Correlation Analysis of Sensory Evaluation and Texture Characteristics of Dried Kiwifruit of Different Varieties under Hot Air Drying
-
摘要: 为探究品种、切片厚度及干燥温度对于热风干燥条件下猕猴桃果干品质的影响,选取三种不同品种且切片厚度分别为8、10、12 mm的猕猴桃作为研究对象,在热风干燥温度为60、65、70 ℃下干燥,并对干燥后的果干进行质地剖面分析(Texture Profile Analysis,TPA)和感官评价。结果表明:所有果干的硬度、弹性、咀嚼性在温度变化时存在显著性差异(P<0.05),硬度与胶粘性、咀嚼性之间(r=0.898~0.991,P<0.01)以及胶粘性与咀嚼性之间(r=0.944~0.968,P<0.01)均呈现出极显著的正相关性;所有果干的组织形态在厚度变化时具有显著性差异(P<0.05),硬度、滋味与总分之间呈现出显著或极显著的正相关性(r=0.797~0.981,P<0.05或P<0.01),硬度与滋味之间亦具有显著或极显著的正相关性(r=0.757~0.865,P<0.05或P<0.01);所有样品的TPA硬度指标与感官评价的粘度指标都存在相关性(r=0.557~0.778),但质构指标与感官评价总分均不存在显著的相关关系(P>0.05);绿心样品可利用仪器测定的粘附性、弹性、回复性替代感官评价,黄心样品可以利用硬度、弹性、咀嚼性来替代感官评价,红心样品还有待进一步研究。综上,对猕猴桃干品质的评价起决定性作用的指标是硬度、咀嚼性、胶粘性,且不同种类的猕猴桃干参数指标的相关性分析结果有明显差异。Abstract: To investigate the impact of variety, slice thickness, and drying temperature on the quality of dried kiwifruit under hot air drying conditions, three different kiwifruit varieties with slice thicknesses of 8, 10, and 12 mm were selected as research subjects. The dried kiwifruit was dried at hot air drying temperatures of 60, 65, and 70 ℃, and texture profile analysis (TPA) and sensory evaluation were conducted on the dried fruit. The results showed that there were significant differences in hardness, springiness and chewiness of all dried fruits when temperature was varied (P<0.05). Highly significant positive correlations were observed between hardness and gumminess and chewiness (r=0.898~0.991, P<0.01), as well as between gumminess and chewiness (r=0.944~0.968, P<0.01). The histomorphology of all dried fruits showed significant difference in thickness variation (P<0.05), and the hardness, taste and overall score showed significant or highly significant positive correlation (r=0.797~0.981, P<0.05 or P<0.01). There was also a significant or highly significant positive correlation between hardness and taste (r=0.757~0.865, P<0.05 or P<0.01). There was a correlation between TPA hardness index and sensory evaluation viscosity index of all samples (r=0.557~0.778), but there was no significant correlation between texture index and sensory evaluation total score (P>0.05). The adhesiveness, springiness, and resilience of the green heart samples could be used to replace the sensory evaluation, while the hardness, springiness, and chewiness of the yellow heart samples could be used to replace the sensory evaluation. Red heart samples still need further research. In conclusion, indices that play a decisive role in the evaluation of the quality of dried kiwifruit are hardness, chewiness, and gumminess, and the correlation analysis of the index of the parameters of dried kiwifruit of different species are significantly different.
