• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布

王小平, 刘忠莹, 钟洋, 张定秋, 陆阳, 朱敏敏, 郑红毅, 何叶馨, 王鑫, 黄韬睿, 江祖彬

王小平,刘忠莹,钟洋,等. 基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布[J]. 食品工业科技,2024,45(7):254−260. doi: 10.13386/j.issn1002-0306.2023050068.
引用本文: 王小平,刘忠莹,钟洋,等. 基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布[J]. 食品工业科技,2024,45(7):254−260. doi: 10.13386/j.issn1002-0306.2023050068.
WANG Xiaoping, LIU Zhongying, ZHONG Yang, et al. Analysis of Arsenic Speciation Distribution in Agaric, Shiitake Mushroom, Matsutake and Agrocybe by IC-ICP-MS Method[J]. Science and Technology of Food Industry, 2024, 45(7): 254−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050068.
Citation: WANG Xiaoping, LIU Zhongying, ZHONG Yang, et al. Analysis of Arsenic Speciation Distribution in Agaric, Shiitake Mushroom, Matsutake and Agrocybe by IC-ICP-MS Method[J]. Science and Technology of Food Industry, 2024, 45(7): 254−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050068.

基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布

基金项目: 四川省科技厅(2020YFH0157)。
详细信息
    作者简介:

    王小平(1990−),男,硕士,工程师,研究方向:食品检验及研究,E-mail:1213193763@qq.com

    通讯作者:

    江祖彬(1966−)男,本科,讲师,研究方向,食品加工,E-mail:541084217@qq.com

  • 中图分类号: TS201.6

Analysis of Arsenic Speciation Distribution in Agaric, Shiitake Mushroom, Matsutake and Agrocybe by IC-ICP-MS Method

  • 摘要: 为分析木耳、香菇、松茸和茶树菇中砷形态分布,采用离子色谱-电感耦合等离子体质谱(Ion Chromatography-Inductive Coupled Plasma Mass Spectrometer,IC-ICP-MS)法对其砷甜菜碱、二甲基砷、亚砷酸、砷胆碱、一甲基砷、砷酸进行测定,并进行方法学考察和含量测定。结果表明:方法在5 min内能将6种砷形态全部分离开,且峰型好;方法线性关系良好(标线质量浓度0.5~20 μg/L,r>0.999),6种砷形态检出限和定量限分别不超过0.005、0.017 mg/kg。木耳、茶树菇和香菇中6种砷形态加标回收率在80%~120%范围;对于松茸,适宜加标量(0.05 mg/kg二甲基砷、砷胆碱和砷酸;0.2 mg/kg亚砷酸和一甲基砷;5 mg/kg砷甜菜碱),加标回收率也在80%~120%范围。结合干制品脱水率,所测样品无机砷含量都符合GB 2762-2022要求;松茸总砷含量最高,但是无机砷(亚砷酸+砷酸)占总砷比例最低为3.7%~6.8%,其占比最高为砷甜菜碱(75.8%~87.3%);木耳、茶树菇和香菇中砷主要形式为无机砷,无机砷占总砷比例分别可达58.4%~66.1%、60.0%~66.7%、81.2%~91.7%,提示其总砷高时有食用安全风险。
    Abstract: To analyze the speciation distribution of arsenic in agaric, shiitake mushroom, matsutake and agrocybe, the ion chromatography-inductive coupled plasma mass spectrometer (IC-ICP-MS) was used to determine arsenobetaine, dimethyl arsenic, arsenous acid, arsenic choline, monomethyl arsenic and arsenic acid, and the methodological investigation and content determination were carried out. The results showed that the method could completely separate all six arsenic forms within 5 minutes, and the peak patterns were good. The linear relationship of the method was good (mass concentration of 0.5~20 μg/L, r>0.999). The detection limit and quantification limit of six arsenic species were not more than 0.005 and 0.017 mg/kg respectively. The recovery rate of six arsenic forms in agaric, agrocybe and shiitake mushroom could reach 80%~120% with standard addition. For matsutake, the standard addition recovery rate could also reach 80%~120% when adding right standard amounts (0.05 mg/kg dimethyl arsenic, arsenic choline and arsenic acid; 0.2 mg/kg arsenite and monomethyl arsenic; 5 mg/kg arsenic betaine). Combined with the dehydration rate of dry products, the inorganic arsenic content of the tested samples met the requirements of GB 2762-2022. The content of total arsenic in matsutake was the highest, but the proportion of inorganic arsenic(arsenic choline+arsenic acid) in total arsenic was the lowest 3.6%~6.8%, and the highest proportion was arsenobetaine (75.8%~87.3%). The main form of arsenic in agaric, agrocybe, and shiitake mushroom were inorganic arsenic. The proportion of inorganic arsenic to total arsenic could reach 58.4%~66.1%、60.0%~66.7%、81.2%~91.7%, respectively. There was a risk of food safety when the total arsenic content was high.
  • 食用菌富含蛋白质、氨基酸、维生素及活性多糖等生物成分,同时兼顾美味,深受我国消费者的喜爱,我国已成为世界上最大食用菌生产国和消费国[14]。木耳、香菇、松茸和茶树菇是较受欢迎的食用菌,木耳是我国重要的食用菌,其质地柔软,口感细嫩,味道鲜美,风味特殊[56];香菇肉质肥厚细嫩,味道鲜美,香气独特,营养丰富,是一种食药同源的食物[78];松茸是野生的珍贵真菌,其有很高的营美价值,味道鲜美、药用价值高[911];茶树菇营养丰富,蛋白质含量高,含有多种人体必需氨基酸,并且含有丰富的B族维生素和钾、钠、钙、镁、铁、锌等矿质元素[12]。随着科学技术的发展,人类对环境的污染越来越严重,食用菌中重金属污染问题引起人们的高度重视[1314]。砷是一种有毒有害的类金属化合物,砷分为有机砷和无机砷,有机砷毒性低或者无毒性,无机砷有致癌、致畸的危害。基于砷形态毒性的差异[1517],仅测定食品中的总砷不能真实评价砷的毒性,因此分析食品中砷的形态分布对食品安全具有积极的意义。

