, 2000, 21 (2) :225-230.
[6] Srivastava S, Thakur I S.Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm[J].Soil Biology and Biochemistry, 2006, 38 (7) :1094-1911.
[7] Pal A, Ghosh S, Paul A K.Biosorption of cobalt by fungi from serpentine soil of Andaman[J].Bioresource Technology, 2006, 97 (10) :1253-1258.
[8] Say R, Denizli A, Arica M Y.Biosorption of cadmium (II) , lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium[J].Bioresource Technology, 2001, 76 (1) :67-70.
[9] Wang J, Chen C.Biosorption of heavy metals by Saccharomyces cerevisiae:A review[J].Biotechnology Advances, 2006, 24 (5) :427-451.
[10] Arjomandzadegan M, Rafiee P, Moraveji M K, et al.Efficacy evaluation and kinetic study of biosorption of nickel and zinc by bacteria isolated from stressed conditions in a bubble column[J].Asian Pacific Journal of Tropical Medicine.2014, 7S1:S194-198.
[11] Kan S H, Sun B Y, Xu F, et al.Biosorption of aquatic copper (II) by mushroom biomass Pleurotus eryngii:kinetic and isotherm studies[J].Water Science and Technology, 2015, 71 (2) :283-288.
[12] Dixit S1 Singh D P.Role of free living, immobilized and non-viable biomass of Nostoc muscorum in removal of heavy metals:an impact of physiological state of biosorbent[J].Cellular and molecular biology (Noisy-le-Grand) , 2014, 60 (5) :110-118.
[13] 陈卫, 翟齐啸.益生菌对食品安全危害因子的拮抗与减除[J].中国食品学报, 2014, 14 (11) :1-10. [14] 周雨霞, 候先志.益生菌与肠道疾病[J].中国微生态学杂志, 2006, 18 (2) :147-148. [15] Didari T, Mozaffari S, Nikfar S, et al.Effectiveness of probiotics in irritable bowel syndrome:Updated systematic review with meta-analysis[J].World Journal of Gastroenterology, 2015, 21 (10) :3072-3084.
[16] 董坷, 刘晶晶, 郭晓奎.益生菌增强机体免疫和抗肿瘤作用的分子机制[J].中国微生态学杂志, 2005, 17 (1) :79-81. [17] 薛超辉, 张兰威, 张迎春, 等.筛选具有抑制引起腹泻致病菌黏附功能的益生菌[J].食品工业科技, 2015, 36 (2) :227-230. [18] 张娟, 杨彩梅, 曹广添, 等.解淀粉芽孢杆菌及其作为益生菌的应用[J].动物营养学报, 2014, 26 (4) :863-867. [19] 陈佩, 党辉, 张秋香, 等.1株具有潜在降糖作用的益生菌的筛选[J].中国食品学报, 2014, 14 (11) :27-33. [20] Miller D D, Schricker B R, Rasmussen R R, et al.An in-vitro method for estimation of iron availability form meals[J].American Journal of Clinical Nutrition, 1981, 34 (10) :2248-2256.
[21] 徐丽丹, 邹积宏, 袁杰利.一株降血压功能乳酸菌在模拟胃肠环境中抗性的研究[J].中国微生态学杂志, 2011, 23 (2) :112-114. [22] 赖文, 刘书亮, 张倩颖, 等.降胆固醇乳酸菌鉴定及其在体外模拟胃肠环境中抗性研究[J].中国酿造, 2011, 3:90-93. [23] 张东平, 余应新, 张帆, 等.环境污染物对人体生物有效性测定的胃肠模拟研究现状[J].科学通报, 2008, 53 (21) :2537-2545. [24] 裴翠锦, 姚国光, 周福林, 等.紫外分光光度法测定水中铬 (VI) 的方法研究[J].湖北农业科学, 2009, 48 (4) :4-5. [25] 蒋桂华, 王晓菊, 唐燕红, 等.分光光度法测定海产品中微量镉[J].光谱学与光谱分析, 1999, 19 (3) :474-475. [26] 吴霖生, 任炜.分光光度法水相快速测定铅[J].滁州学院学报, 2008, 10 (5) :65-66. [27] 吴海江, 茆灿泉, 郭红光.微生物与重金属作用机理研究[J].安徽农业科学, 2009, 37 (11) :5068-5071.
计量
- 文章访问数: 161
- HTML全文浏览量: 29
- PDF下载量: 370