-
Keywords:
- kiwifruit /
- texture analysis (TPA) /
- sensory evaluation /
- correlation analysis /
- regression analysis
-
猕猴桃原产于中国长江流域,传统上被誉为中国的“国果”。猕猴桃是一种多年生木质藤本植物,果实呈长椭圆形,通常有深绿色或棕色绒毛,种子小而可食,果肉鲜嫩多汁,香气浓郁,深受消费者喜爱[1−2]。猕猴桃所含的丰富的维生素C及膳食纤维,有助于降脂降糖、排毒养颜、预防心脑血管疾病,对人体健康起着重要作用[3−7]。近年来,随着猕猴桃种植业的迅速发展,其产量不断提高,干制品作为简单、快捷、有效的加工方式使得猕猴桃干的产量增加,猕猴桃干制品也越来越受到大众消费者的青睐[8]。但是在传统猕猴桃干制作过程中了添加防腐剂、色素、香精、含硫护色剂等[9],主要目的是延长产品的保质期、改善口感和增强视觉吸引力,这些添加物在某种程度上可以提高猕猴桃干的质量和市场竞争力,但当前人们对于食品的要求越来越高,更加追求自然和健康,而传统猕猴桃干不能满足人们对于健康、安全、无添加食品的要求。因此,研发无化学添加、保持原味原色的猕猴桃干制品势在必行。
质构特性是评价果干品质的重要指标之一,也是果干感官的客观评价指标[10−11],可由质构仪对果干质构进行可重复的数据化描述获得。质构仪利用力学原理对样品进行二次压缩从而模拟人体口腔咀嚼食物的过程,通过探头移动过程中对果干的受力情况进行分析并绘制输出图谱[12−15],从输出的图谱曲线中可获得果干的硬度、粘附性、回复性、内聚性、弹性、胶粘性、咀嚼性等信息[16]。这种质地剖面分析(Texture Profile Analysis,TPA)测定方法被广泛应用于果蔬、肉制品、面制品等固体食品的质构分析[17−19]。
候琣军等[20]、魏丽红等[21]、周旭[22]对猕猴桃进行了自然干燥、热风干燥、真空冷冻干燥、射频真空技术等研究,其中,热风干燥速度快、操作方便、成本较低,是目前干制加工生产中广泛应用的主要干燥方法,而且低温热风干燥对各种活性成分破坏较小,适宜富含功效成分的原料[23]。邓红等[24]通过对猕猴桃热风干燥提出干燥温度对干燥特性有显著影响。此外,国内外虽然已经有较多的研究通过质构仪对食品进行质构测试,但目前关于质构指标与直接感官之间的联系尚未得到明确的验证,对猕猴桃干质构测定的相关研究较少[25],且猕猴桃干的感官评价与TPA测定的相关性未见报道。本研究为探究品种、切片厚度及干燥温度对干燥后的猕猴桃果干的品质影响,综合考虑品种和特性上的差异和代表性,选用市面上常见的陕西徐香绿心、四川金艳黄心、四川红阳红心猕猴桃作为研究对象,通过对猕猴桃切片并热风干燥处理,分析不同品种猕猴桃在干燥过程中的差异和特点;采用TPA测定方法对三个种类的猕猴桃干质构特性进行比较分析,将果干质构特性与感官评定结果进行相关性分析,从而为猕猴桃干品质的客观评判提供依据。
1. 材料与方法
1.1 材料与仪器
陕西徐香绿心猕猴桃、四川金艳黄心猕猴桃、四川红阳红心猕猴桃 选用新鲜、大小适中、无病虫害、表面完整无机械损伤、成熟度基本一致的果实,均购于重庆万州果丰园校园水果店。
DHG-9076A电热恒温鼓风干燥箱 上海浦东荣丰科学仪器有限公司;TMS-Pro质构仪 北京盈盛恒泰科技有限责任公司;Noga果蔬切片机 广东思莱尔电器有限公司。
1.2 实验方法
1.2.1 样品预处理
将洗净去皮的三种猕猴桃用切片机切成厚度分别为8、10、12 mm的均匀薄片。
1.2.2 热风干燥实验
将切片厚度分别为8、10、12 mm的绿心、黄心、红心猕猴桃单层平铺于网状托盘中,分别在60、65、70 ℃的温度条件下放入鼓风干燥箱中进行分组干燥,如绿心8 mm 60 ℃为一组,共3种类×3厚度×3温度=27组。根据前期预实验,参照GB 5900.3-2016《食品中水分含量的测定》[26],采用直接干燥法测定猕猴桃切片初始含水量:绿心为79.976%±1.249%,黄心为82.325%±1.048%,红心为83.196%±0.498%,所有猕猴桃干燥至11 h达到恒重,因此设定干燥时长为12 h/组,风速恒定,每组实验做三组并重复3次。
1.2.3 质构特性测定
用质构仪对猕猴桃干进行测定,参数指标为硬度、粘附性、胶粘性、弹性、咀嚼性和回复性[21−22],根据前期预实验设定实验条件,干燥完成后的27组样品,在TPA模式下采用P/100探头进行压缩实验,测试前速率1 mm/s,测中速率1 mm/s,测后速率1 mm/s;触发力5 N;两次压缩间隔时间5 s;形变量为60%;每次测试后擦拭清理探头,每组每个样品平行测定3次,结果取均值作为最终测定结果,并记录数据。
1.2.4 感官评价
参照《中华人民共和国农业行业标准绿色食品干果》中3.2针对果干的感官要求[27],由20名经感官品评培训的评价员组成评价小组(10名女性,10名男性,年龄在22~34岁之间),对猕猴桃干的气味、组织形态、色泽、硬度、粘度、滋味进行感官评分,总分为60分,具体评分标准见表1。