    目前砷形态分析主要有高效液相色谱-电感耦合等离子质谱法(High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry,HPLC-ICP-MS)、离子色谱-电感耦合等离子体质谱法(Ion Chromatography-Inductive Coupled Plasma Mass Spectrometer,IC-ICP-MS)、液相色谱-原子荧光光谱法(Liquid Chromatography-Atomic Fluorescence Spectrometry,LC-AFS)等方法[1822], IC-ICP-MS具有灵敏度高、选择性高、线性范围宽、检测限低等特点,该方法普遍用于食品中砷形态分析,并取得了良好的效果[2325]。如:周春艳等[26]建立了一种IC-ICP -MS方法同时测定野生食用菌中砷甜菜碱、砷胆碱、二甲基砷、一甲基砷、亚砷酸、砷酸6 种砷形态的方法,该方法具有灵敏度高、准确性好的特点,可用于野生食用菌中砷形态检测分析;Barnet等[27]对测定水稻中砷形态的IC-ICP-MS方法进行了优化,8 min内实现了As(Ⅲ)、DMA(Ⅴ)、MMA(Ⅴ)和As(Ⅴ)的色谱分离和洗脱,因此可以采用IC-ICP-MS法对木耳、香菇、松茸和茶树菇中砷形态进行测定。目前,关于食用菌中无机砷报道很多,但针对木耳、香菇、松茸和茶树菇中砷形态分布研究很少,本研究先建立一种能快速测定木耳、香菇、松茸和茶树菇中砷甜菜碱、砷胆碱、二甲基砷、一甲基砷、亚砷酸、砷酸的方法,以测定样品中砷形态含量,并计算出各种砷形态占总砷的百分比,为全面评价木耳、香菇、松茸和茶树菇中砷的危害提供了数据支撑。

    木耳、香菇、松茸和茶树菇采收时间5月~8月,均为干制品 四川省农贸市场和超市;亚砷酸根、砷酸根、一甲基砷、二甲基砷、砷甜菜碱、砷胆碱标准溶液 浓度均为1000 μg/mL,北京北方伟业计量技术研究院;砷、锗标准溶液 浓度均为1000 μg/mL,国家有色金属及电子材料分析测试中心;碳酸铵、硝酸 优级纯,赛默飞世尔科技有限公司。

    iCAP Q 电感耦合等离子体质谱仪、DIONEX ICS-5000 DP 离子色谱仪、DionexIonPacTM AS7 色谱柱(4 mm×250 mm) 赛默飞世尔科技有限公司;ME204分析天平 瑞士梅特勒-托利多公司;TOPEX微波消解仪 上海屹尧仪器科技发展有限公司。

    按照GB 5009.11-2014《食品安全国家标准食品中总砷及无机砷的测定》第一法电感耦合等离子体质谱法进行测定。

    本方法以保留时间定性和质荷比(As 75)定性,外标法定量,对砷形态进行测定。

    样品提取:取粉碎后样品1.0 g于50 mL塑料离心管中,加入1%硝酸溶液20 mL,室温放置过夜,再置于90 ℃烘箱中热浸提2.5 h,每0.5 h振摇1次,提取完毕,取出冷却至室温,8000 r/min离心15 min,取上清液经0.45 μm水系滤膜过滤得待测液。

    离子色谱仪条件:色谱柱:DionexIonPacTM AS7 色谱柱(4 mm×250 mm);流动相A:2.5 mmol/L碳酸铵溶液;流动相B:100 mmol/L碳酸铵溶液,梯度洗脱程序见表1;流速:1 mL/min;进行体积:25 μL[26]

    表  1  梯度洗脱程序
    Table  1.  Program of the gradient elution
    洗脱时间(min)流动相A(%)流动相B(%)
    0~1.58515
    1.5~2.585→015→100
    2.5~5.00100
    5.0~5.30→85100→15
    5.3~5.58515
    下载: 导出CSV 
    | 显示表格

    ICP-MS条件:采集元素:As;采集模式:He模式;射频功率:1550 W;提取透镜1:−5.0 V;提取透镜2:−250 V;辅助气流量:0.9 L/min;雾化气流量:0.8 L/min[24]

    实验数据重复3次,以平均值±标准偏差(¯X±S)表示,采用SPSS 26.0软件对数据进行统计分析,采用单因素方差分析进行组间比较,以P<0.05为差异有统计学意义。

    用1%硝酸将6种砷形态配制成混合标准溶液,按照所建立的分析方法进行测定,色谱图见图1。由图1可知,在本试验条件下,6种砷形态(砷甜菜碱、二甲基砷、亚砷酸、砷胆碱、一甲基砷、砷酸)在5 min内能够实现良好分离,且峰型好,明显优于同类研究的文献报道[2527]

    图  1  6种砷形态标准溶液的色谱图
    Figure  1.  Chromatograms of six standard solutions for arsenic forms

    以峰面积(y)为纵坐标,标准溶液质量浓度(x)为横坐标制作标准曲线,得到回归方程和相关系数,如表2所示,在0.5~20 μg/L范围内,6种砷形态的相关系数r均>0.999,说明方法的线性回归方程相关性很好。以1.0 g取样量定容至20 mL,计算6种砷形态的检出限(3倍信噪比)和定量限(10倍信噪比),6种砷形态检出限、定量限分别不超过0.005、0.017 mg/kg,表明方法灵敏度高,定量限低[2526]

    表  2  6种砷形态分析的线性回归方程、相关系数、检出限和定量限
    Table  2.  Linear regression equations, correlation coefficients, detection limits, and quantification limits for the analysis of six arsenic forms arsenic compounds
    序号 化合物 出峰时间(min) 线性范围(μg·L−1 线性回归方程 相关系数(r 检出限(mg·kg−1 定量限(mg·kg−1
    1 砷甜菜碱 1.35 0.5~20 y=8755.0839x+495.3564 1.0000 0.002 0.007
    2 二甲基砷 1.67 0.5~20 y=9157.9620x+105.4422 1.0000 0.003 0.010
    3 亚砷酸 1.88 0.5~20 y=5718.1914x−540.6451 0.9999 0.005 0.017
    4 砷胆碱 2.65 0.5~20 y=6625.8697x+115.2694 1.0000 0.005 0.016
    5 一甲基砷 4.23 0.5~20 y=9307.3192x−480.3991 0.9998 0.004 0.015
    6 砷酸 4.87 0.5~20 y=11014.3191x+2052.3160 0.9995 0.002 0.008
    下载: 导出CSV 
    | 显示表格

    为考察方法的适用性和准确性,对木耳、茶树菇、香菇及松茸进行三水平六平行加标试验,加标量为方法1~10倍定量限水平,即分别为0.01、0.05、0.1 mg/kg,加标试验结果见表3。由表3可知,木耳、茶树菇和香菇中6种砷形态的低、中、高加标量,其加标回收率均在80%~120%范围内,满足GB/T 27404-2008的要求,且加标回收率相对标准偏差(Relative Standard Deviation,RSD)均<10%,说明本方法检测木耳、茶树菇和香菇中6种砷形态准确性和精密度都很好,与文献报道的加标回收率一致[2526]。由表3,松茸中砷甜菜碱、亚砷酸和一甲基砷本底含量高,分别为8.640、0.207、0.296 mg/kg,远高于本试验加标水平,特别是砷甜菜碱,根据文献报道加标量应与样品中相应待测物含量相近[28],一般为试样含量0.5~2 倍,因此0.01、0.05、0.1 mg/kg加标量不适合于分析该松茸样品中砷甜菜碱、亚砷酸和一甲基砷加标回收率,由此,将亚砷酸和一甲基砷加标量提高至0.2 mg/kg,砷甜菜碱加标量提高至5 mg/kg,进行6次平行试验,得到亚砷酸和一甲基砷加标回收率为81.4%~107.3%,相对标准偏差RSD<10%,砷甜菜碱加标回收率为85.5%~92.2%,相对标准偏差为4.2%~6.7%,表明本方法测定松茸中6种砷形态,其准确性和精密度好。

    表  3  6种砷形态加标回收结果
    Table  3.  Recovery results of six arsenic compounds
    品种化合物本底含量
    (mg·kg−1
    0.01 mg/kg0.05 mg/kg0.1 mg/kg
    测得含量
    (mg·kg−1
    加标回收率
    (%)
    RSD(%)测得含量
    (mg·kg−1
    加标回收率
    (%)
    RSD(%)测得含量
    (mg·kg−1
    加标回收率
    (%)
    RSD(%)
    木耳砷甜菜碱0.0040.015118.16.90.056106.26.20.108104.13.2
    二甲基砷0.0180.029112.26.10.070105.33.00.120103.22.0
    亚砷酸0.0950.106110.17.30.145101.54.90.198103.13.9
    砷胆碱NA0.010108.20.40.04798.26.40.09899.22.4
    一甲基砷0.0090.019106.15.40.058100.15.00.109101.23.0
    砷酸0.0300.041110.69.60.083107.37.60.140110.16.6
    茶树菇砷甜菜碱NA0.009110.14.20.050106.46.60.101102.86.5
    二甲基砷0.0300.042116.22.40.082104.53.10.137106.16.0
    亚砷酸0.0250.03491.34.00.076103.25.40.129103.26.8
    砷胆碱NA0.00997.82.90.04695.37.60.09293.11.8
    一甲基砷0.0040.015102.24.20.054100.15.10.10096.25.3
    砷酸0.0340.046119.36.70.088109.38.00.150116.19.2
    香菇砷甜菜碱NA0.008109.14.90.051108.48.10.103106.36.1
    二甲基砷0.0140.024102.34.20.064102.80.20.115101.53.3
    亚砷酸0.0440.05280.51.50.094101.60.10.14399.32.0
    砷胆碱NA0.010104.36.00.04696.23.40.09293.21.0
    一甲基砷0.0080.01788.24.50.05086.11.20.09487.10.6
    砷酸0.0940.10496.30.20.151114.30.70.202108.20.1
    松茸砷甜菜碱8.640/////////
    二甲基砷0.0320.04186.24.00.07893.72.80.12390.94.2
    亚砷酸0.207/////////
    砷胆碱NA0.00987.14.10.03581.17.30.08787.87.7
    一甲基砷0.296/////////
    砷酸0.0710.081100.36.00.121100.12.30.187117.37.0
    注:“NA”表示未检出;“/”表示样品本底太高,该加标量不适合。
    下载: 导出CSV 
    | 显示表格

    为调查木耳、茶树菇、香菇和松茸中砷形态分布,采用本方法对其砷甜菜碱、二甲基砷、亚砷酸、砷胆碱、一甲基砷和砷酸进行测定,砷形态测得含量及占总砷百分比分别见表4表5。由表4可知,所测木耳、茶树菇、香菇和松茸中都没有检出砷胆碱,砷胆碱是海洋动物中砷甜菜碱代谢的前体形式[29],主要存在虾体内,一般不存在植物体内,这与秦玉燕[30]报道一致。不同形态砷毒性由大到小为:亚砷酸>砷酸>一甲基砷>二甲基砷>砷胆碱>砷甜菜碱,其中一甲基砷、二甲基砷、砷胆碱和砷甜菜碱为有机砷,亚砷酸和砷酸为无机砷,GB 2762-2022对食用菌中无机砷含量有严格要求(食用菌及其制品0.5 mg/kg、松茸及其制品0.8 mg/kg、木耳及其制品以干重计0.5 mg/kg),GB 2762-2022规定总砷含量没有超过无机砷限量时,不用测定无机砷。由表4,松茸中总砷含量最高,平均含量达到7.88 mg/kg,对其砷形态测定,发现无机砷含量很低,最高为5号松茸0.62 mg/kg,满足GB2762-2022要求;所测木耳和茶树菇总砷含量都没有超过GB 276-2022对其无机砷含量要求,5个香菇样品中有一个样品香菇5总砷0.97 mg/kg超过0.5 mg/kg限量,进一步测定无机砷含量为0.883 mg/kg,GB 276-2022指出干制食用菌污染物限量应以相应新鲜食品中污染物限量结合其脱水率或浓缩率折算,根据文献报道新鲜食用菌含水量为80%~90%[31],GB 7096-2014对干制蘑菇含水量要求≤13%,由此折算GB 276-2022对干制蘑菇无机砷砷限量约为3 mg/kg,远高于0.883 mg/kg,因此所测的木耳、茶树菇、香菇和松茸样品中无机砷含量均满足GB 2762-2022要求。