表 1 猕猴桃干感官评价标准Table 1. Criteria for sensory evaluation of dried kiwifruit指标 评分标准 10~8分 7~5分 4~2分 1~0分 气味(10分) 果香浓郁,有猕猴桃特有的果味 无异味,猕猴桃的果味不够浓郁 无猕猴桃的果味,略有其他异味 有明显其他异味 组织形态(10分) 细腻,有皱缩 基本细腻,皱缩较小 不细腻,皱缩较大 有较大皱缩 色泽(10分) 有光泽,透亮,色泽舒适 有光泽,较透亮,色泽较舒适 颜色暗淡,不够透明,色泽较差 不透明,色泽差 硬度(10分) 软硬适中,有韧性 稍硬或稍软,韧性稍差 偏硬或偏软,韧性差 过硬或过软,无韧性 粘度(10分) 无明显粘牙感 略有粘牙感 有粘牙感 粘牙感严重 滋味(10分) 甜酸适宜,回味好 甜酸味较淡,有回味 偏酸或偏甜 太酸或太甜 1.3 数据处理
每组数据平行测定3次,每组实验重复3次,使用Excel记录数据,采用IBM SPSS Statistics 27进行方差分析和变量间相关性分析,P<0.05表示统计学有显著差异,P<0.01表示统计学有极显著差异;两变量间相关性以Pearson相关系数r表示[28−30]。
2. 结果与分析
2.1 猕猴桃干的质构特性结果分析
猕猴桃干的TPA测定见表2,在厚度为8 mm、65 ℃和70 ℃时,绿心样品、黄心样品的胶粘性具有显著性差异(P<0.05),在厚度为12 mm时,红心样品、黄心样品随温度变化粘附性具有显著性差异(P<0.05),除以上情况,在相同厚度条件下,随着温度的改变各品种猕猴桃干的粘附性、胶粘性及回复性数据无显著性差异(P>0.05),在干燥过程中,温度的变化对蛋白质和胶质的结构变性影响程度小,同时粘附性、胶粘性和回复性与蛋白质、胶质的结构和性质密切相关,高温使水分蒸发速率加快,果干结构形成时间缩短,进而限制了粘附性、胶粘性和回复性的改变,导致温度的变化对于猕猴桃干质构的粘附性、胶粘性和回复性的改变影响不明显;在各厚度条件下,除了厚度为12 mm时绿心样品的硬度和咀嚼性以及红心样品的硬度和弹性差异不显著,其他样品随着温度的改变各品种猕猴桃干的硬度、弹性、咀嚼性的结果都存在显著性差异(P<0.05),可能是温度作为干燥过程中的控制因素之一,随着时间的持续,果干内部的溶质分子向表面迁移累积形成结晶而导致表面硬化[31−34],同时提高温度可能加速某些酶的活性,影响果干的蛋白质和碳水化合物降解,进而可能改变猕猴桃干的质构发生变化,可见温度对硬度、弹性及咀嚼性的结果影响较大,同时果干硬度越大,咀嚼性和回复性就越大,果肉对外界压力的抵抗能力越大,口感越差;在相同温度条件下,随着样品厚度的变化,各种样品的胶粘性和回复性结果均无显著性差异(P>0.05),其中温度变化对猕猴桃干粘附性结果的影响较小。综上所述,不同温度会影响猕猴桃干TPA指标中的硬度、弹性及咀嚼性,由此得出在不同温度下区分不同品种猕猴桃品质差异的主要TPA指标。
表 2 猕猴桃干质构测试结果Table 2. Texture test results of dried kiwifruit样品 厚度(mm) 温度(℃) 硬度(N) 粘附性(N·mm) 胶粘性(N) 弹性(mm) 咀嚼性(mJ) 回复性 绿心样品 8 60 73.988±15.423c 0.098±0.034c 3.038±0.2a 40.709±7.912b 117.386±20.416c 0.14±0.018abc 65 104.075±15.605b 0.189±0.039bc 3.056±0.191a 61.142±9.816a 159.23±27.235b 0.156±0.011ab 70 170.331±40.508a 0.293±0.139ab 2.488±0.453c 69.514±13.37a 191.89±38.973a 0.163±0.028a 10 60 56.003±14.28d 0.273±0.056ab 2.841±0.316ab 27.546±6.435c 73.699±14.32d 0.135±0.024bc 65 64.187±12.2cd 0.263±0.178ab 2.978±0.294ab 43.91±12.061b 115.854±21.301c 0.137±0.014bc 70 113.254±17.184b 0.352±0.213a 2.828±0.334abc 64.513±14.927a 162.48±18.523b 0.151±0.029abc 12 60 49.527±11.748d 0.356±0.197a 2.661±0.221bc 26.679±6c 72.598±18.148d 0.134±0.019bc 65 60.601±5.863cd 0.377±0.129a 2.789±0.442abc 