    表  4  砷形态和总砷含量测定结果(mg/kg)
    Table  4.  Determination results of arsenic form and total arsenic content (mg/kg)
    品种 编号 砷甜菜碱 二甲基砷 亚砷酸 砷胆碱 一甲基砷 砷酸 总砷
    木耳 木耳1 0.014±0.002 0.018±0.005 0.095±0.007 NA 0.019±0.005 0.030±0.008 0.19±0.02
    木耳2 0.010±0.003 0.013±0.003 0.103±0.006 NA 0.019±0.007 0.036±0.006 0.21±0.03
    木耳3 0.014±0.004 0.018±0.004 0.087±0.009 NA 0.016±0.003 0.024±0.007 0.19±0.05
    木耳4 0.011±0.002 0.011±0.002 0.041±0.004 NA 0.012±0.007 0.024±0.005 0.10±0.02
    木耳5 0.010±0.003 0.012±0.003 0.033±0.007 NA 0.009±0.006 0.022±0.006 0.09±0.02
    平均值 0.012±0.002 0.014±0.003 0.072±0.032 NA 0.015±0.004 0.027±0.006 0.16±0.06
    茶树菇 茶树菇1 NA 0.018±0.007 0.031±0.009 NA 0.010±0.002 0.028±0.007 0.09±0.02
    茶树菇2 NA 0.026±0.009 0.028±0.007 NA 0.007±0.003 0.037±0.011 0.10±0.03
    茶树菇3 NA 0.030±0.007 0.039±0.008 NA 0.008±0.001 0.041±0.009 0.12±0.03
    茶树菇4 NA 0.015±0.002 0.022±0.003 NA 0.009±0.002 0.020±0.0013 0.07±0.02
    茶树菇5 NA 0.030±0.004 0.049±0.005 NA 0.012±0.003 0.043±0.0013 0.14±0.03
    平均值 NA 0.024±0.007 0.034±0.011 NA 0.010±0.001 0.034±0.010 0.10±0.03
    香菇 香菇1 NA 0.014±0.003 0.044±0.010 NA 0.008±0.003 0.094±0.013 0.17±0.06
    香菇2 NA 0.017±0.002 0.115±0.011 NA 0.011±0.003 0.261±0.023 0.41±0.13
    香菇3 NA 0.013±0.004 0.098±0.012 NA 0.007±0.005 0.161±0.035 0.29±0.11
    香菇4 NA 0.026±0.005 0.214±0.021 NA 0.014±0.002 0.212±0.045 0.48±0.18
    香菇5 NA 0.047±0.007 0.637±0.012 NA 0.017±0.004 0.246±0.037 0.97±0.11
    平均值 NA 0.023±0.014 0.230±0.193 NA 0.012±0.004 0.203±0.003 0.47±0.31
    松茸 松茸1 6.640±0.513 0.032±0.008 0.207±0.021 NA 0.296±0.018 0.071±0.008 7.61±0.65
    松茸2 6.417±0.841 0.180±0.053 0.290±0.025 NA 0.348±0.032 0.157±0.015 8.28±0.71
    松茸3 5.835±0.397 0.088±0.015 0.227±0.022 NA 0.362±0.043 0.035±0.003 7.09±0.69
    松茸4 6.670±0.298 0.119±0.011 0.368±0.039 NA 0.310±0.031 0.033±0.008 8.17±0.82
    松茸5 6.928±0.399 0.111±0.010 0.466±0.033 NA 0.585±0.047 0.155±0.013 9.14±0.88
    平均值 6.414±0.533 0.038±0.053 0.244±0.107 NA 0.638±0.118 0.165±0.062 7.88±0.77
    注:“NA”表示未检出。
    下载: 导出CSV 
    | 显示表格
    表  5  砷形态占总砷的百分比(%)
    Table  5.  Arsenic form as a percentage of total arsenic (%)
    品种编号砷甜菜碱二甲基砷亚砷酸砷胆碱一甲基砷砷酸无机砷合计
    木耳木耳17.49.550.0NA10.015.865.892.7
    木耳24.86.249.0NA9.017.166.186.1
    木耳37.49.545.8NA8.412.658.483.7
    木耳411.011.041.0NA12.024.065.099.0
    木耳511.113.336.7NA10.024.461.195.5
    平均值8.39.944.5NA9.918.863.391.4
    茶树菇茶树菇1NA20.034.4NA11.131.165.596.6
    茶树菇2NA26.028.0NA7.037.065.098.0
    茶树菇3NA25.032.5NA6.734.266.798.4
    茶树菇4NA21.431.4NA12.928.660.094.3
    茶树菇5NA21.435.0NA8.630.765.795.7
    平均值NA22.832.3NA9.232.364.696.6
    香菇香菇1NA8.225.9NA4.755.381.294.1
    香菇2NA4.128.0NA2.763.791.798.5
    香菇3NA4.533.8NA2.455.589.396.2
    香菇4NA5.444.6NA2.944.288.897.1
    香菇5NA4.865.7NA1.825.491.197.7
    平均值NA5.439.6NA2.948.888.496.7
    松茸松茸187.30.42.7NA3.90.93.695.2
    松茸277.52.23.5NA4.21.95.489.3
    松茸382.31.23.2NA5.10.53.792.3
    松茸481.61.54.5NA3.80.44.991.8
    松茸575.81.25.1NA6.41.76.890.2
    平均值78.51.33.8NA4.71.14.989.4
    注:“NA”表示未检出;无机砷=亚砷酸+砷酸;合计=砷甜菜碱+二甲基砷+亚砷酸+砷胆碱+一甲基砷+砷酸。
    下载: 导出CSV 
    | 显示表格

    本研究所用样品均来自四川不同地区,从表5可知,同一品种食用菌6种砷形态分布是一致的,这跟砷在食用菌中体内的代谢相关,所测木耳、茶树菇、香菇和松茸中6种砷形态的总和超过了总砷的80%,说明这4种食用菌中的砷主要以这6种砷形态存在。由表4,松茸在所测食用菌中总砷含量是最高的,这与段志敏等[32]报道结果一致,虽然总砷含量高,但其中毒性大的无机砷(亚砷酸和砷酸)占比很小,无机砷占总砷比例低于7%,而占比最高的是砷甜菜碱为75.8%~87.3%,这与甘源等[33]和唐克纯等[34]报道一致。木耳、茶树菇和香菇中无机砷占总砷百分比很高,分别为58.4%~66.1%、60.0%~66.7%、81.2%~91.7%,这与跟唐克纯等[34]报道相近,这说明木耳、茶树菇和香菇中砷主要以无机砷形式存在,由此提示其总砷含量高时有食用安全风险。

    本方法采用IC-ICP-MS测定木耳、茶树菇、香菇和松茸中的砷甜菜碱、二甲基砷、亚砷酸、砷胆碱、一甲基砷、砷酸,能在5 min内能将其全部分离,且峰型很好,6种砷形态检出限、定量限分别不超过0.005、 0.017 mg/kg。对方法进行加标考察,木耳、茶树菇和香菇6种砷形态回收率在80%~120%范围(0.01、0.05、0.1 mg/kg加标量),且加标回收率相对标准偏差RSD均<10%;在松茸中加入0.05 mg/kg二甲基砷、砷胆碱和砷酸,0.2 mg/kg亚砷酸和一甲基砷,5 mg/kg砷甜菜碱,其加标回收率也能在80%~120%范围。木耳、茶树菇、香菇和松茸中砷主要以砷甜菜碱、二甲基砷、亚砷酸、一甲基砷、砷酸存在,结合干制品的脱水率,所测木耳、茶树菇、香菇和松茸样品无机砷含量都符合GB 2762-2022要求;松茸总砷含量最高,但无机砷占总砷比例是最低的,不超过7%,其主要以砷甜菜碱形式存在,占比总砷可达70%以上;木耳、茶树菇和香菇的无机砷(亚砷酸+砷酸)占总砷百分比很高,分别为58.4%~66.1%、60.0%~66.7%、81.2%~91.7%,表明木耳、茶树菇和香菇中砷主要以无机砷形式存在,提示木耳、茶树菇和香菇总砷较高时存在食用安全风险。本研究初步分析了木耳、茶树菇、香菇和松茸中砷形态分布,揭示各自砷形态在总砷中的占比,为后期研究木耳、茶树菇、香菇和松茸中砷的毒理学及砷的代谢等研究提供了数据支撑。

  • 图  1   6种砷形态标准溶液的色谱图

    Figure  1.   Chromatograms of six standard solutions for arsenic forms

    表  1   梯度洗脱程序

    Table  1   Program of the gradient elution

    洗脱时间(min)流动相A(%)流动相B(%)
    0~1.58515
    1.5~2.585→015→100
    2.5~5.00100
    5.0~5.30→85100→15
    5.3~5.58515
    下载: 导出CSV

    表  2   6种砷形态分析的线性回归方程、相关系数、检出限和定量限

    Table  2   Linear regression equations, correlation coefficients, detection limits, and quantification limits for the analysis of six arsenic forms arsenic compounds

    序号 化合物 出峰时间(min) 线性范围(μg·L−1 线性回归方程 相关系数(r 检出限(mg·kg−1 定量限(mg·kg−1
    1 砷甜菜碱 1.35 0.5~20 y=8755.0839x+495.3564 1.0000 0.002 0.007
    2 二甲基砷 1.67 0.5~20 y=9157.9620x+105.4422 1.0000 0.003 0.010
    3 亚砷酸 1.88 0.5~20 y=5718.1914x−540.6451 0.9999 0.005 0.017
    4 砷胆碱 2.65 0.5~20 y=6625.8697x+115.2694 1.0000 0.005 0.016
    5 一甲基砷 4.23 0.5~20 y=9307.3192x−480.3991 0.9998 0.004 0.015
    6 砷酸 4.87 0.5~20 y=11014.3191x+2052.3160 0.9995 0.002 0.008
    下载: 导出CSV

    表  3   6种砷形态加标回收结果

    Table  3   Recovery results of six arsenic compounds

    品种化合物本底含量
    (mg·kg−1
    0.01 mg/kg0.05 mg/kg0.1 mg/kg
    测得含量
    (mg·kg−1
    加标回收率
    (%)
    RSD(%)测得含量
    (mg·kg−1
    加标回收率
    (%)
    RSD(%)测得含量
    (mg·kg−1
    加标回收率
    (%)
    RSD(%)
    木耳砷甜菜碱0.0040.015118.16.90.056106.26.20.108104.13.2
    二甲基砷0.0180.029112.26.10.070105.33.00.120103.22.0
    亚砷酸0.0950.106110.17.30.145101.54.90.198103.13.9
    砷胆碱NA0.010108.20.40.04798.26.40.09899.22.4
    一甲基砷0.0090.019106.15.40.058100.15.00.109101.23.0
    砷酸0.0300.041110.69.60.083107.37.60.140110.16.6
    茶树菇砷甜菜碱NA0.009110.14.20.050106.46.60.101102.86.5
    二甲基砷0.0300.042116.22.40.082104.53.10.137106.16.0
    亚砷酸0.0250.03491.34.00.076103.25.40.129103.26.8
    砷胆碱NA0.00997.82.90.04695.37.60.09293.11.8
    一甲基砷0.0040.015102.24.20.054100.15.10.10096.25.3
    砷酸0.0340.046119.36.70.088109.38.00.150116.19.2
    香菇砷甜菜碱NA0.008109.14.90.051108.48.10.103106.36.1
    二甲基砷0.0140.024102.34.20.064102.80.20.115101.53.3
    亚砷酸0.0440.05280.51.50.094101.60.10.14399.32.0
    砷胆碱NA0.010104.36.00.04696.23.40.09293.21.0
    一甲基砷0.0080.01788.24.50.05086.11.20.09487.10.6
    砷酸0.0940.10496.30.20.151114.30.70.202108.20.1
    松茸砷甜菜碱8.640/////////
    二甲基砷0.0320.04186.24.00.07893.72.80.12390.94.2
    亚砷酸0.207/////////
    砷胆碱NA0.00987.14.10.03581.17.30.08787.87.7
    一甲基砷0.296/////////
    砷酸0.0710.081100.36.00.121100.12.30.187117.37.0
    注:“NA”表示未检出;“/”表示样品本底太高,该加标量不适合。
    下载: 导出CSV

    表  4   砷形态和总砷含量测定结果(mg/kg)

    Table  4   Determination results of arsenic form and total arsenic content (mg/kg)

    品种 编号 砷甜菜碱 二甲基砷 亚砷酸 砷胆碱 一甲基砷 砷酸 总砷
    木耳 木耳1 0.014±0.002 0.018±0.005 0.095±0.007 NA 0.019±0.005 0.030±0.008 0.19±0.02
    木耳2 0.010±0.003 0.013±0.003 0.103±0.006 NA 0.019±0.007 0.036±0.006 0.21±0.03
    木耳3 0.014±0.004 0.018±0.004 0.087±0.009 NA 0.016±0.003 0.024±0.007 0.19±0.05
    木耳4 0.011±0.002 0.011±0.002 0.041±0.004 NA 0.012±0.007 0.024±0.005 0.10±0.02
    木耳5 0.010±0.003 0.012±0.003 0.033±0.007 NA 0.009±0.006 0.022±0.006 0.09±0.02
    平均值 0.012±0.002 0.014±0.003 0.072±0.032 NA 0.015±0.004 0.027±0.006 0.16±0.06
    茶树菇 茶树菇1 NA 0.018±0.007 0.031±0.009 NA 0.010±0.002 0.028±0.007 0.09±0.02
    茶树菇2 NA 0.026±0.009 0.028±0.007 NA 0.007±0.003 0.037±0.011 0.10±0.03
    茶树菇3 NA 0.030±0.007 0.039±0.008 NA 0.008±0.001 0.041±0.009 0.12±0.03
    茶树菇4 NA 0.015±0.002 0.022±0.003 NA 0.009±0.002 0.020±0.0013 0.07±0.02
    茶树菇5 NA 0.030±0.004 0.049±0.005 NA 0.012±0.003 0.043±0.0013 0.14±0.03
    平均值 NA 0.024±0.007 0.034±0.011 NA 0.010±0.001 0.034±0.010 0.10±0.03
    香菇 香菇1 NA 0.014±0.003 0.044±0.010 NA 0.008±0.003 0.094±0.013 0.17±0.06
    香菇2 NA 0.017±0.002 0.115±0.011 NA 0.011±0.003 0.261±0.023 0.41±0.13
    香菇3 NA 0.013±0.004 0.098±0.012 NA 0.007±0.005 0.161±0.035 0.29±0.11
    香菇4 NA 0.026±0.005 0.214±0.021 NA 0.014±0.002 0.212±0.045 0.48±0.18
    香菇5 NA 0.047±0.007 0.637±0.012 NA 0.017±0.004 0.246±0.037 0.97±0.11
    平均值 NA 0.023±0.014 0.230±0.193 NA 0.012±0.004 0.203±0.003 0.47±0.31
    松茸 松茸1 6.640±0.513 0.032±0.008 0.207±0.021 NA 0.296±0.018 0.071±0.008 7.61±0.65
    松茸2 6.417±0.841 0.180±0.053 0.290±0.025 NA 0.348±0.032 0.157±0.015 8.28±0.71
    松茸3 5.835±0.397 0.088±0.015 0.227±0.022 NA 0.362±0.043 0.035±0.003 7.09±0.69
    松茸4 6.670±0.298 0.119±0.011 0.368±0.039 NA 0.310±0.031 0.033±0.008 8.17±0.82
    松茸5 6.928±0.399 0.111±0.010 0.466±0.033 NA 0.585±0.047 0.155±0.013 9.14±0.88
    平均值 6.414±0.533 0.038±0.053 0.244±0.107 NA 0.638±0.118 0.165±0.062 7.88±0.77
    注:“NA”表示未检出。
    下载: 导出CSV