41.189±12.038b 85.668±17.837d 0.131±0.022c 70 63.413±14.283cd 0.376±0.226a 2.959±0.415ab 28.853±9.877c 90.082±36.537d 0.144±0.024abc 黄心样品 8 60 68.951±10.806c 0.267±0.106cd 2.71±0.161bcd 33.055±3.703c 86.657±10.328c 0.148±0.027b 65 72.62±19.067c 0.247±0.058cd 3.233±0.432a 30.781±6.198c 107.553±27.075b 0.136±0.012b 70 140.875±15.208a 0.265±0.089cd 2.583±0.272bcd 67.114±15.864a 217.169±34.904a 0.22±0.063a 10 60 40.75±15.836e 0.421±0.237ab 2.52±0.261cd 18.926±5.183d 51.38±13.225de 0.161±0.031b 65 41.894±14.779e 0.288±0.176bc 2.915±0.634abc 19.11±6.742d 58.543±21.115d 0.147±0.043b 70 88.071±12.201b 0.229±0.086cd 2.929±0.391ab 52.78±8.635b 113.268±32.489b 0.185±0.024ab 12 60 31.446±10.056e 0.495±0.178a 2.485±0.492d 15.533±6.05d 34.046±17.365e 0.171±0.103ab 65 39.622±11.004e 0.31±0.188bc 2.747±0.38bcd 19.121±5.344d 46.71±15.671de 0.148±0.03b 70 54.751±12.263d 0.131±0.075d 2.578±0.399bcd 27.338±5.253c 62.709±24.053d 0.146±0.029b 红心样品 8 60 60.365±30.951b 0.221±0.127d 2.544±0.449ab 30.032±14.632c 59.574±16.046c 0.13±0.027b 65 65.143±15.726b 0.3±0.18cd 2.887±0.466a 28.863±5.7cd 87.333±18.743b 0.128±0.013b 70 107.786±10.929a 0.439±0.179cd 2.705±0.291ab 49.122±7.744a 136.987±30.28a 0.163±0.029ab 10 60 36.679±18.289cd 1.254±0.518a 2.512±0.31ab 20.099±11.462e 39.139±14.364d 0.16±0.036ab 65 45.874±6.994c 0.442±0.162cd 2.743±0.535ab 22.118±3.224de 63.449±10.49c 0.156±0.019ab 70 66.799±9.242b 0.462±0.21cd 2.776±0.383ab 39.6±5.241b 96.628±16.276b 0.162±0.026ab 12 60 31.317±14.482d 1.374±0.724a 2.367±0.263b 19.228±10.513e 34.444±17.844d 0.183±0.071a 65 36.335±11.166cd 0.89±0.448b 2.385±0.271b 19.299±6.467e 39.668±14.01d 0.176±0.054a 70 42.085±6.866cd 0.557±0.333c 2.763±0.398ab 23.77±4.114cde 61.532±22.574c 0.15±0.042ab 注:同列不同小写字母表示同一样品之间差异显著(P<0.05);表3同。 2.2 猕猴桃干的感官评价结果分析
分析表3,从气味看,改变厚度或者温度时,绿心样品相对黄心和红心评分更高且不存在显著性差异,说明对绿心样品的气味影响不大;从组织形态看,所有样品在改变厚度时存在显著性差异(P<0.05),原因是干燥使果肉水分蒸发流失,细胞壁皱缩,组织总体结构被破坏进而发生变化[35];从色泽看,改变温度时绿心样品中厚度为8 mm和10 mm时存在显著性差异(P<0.05),黄心和红心样品改变厚度时差异不显著(P>0.05),可能是绿心猕猴桃在干燥过程因随厚度、温度改变导致叶绿素不同程度的损失,引起褐变发生,而黄心和红心猕猴桃鲜果果肉叶绿素含量相对较低,干燥后褐变对颜色影响较小,在主观的视觉效果上变化不大[36];从硬度看,绿心和黄心样品在改变厚度时基本上差异性显著(P<0.05),红心样品除了60 ℃时改变厚度差异不显著(P>0.05),其他样品在改变厚度或者改变温度时都存在显著性差异(P<0.05);从粘度看,所有样品在改变厚度或者温度时基本上差异性显著(P<0.05),原因是在干燥过程中,猕猴桃果干中的细胞壁含有纤维素和果胶等成分[37],水分流失使这些成分形成一种网状结构,增加果干粘度;从滋味看,差异性无明显规律;从总分看,在8 mm,65 ℃时,红心样品平均总分最高,可能与它较高的糖含量有关。