    表  5   砷形态占总砷的百分比(%)

    Table  5   Arsenic form as a percentage of total arsenic (%)

    品种编号砷甜菜碱二甲基砷亚砷酸砷胆碱一甲基砷砷酸无机砷合计
    木耳木耳17.49.550.0NA10.015.865.892.7
    木耳24.86.249.0NA9.017.166.186.1
    木耳37.49.545.8NA8.412.658.483.7
    木耳411.011.041.0NA12.024.065.099.0
    木耳511.113.336.7NA10.024.461.195.5
    平均值8.39.944.5NA9.918.863.391.4
    茶树菇茶树菇1NA20.034.4NA11.131.165.596.6
    茶树菇2NA26.028.0NA7.037.065.098.0
    茶树菇3NA25.032.5NA6.734.266.798.4
    茶树菇4NA21.431.4NA12.928.660.094.3
    茶树菇5NA21.435.0NA8.630.765.795.7
    平均值NA22.832.3NA9.232.364.696.6
    香菇香菇1NA8.225.9NA4.755.381.294.1
    香菇2NA4.128.0NA2.763.791.798.5
    香菇3NA4.533.8NA2.455.589.396.2
    香菇4NA5.444.6NA2.944.288.897.1
    香菇5NA4.865.7NA1.825.491.197.7
    平均值NA5.439.6NA2.948.888.496.7
    松茸松茸187.30.42.7NA3.90.93.695.2
    松茸277.52.23.5NA4.21.95.489.3
    松茸382.31.23.2NA5.10.53.792.3
    松茸481.61.54.5NA3.80.44.991.8
    松茸575.81.25.1NA6.41.76.890.2
    平均值78.51.33.8NA4.71.14.989.4
    注:“NA”表示未检出;无机砷=亚砷酸+砷酸;合计=砷甜菜碱+二甲基砷+亚砷酸+砷胆碱+一甲基砷+砷酸。
    下载: 导出CSV
  • [1]

    QIU Y, LI C, DONG H, et al. Analysis of key fungi and their effect on the edible quality of HongJun tofu, a Chinese fermented okara food[J]. LWT,2022,172:114151. doi: 10.1016/j.lwt.2022.114151

    [2] 罗晓莉, 张沙沙, 曹晶晶, 等. 云南3种胶质食用菌营养成分分析与蛋白质营养价值评价[J]. 食品工业科技,2021,42(14):328−333. [LUO X L, ZHANG S S, CAO J J, et al. Analysis of nutritional components and evaluation of protein nutritional value of three kinds of gelatinous edible fungi in Yunnan[J]. Science and Technology of Food Industry,2021,42(14):328−333.]

    LUO X L, ZHANG S S, CAO J J, et al. Analysis of nutritional components and evaluation of protein nutritional value of three kinds of gelatinous edible fungi in Yunnan[J]. Science and Technology of Food Industry, 2021, 4214): 328333.

    [3] 苏世贤, 李婕, 吴安波, 等. 常见菌材主要营养成分及内含物质的分析[J]. 湖南农业大学学报(自然科学版),2022,48(4):436−442. [SU S X, LI J, WU A B, et al. Analysis of main nutritional components and inclusive substances of common woods for cultivation of edible fungi[J]. Journal of Hunan Agricultural University (Natural Sciences),2022,48(4):436−442.]

    SU S X, LI J, WU A B, et al. Analysis of main nutritional components and inclusive substances of common woods for cultivation of edible fungi[J]. Journal of Hunan Agricultural University (Natural Sciences), 2022, 484): 436442.

    [4] 张慢, 邢苏徽, 千春录, 等. 7种食用菌的营养成分及抗氧化性分析[J]. 食品科技,2022,47(6):120−126. [ZHANG M, XING S H, QIAN C L, et al. Analysis of the nutritional components and antioxidant properties of seven species of edible mushrooms[J]. Food Science and Technology,2022,47(6):120−126.] doi: 10.3969/j.issn.1005-9989.2022.6.spkj202206018

    ZHANG M, XING S H, QIAN C L, et al. Analysis of the nutritional components and antioxidant properties of seven species of edible mushrooms[J]. Food Science and Technology, 2022, 476): 120126. doi: 10.3969/j.issn.1005-9989.2022.6.spkj202206018

    [5] 薛依婷, 白红霞, 李明杰, 等. 黑木耳多糖凝固型酸奶发酵工艺优化[J]. 食品工业科技,2020,41(16):156−162. [XUE Y T, BAI H X, LI M J, et al. Optimization of fermentation process of set yogurt with Auricularia auricular polysaccharide[J]. Science and Technology of Food Industry,2020,41(16):156−162.]

    XUE Y T, BAI H X, LI M J, et al. Optimization of fermentation process of set yogurt with Auricularia auricular polysaccharide[J]. Science and Technology of Food Industry, 2020, 4116): 156162.

    [6]

    REN Y, WANG X, WANG Y, et al. Non-thermal technologies for the degradation of sulfur dioxide from black fungus and their effects on its appearance profiles and nutritional properties[J]. Journal of Food Composition and Analysis,2023,121:105383. doi: 10.1016/j.jfca.2023.105383

    [7]

    WANG M, ZHAO R. A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues[J]. Journal of Future Foods,2023,3(1):1−7. doi: 10.1016/j.jfutfo.2022.09.001

    [8] 陈璁, 叶爽, 王桂华, 等. 不同干燥方式和粉碎程度对双孢蘑菇理化、营养和功能特性的影响[J]. 食品科学,2023,44(1):88−97. [CHEN C, YE S, WANG G H, et al. Effects of different drying methods and crushing degrees on the physicochemical, nutritional and functional properties of Agaricus bisporus[J]. Food Science,2023,44(1):88−97.]

    CHEN C, YE S, WANG G H, et al. Effects of different drying methods and crushing degrees on the physicochemical, nutritional and functional properties of Agaricus bisporus[J]. Food Science, 2023, 441): 8897.

    [9] 景炳年, 常霞, 魏磊, 等. 博爱县赤松茸营养成分、生物活性物质及重金属含量分析与评价[J]. 食品工业科技,2022,43(4):278−285. [JING B N, CHANG X, WEI L, et al. Analysis and evaluation of nutrient components, bioactive substances and heavy metal content of Stropharia rugosoannulata in Bo’ai County[J]. Science and Technology of Food Industry,2022,43(4):278−285.]

    JING B N, CHANG X, WEI L, et al. Analysis and evaluation of nutrient components, bioactive substances and heavy metal content of Stropharia rugosoannulata in Bo’ai County[J]. Science and Technology of Food Industry, 2022, 434): 278285.

    [10] 刘利平, 李德顺, 张劲松, 等. 不同产地松茸子实体营养和功能成分比较[J]. 中国食用菌,2022,41(12):31−38. [LIU L P, LI D S, ZHANG J S, et al. Comparison of nutritional and functional components of Tricholoma matsutake fruit bodies from different areas[J]. Edible Fungi of China,2022,41(12):31−38.]

    LIU L P, LI D S, ZHANG J S, et al. Comparison of nutritional and functional components of Tricholoma matsutake fruit bodies from different areas[J]. Edible Fungi of China, 2022, 4112): 3138.

    [11]

    YAMANAKA T, YAMADA A, FURUKAWA H. Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake[J]. Mycoscience,2020,61(2):49−57. doi: 10.1016/j.myc.2020.01.001

    [12] 杜庆. 茶树菇营养价值分析及其提取物抗衰老作用研究[J]. 中国食用菌,2019,38(4):131−134. [DU Q. Analysis of nutritional value of Agrocybe aegerita and its anti-aging effect[J]. Edible Fungi of China,2019,38(4):131−134.]

    DU Q. Analysis of nutritional value of Agrocybe aegerita and its anti-aging effect[J]. Edible Fungi of China, 2019, 384): 131134.

    [13]

    WANG Z, LUO P, ZHA X, et al. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil[J]. Journal of Cleaner Production,2022,379:134043. doi: 10.1016/j.jclepro.2022.134043

    [14] 霍永红, 蒋沙沙, 李德海, 等. 食用菌污染因素分析及风险评估研究进展[J]. 食品安全质量检测学报,2022,13(10):3156−3163. [HUO Y H, JIANG S S, LI D H, et al. Research progress on factors analysis and risk assessment of pollution in edible fungi[J]. Journal of Food Safety and Quality,2022,13(10):3156−3163.]

    HUO Y H, JIANG S S, LI D H, et al. Research progress on factors analysis and risk assessment of pollution in edible fungi[J]. Journal of Food Safety and Quality, 2022, 1310): 31563163.

    [15]

    RAHAMAN M S, MISE N, ICHIHARA S. Arsenic contamination in food chain in Bangladesh:A review on health hazards, socioeconomic impacts and implications[J]. Hygiene and Environmental Health Advances,2022,2:100004. doi: 10.1016/j.heha.2022.100004

    [16]

    TRIPATHI R D, SRIVASTAVA S, MISHRA S, et al. Arsenic hazards:Strategies for tolerance and remediation by plants[J]. Trends in Biotechnology,2007,25(4):158−165. doi: 10.1016/j.tibtech.2007.02.003

    [17]

    HACKETHAL C, PABEL U, JUNG C, et al. Chronic dietary exposure to total arsenic, inorganic arsenic and water-soluble organic arsenic species based on results of the first German total diet study [J]. The Science of the Total Environment, 2023, 859(Pt 1):160261.

    [18]

    HOYNE T F M, VIEIRA L V, HERINGER O A, et al. Arsenic speciation in canned tuna fish samples ( Thunnus) using ionic chromatography inductively coupled plasma mass spectrometry[J]. Journal of Food Composition and Analysis,2023,116:105051. doi: 10.1016/j.jfca.2022.105051

    [19]

    SHITTU A, ESFANDI R, TSOPMO A. Chromium and arsenic speciation analysis in meats by HPLC-ICP-MS in the presence of hydrolyzed oat proteins with radical scavenging activities[J]. Heliyon,2020,6(3):e03654. doi: 10.1016/j.heliyon.2020.e03654

    [20]

    GUO M, LI J, FAN S, et al. Speciation analysis of arsenic in urine samples from APL patients treated with single agent As2O3 by HPLC-HG-AFS[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,171:212−217. doi: 10.1016/j.jpba.2019.04.014

    [21]

    CHEN M L, MA L Y, CHEN X W. New procedures for arsenic speciation:A review[J]. Talanta,2014,125:78−86. doi: 10.1016/j.talanta.2014.02.037

    [22]

    REIS V A T, DUARTE A C. Analytical methodologies for arsenic speciation in macroalgae:A critical review[J]. TrAC Trends in Analytical Chemistry,2018,102:170−84. doi: 10.1016/j.trac.2018.02.003

    [23] 王鸿丽, 刘倩, 何昆. HPLC-ICP-MS法测定中药冬虫夏草中6种砷形态化合物[J]. 国际药学研究杂志,2019,46(12):946−949. [WANG H L, LIU Q, HE K. Determination of six arsenic species in traditional Chinese medicine Cordyceps by HPLC-ICP-MS[J]. J Int Pharm Res,2019,46(12):946−949.]

    WANG H L, LIU Q, HE K. Determination of six arsenic species in traditional Chinese medicine Cordyceps by HPLC-ICP-MS[J]. J Int Pharm Res, 2019, 4612): 946949.