各个样品的感官评定指标具有一定的显著性差异,即同一因素不同水平影响感官指标,这与仪器测定分析结果基本一致。综上所述,不同温度或厚度会影响猕猴桃干感官评价的组织形态、硬度、粘度、滋味指标,由此得出区分不同品种猕猴桃的品质差异在不同温度或不同厚度下的感官指标。
表 3 猕猴桃干感官品质评定结果Table 3. Sensory quality evaluation of dried kiwifruit样品 厚度(mm) 温度(℃) 气味 组织形态 色泽 硬度 粘度 滋味 总分 绿心样品 8 60 7.717±0.94ab 4.200±1.505f 4.817±1.692d 6.967±1.529b 6.800±1.482bc 6.367±1.687ab 36.867±4.260 65 7.300±1.306b 4.650±1.117e 5.300±1.43c 4.600±1.689d 7.233±1.454ab 6.017±1.722bc 35.100±3.187 70 7.383±1.166b 3.967±1.507f 3.783±1.541e 3.083±1.279e 7.417±1.154a 4.817±1.610e 30.450±3.121 10 60 7.683±1.000ab 5.933±1.274d 5.800±1.273b 6.617±1.316b 6.283±1.329de 6.583±1.344a 38.900±3.767 65 7.650±1.388ab 6.55±1.199bc 6.617±1.223a 8.133±1.033a 6.533±1.295cd 6.617±1.658a 42.100±3.128 70 7.483±1.214b 6.633±1.178bc 6.283±1.223a 4.417±1.807d 6.300±1.357de 5.800±1.793cd 36.917±3.876 12 60 7.717±1.415ab 7.067±1.023a 6.250±1.469ab 5.817±1.918c 5.967±1.775e 6.717±1.195a 39.533±4.757 65 8.050±0.790a 6.817±1.308ab 6.233±1.332ab 4.600±1.796d 5.233±1.701f 5.417±1.680d 36.350±3.287 70 7.367±1.314b 6.300±1.488cd 6.167±1.428ab 7.933±1.177a 6.183±1.242de 6.650±1.614a 40.600±3.499 黄心样品 8 60 6.933±1.039bc 3.617±1.379e 6.283±1.563bc 5.567±1.395d 6.067±1.413bc 3.450±2.045bcd 31.817±4.111 65 6.700±1.406cd 4.917±1.670d 6.133±1.478c 5.717±1.975d 5.233±1.577d 3.667±1.847bcd 32.333±4.782 70 5.917±1.759e 5.217±1.668d 6.683±1.142ab 3.817±1.157e 7.467±1.049a 3.217±1.541cd 32.317±3.402 10 60 6.883±1.316bc 6.200±1.232b 6.350±1.376bc 6.883±1.010ab 5.633±1.687cd 3.667±1.810bcd 35.617±3.928 65 7.450±1.185a 5.767±1.320c 6.117±1.391c 7.333±1.130a 5.483±1.702d 4.167±1.888ab 36.183±4.006 70 6.833±1.044bcd 6.533±1.127ab 6.717±1.439ab 6.283±1.209c 6.267±1.274b 4.550±1.588a 37.183±3.432 12 60 7.233±1.198ab 6.817±1.214a 6.533±1.157abc 6.600±1.343bc 4.550±1.702e 4.250±4.1280ab 35.883±5.340 65 7.183±1.049ab 6.833±1.181a 5.400±1.628d 4.250±1.910e 3.100±1.130f 3.050±1.935d 29.700±3.519 70 6.450±1.213d 