    [24] 周探春, 汪辉, 崔晓娇, 等. HPLC-ICP-MS法测定毛毛鱼中无机砷的不确定度评定[J]. 食品与机械,2020,36(2):80−83. [ZHOU T C, WANG H, CUI X J, et al. Evaluation of uncertainty in determination of inorganic arsenic in aquatic products of tassle filefish by high performance liquid chromatography-inductively coupled with plasma mass spectrometry[J]. Food & Machinery,2020,36(2):80−83.]

    ZHOU T C, WANG H, CUI X J, et al. Evaluation of uncertainty in determination of inorganic arsenic in aquatic products of tassle filefish by high performance liquid chromatography-inductively coupled with plasma mass spectrometry[J]. Food & Machinery, 2020, 362): 8083.

    [25] 熊善波, 何鲒, 张阔, 等. HPLC-ICP-MS结合微波酸提取分析测定干制食用菌中砷的形态[J]. 食品工业科技,2021,42(10):236−241. [XIONG S B, HE J, ZHANG K, et al. Determination of arsenic species in dried edible fungi by HPLCICP-MS combined with microwave acid extraction analysis[J]. Science and Technology of Food Industry,2021,42(10):236−241.]

    XIONG S B, HE J, ZHANG K, et al. Determination of arsenic species in dried edible fungi by HPLCICP-MS combined with microwave acid extraction analysis[J]. Science and Technology of Food Industry, 2021, 4210): 236241.

    [26] 周春艳, 何健, 唐晓琴, 等. 离子色谱-电感耦合等离子体质谱法测定野生食用菌中6种砷形态[J]. 中国卫生检验杂志,2017,27(14):1980−1986. [ZHOU C Y, HE J, TANG X Q, et al. Determination of 6 arsenic species in wild edible mushrooms by inductively coupled plasma mass spectrometry[J]. Chin J Health Lab Tec,2017,27(14):1980−1986.]

    ZHOU C Y, HE J, TANG X Q, et al. Determination of 6 arsenic species in wild edible mushrooms by inductively coupled plasma mass spectrometry[J]. Chin J Health Lab Tec, 2017, 2714): 19801986.

    [27]

    BARNET L S, POZEBON D, DRESSLER V L, et al. Method validation for As speciation in rice using LC-ICP-MS and the inorganic arsenic limit for Brazilian rice[J]. Journal of Food Composition and Analysis,2021,99:103849. doi: 10.1016/j.jfca.2021.103849

    [28] 任成忠, 毛丽芬. 加标回收实验的实施及回收率计算的研究[J]. 工业安全与环保,2006(2):9−11. [REN C Z, MAO L F. Study on the practice of standard recovery test and calculation of recovery rate[J]. Industrial Safety and Environmental Protection,2006(2):9−11.]

    REN C Z, MAO L F. Study on the practice of standard recovery test and calculation of recovery rate[J]. Industrial Safety and Environmental Protection, 20062): 911.

    [29] 赵艳芳, 尚德荣, 宁劲松, 等. 水产品中不同形态砷化合物的毒性研究进展[J]. 海洋科学,2009,33(9):92−96. [ZHAO Y F, SHANG D R, NING J S, et al. Researches on the toxicity of arsenic species in seafood[J]. Marine Sciences,2009,33(9):92−96.]

    ZHAO Y F, SHANG D R, NING J S, et al. Researches on the toxicity of arsenic species in seafood[J]. Marine Sciences, 2009, 339): 9296.

    [30] 秦玉燕. HPLC-ICP-MS测定植物样品中6种砷形态化合物[J]. 分析试验室,2021,40(2):190−197. [QIN Y Y. Determination of six arsenic species compounds in plant samples by HPLC-ICP-MS[J]. Chinese Journal of Analysis Laboratory,2021,40(2):190−197.]

    QIN Y Y. Determination of six arsenic species compounds in plant samples by HPLC-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2021, 402): 190197.

    [31] 李娜, 吕爽, 董建国, 等. 常见食用菌营养成分及风味物质分析[J/OL]. 食品工业科技:1−13[2023-06-09]. doi:10.13386/j.issn1002-0306.2022110173. [LI N, LÜ S, DONG J G, et al. Analysis of nutritional components and volatile flavor compounds in common edible fungi[J/OL]. Science and Technology of Food Industry:1−13[2023-06-09].]

    LI N, LÜ S, DONG J G, et al. Analysis of nutritional components and volatile flavor compounds in common edible fungi[J/OL]. Science and Technology of Food Industry: 1−13[2023-06-09]. doi: 10.13386/j.issn1002-0306.2022110173.

    [32] 段志敏, 李瑛, 徐丹先, 等. 云南省野生食用菌中总砷含量调查[J]. 食品安全质量检测学报,2017,8(10):3780−3784. [DUAN Z M, LI Y, XU D X, et al. Investigation on total arsenic content of wild edible fungi in Yunnan Province[J]. Journal of Food Safety and Quality,2017,8(10):3780−3784.]

    DUAN Z M, LI Y, XU D X, et al. Investigation on total arsenic content of wild edible fungi in Yunnan Province[J]. Journal of Food Safety and Quality, 2017, 810): 37803784.

    [33] 甘源, 唐晓琴, 何健, 等. 重庆市野生食用菌中总砷及砷形态含量调查[J]. 现代预防医学,2017,44(22):4073−4076. [GAN Y, TANG X Q, HE J, et al. Investigation and analysis of the total arsenic and arsenic species content in wild edible fungus in Chongqing City[J]. Modern Preventive Medicin,2017,44(22):4073−4076.]

    GAN Y, TANG X Q, HE J, et al. Investigation and analysis of the total arsenic and arsenic species content in wild edible fungus in Chongqing City[J]. Modern Preventive Medicin, 2017, 4422): 40734076.

    [34] 唐克纯, 何庆, 曾议霆, 等. 高效液相色谱-电感耦合等离子体质谱法分析食用菌中6种砷形态及其分布特征[J]. 化学分析计量,2023,32(2):13−19. [TANG K C, HE Q, ZENG Y T, et al. Analysis of speciation of arsenic and distributive characteristics in edible mushrooms by HPLC-ICP-MS[J]. Chemical Analysis and Meterage,2023,32(2):13−19.]

    TANG K C, HE Q, ZENG Y T, et al. Analysis of speciation of arsenic and distributive characteristics in edible mushrooms by HPLC-ICP-MS[J]. Chemical Analysis and Meterage, 2023, 322): 1319.

  • 其他相关附件

图(1)  /  表(5)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  8
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-03-31

目录

/

返回文章
返回
x 关闭 永久关闭