6.817±1.255a 6.850±1.448a 7.150±1.424a 5.633±1.340cd 3.900±1.602abc 36.800±4.079 红心样品 8 60 7.042±1.590cde 5.400±1.138f 6.750±1.525bcd 6.883±1.106b 6.467±1.346b 8.150±1.117b 40.692±3.948 65 7.833±1.044a 5.667±1.361ef 6.750±1.503bcd 8.433±1.031a 7.267±1.274a 8.633±0.863a 44.583±3.321 70 6.833±1.122e 5.950±1.534e 7.250±1.284a 5.467±1.909d 6.350±1.412b 7.050±1.227c 38.900±4.193 10 60 7.383±1.439bcd 6.983±0.930cd 6.633±1.149cd 7.217±1.027b 6.483±1.578b 7.833±0.960b 42.533±3.286 65 7.850±1.176a 6.783±1.585d 6.517±1.490de 6.467±1.171c 5.467±1.455c 7.417±1.394c 40.500±4.504 70 6.700±1.332e 7.517±1.142a 7.217±0.940ab 7.183±1.501b 6.267±1.133b 7.883±1.209b 42.767±3.377 12 60 7.400±1.330bc 7.467±0.911ab 7.033±1.484abc 7.133±1.127b 4.567±1.711d 7.267±1.313c 40.867±4.324 65 7.717±1.121ab 7.083±1.239bcd 6.117±1.519e 2.983±1.214f 3.217±1.474f 7.033±1.164c 34.150±3.763 70 6.967±1.134de 7.217±1.151abc 7.417±1.109a 4.233±1.254e 4.083±1.418e 7.250±1.323c 37.167±3.037 2.3 感官评价结果与TPA质构结果相关性分析
2.3.1 感官评价指标间的相关性
根据Pearson相关系数进行相关性分析,由表4可知,感官评定指标间存在相关性。感官评分中所有果干样品的气味与总分不存在显著相关性(P>0.05),说明气味对感官评分影响不大,猕猴桃本身具有的特殊果香,如酯类是猕猴桃中常见的挥发性化合物之一,可以给猕猴桃带来一种甜美的香味[37−38],因此,在感官评价中,猕猴桃干的气味可能相对均衡,对总分的影响相对较小;绿心和黄心果干的组织形态、色泽与总分基本上都显著相关(r=0.439~0.841),而红心果干的组织形态、色泽与总分相关性不显著(P>0.05),可能是因为红心猕猴桃含糖量大于黄心和绿心猕猴桃,在干燥过程中,糖分被析出并附着在猕猴桃干表面而引起结构变化,导致组织形态与总分之间的相关性不显著,而且红心猕猴桃中含有大量花青素,张维等[39]、LIU等[40]的研究表明红肉猕猴桃中的总酚以及花青素含量高于绿肉猕猴桃,而花青素是一种对温度极其敏感的物质,在温度较高的环境下,花青素的理化性质被破坏而引起色泽变化,导致红肉猕猴桃色泽对总分影响不大;绿心果干的粘度与总分呈中等强度的负相关性,黄心果干的粘度与总分呈弱相关性,红心果干的粘度与总分呈极显著的正相关性(r=0.853,P<0.01);所有果干样品的硬度、滋味与总分具有显著或极显著的正相关性(r=0.797~0.981,P<0.05或P<0.01),硬度和滋味具有显著或极显著的正相关性(r=0.757~0.865,P<0.05或P<0.01),当果干的质构硬度在60~80 N的范围左右时软硬适中,酸甜适宜,此时感官评价的硬度和滋味得分越高,总分越高。
表 4 感官评价指标间的相关性Table 4. Correlation of sensory evaluation indicators样品 感官指标 气味 组织形态 色泽 硬度 粘度 滋味 总分 绿心样品 气味 1 组织形态 0.442 1 色泽 0.358 0.927** 1 硬度 0.121 0.305 0.509 1 粘度 −0.751* −0.838** −0.735* −0.218 1 滋味 0.058 0.411 0.593 0.865** −0.234 1 总分 0.244 0.695* 0.841** 0.879** −0.500 0.888** 1 黄心样品 气味 1 组织形态 0.200 1 色泽 −0.546 0.036 1 硬度 0.450 0.272 0.343 1 粘度 −0.678* −0.457 0.744* −0.031 1 滋味 0.341 0.346 0.512 0.757* 0.131 1 总分 0.133 0.439 0.677* 0.841** 0.278 0.886** 1 红心样品 气味 1 组织形态 −0.079 1 色泽 −0.769* 0.113 1 硬度 0.068 −0.283 0.157 1 粘度 −0.144 −0.600 0.190 0.821** 1 滋味 0.136 −0.499 −0.060 0.773* 0.756* 1 总分 0.017 −0.238 0.208 0.981** 0.853** 0.797* 1 注:*在0.05级别(双尾)相关性显著;**在0.01级别(双尾)相关性极显著;表5~表7同。 2.3.2 TPA质构指标间的相关性
由表5可知,所有猕猴桃干样品的硬度与胶粘性、咀嚼性都呈极显著的正相关性(P<0.01),所有样品的胶粘性与咀嚼性都呈极显著的正相关性(P<0.01),因为蛋白质和胶质是决定果干胶粘性和咀嚼性的重要成分[41],在干燥过程中,水分蒸发导致蛋白质和胶质的浓缩,使蛋白质和胶质之间的相互作用增强,从而增加了胶粘性和咀嚼性,随着温度升高,果干逐渐硬化导致硬度增加,说明猕猴桃干的硬度越高,胶粘性越高,咀嚼性越强。绿心样品和黄心样品的硬度、胶粘性、咀嚼性与回复性之间都存在显著的正相关性(P<0.05),可能是猕猴桃干受到应力时,具有较高回复性的猕猴桃干能够迅速恢复其原始结构和形状,并且对外界的抗压能力较大[42−43],说明绿心猕猴桃干和黄心猕猴桃干的硬度、胶粘性、咀嚼性越强,则回复性越高。在红心样品中,粘附性与弹性存在显著的负相关性(P<0.05),与回复性存在显著的正相关性(P<0.05),说明红心猕猴桃干的粘附性越强时,弹性越小,回复性越高;弹性与咀嚼性显著相关(P<0.05),说明红心猕猴桃干的咀嚼性越强,弹性越大。
表 5 TPA指标间的相关性Table 5. Correlation between TPA indicators样品 质构指标 硬度 粘附性 弹性 胶粘性 咀嚼性 回复性 绿心样品 硬度 1 粘附性 −0.105 1 弹性 −0.452 −0.507 1 胶粘性 0.898** −0.170 −0.197 1 咀嚼性 0.941** −0.257 −0.182 0.968** 1 回复性 0.919** −0.178 −0.196 0.832** 0.919** 1 黄心样品 硬度值 1 粘附性 −0.431 1 弹性 0.111 −0.403 1 胶粘性 0.975** −0.446 0.096 1 咀嚼性 0.991** −0.378 0.134 0.944** 1 回复性 0.731* 0.114 −0.385 0.771* 0.724* 1 红心样品 硬度值 1 粘附性 −0.614 1 弹性 0.511 −0.736* 1 胶粘性 0.962** −0.565 0.489 1 咀嚼性 0.963** −0.634 0.667* 0.951** 1 回复性 −0.286 0.747* −0.622 −0.188 −0.255 1 2.3.3 感官评价指标与TPA指标间的相关性
由表6可知,所有样品的TPA硬度指标与感官评价的粘度指标都存在相关性,因为猕猴桃果干的硬度和粘度会受到水分、蛋白质以及果胶等成分的影响[31],这些成分的相互作用使评价员在咀嚼时令果干硬度影响口感,粘度影响口内的黏附感;所有样品的TPA硬度和咀嚼性指标与感官评价指标基本上都存在相关性,是因为TPA硬度和咀嚼性指标直接影响果干的柔软度、嚼劲和咀嚼感,与感官评价指标描述相对应。在绿心样品中,感官评价的组织形态指标与TPA粘附性指标显著相关(P<0.05),硬度与胶粘性显著负相关(P<0.05);TPA的咀嚼性指标与感官评价指标的粘度和滋味分别存在显著正相关和负相关性(P<0.05);TPA的回复性指标与感官评价的气味极显著负相关(P<0.01),与色泽显著负相关(P<0.05),与粘度极显著正相关(P<0.01)。在黄心样品中,感官评价的气味指标与TPA的胶粘性和咀嚼性指标都存在显著负相关(P<0.05);感官评价的粘度指标与TPA的胶粘性和咀嚼性指标都存在显著正相关(P<0.05)。在红心样品中,TPA的回复性指标分别与感官评价的组织形态和滋味指标存在显著正相关性和负相关性(P<0.05);由表7可知,所有果干样品的硬度、粘附性、弹性、胶粘性、咀嚼性、回复性与感官评价总分均不存在显著的相关关系(P>0.05)。综上可见,感官评定与仪器分析结果存在一定差异。
表 6 感官评价指标和TPA指标间的相关性Table 6. Correlation between sensory evaluation indicators and TPA indicators样品 指标 气味 组织形态 色泽 硬度 粘度 滋味 绿心样品 硬度 −0.577 −0.638 −0.740* −0.731* 0.702* −0.801** 粘附性 0.132 0.734* 0.491 −0.148 −0.625 −0.118 弹性 −0.080 −0.026 0.342 0.610 0.030 0.562 胶粘性 −0.467 −0.499 −0.506 −0.719* 0.601 −0.764* 咀嚼性 −0.622 −0.621 −0.614 −0.623 0.753* −0.683* 回复性 −0.831** −0.659 −0.667* −0.577 0.803** −0.579 黄心样品 硬度 −0.829** −0.405 0.417 −0.596 0.778* −0.235 粘附性 0.462 0.187 −0.214 0.074 −0.336 0.063 弹性 0.151 −0.304 −0.308 −0.017 −0.061 0.142 胶粘性 −0.774* −0.297 0.478 −0.530 0.773* −0.093 咀嚼性 −0.814** −0.420 0.364 −0.611 0.761* −0.273 回复性 −0.579 0.067 0.494 −0.437 0.612 −0.001 红心样品 硬度 −0.480 −0.562 0.418 0.128 0.557 0.078 粘附性 0.188 0.634 −0.170 −0.082 −0.416 −0.385 弹性 −0.130 −0.290 0.427 0.316 0.525 0.433 胶粘性 −0.660 −0.378 0.541 0.126 0.513 0.050 咀嚼性 −0.471 −0.405 0.507 0.126 0.513 0.062 回复性 −0.017 0.754* −0.071 −0.410 −0.620 −0.775* 表 7 所有样品的TPA指标与感官评价总分的相关性Table 7. Correlation between TPA indicators and overall sensory evaluation scores for all samples硬度 粘附性 弹性 胶粘性 咀嚼性 回复性 感官总分 感官总分 −0.343 0.290 0.039 −0.238 −0.288 −0.267 1 2.4. 质构测定对感官评价的逐步回归分析
为进一步探究质构评价指标能否被用来代替感官评定指标,准确反映大众的感官真实值,以TPA指标作为因变量,主要感官评价指标为自变量进行逐步回归分析,显著水平为0.05。由SPSS计算可知,绿心和黄心样品分别有三个TPA指标进入了回归模型,经显著性检验具有统计学意义(P<0.05),而其他指标和红心样品的回归模型不显著(P>0.05),故剔除,计算结果见表8。其中绿心样品的粘附性、弹性、回复性的逐步回归分析中R均大于0.900,拟合度较高,说明对感官评价结果预测效果比较好,因此绿心样品可以利用仪器测定的粘附性、弹性、回复性替代感官评价得分;另外黄心样品的硬度、弹性、咀嚼性的回归分析中R均大于0.900,拟合度较高,因此黄心样品可以利用硬度、弹性、咀嚼性来替代感官评价得分;而红心样品质构指标替代感官评分还有待进一步研究。
表 8 TPA指标对感官评价指标的逐步回归分析Table 8. Stepwise regression analysis between TPA indicators and sensory evaluation indicators样品 变量 R R2 R2adj Sig 更改统计量 R2更改R2 F更改F 绿心样品 粘附性 0.994 0.948 0.987 0.038 0.987 25.410 弹性 0.998 0.984 0.996 0.012 0.996 82.361 回复性 0.996 0.969 0.992 0.023 0.992 42.708 黄心样品 硬度 0.997 0.98 0.995 0.015 0.995 65.218 弹性 0.995 0.963 0.991 0.027 0.991 36.104 咀嚼性 0.992 0.933 0.983 0.049 0.983 19.690 3. 结论
本研究通过采用TPA与感官评价法对不同种类的猕猴桃干品质特性进行了研究,并对测定结果进行Pearson相关性分析和逐步回归分析。研究表明,不同温度会影响猕猴桃干TPA指标中的硬度、弹性及咀嚼性;不同温度或厚度会影响猕猴桃干感官评价的组织形态、硬度、粘度、滋味指标;所有果干样品的硬度、滋味与总分具有显著或极显著的正相关性(r=0.797~0.981,P<0.05或P<0.01);所有猕猴桃干样品的硬度与胶粘性、咀嚼性都呈极显著的正相关性(P<0.01),胶粘性与咀嚼性都呈极显著的正相关性(P<0.01),且TPA硬度指标与感官评价粘度指标都存在相关性;在质构测定对感官评价的逐步回归分析中,绿心样品的粘附性、弹性、回复性进入了回归模型,黄心样品的硬度、弹性、咀嚼性入了回归模型,通过显著性检验均具有统计学意义(P<0.05),红心样品有待更深入研究;综合感官评价和质构测定,对猕猴桃干品质的评价起决定性作用的指标是硬度、咀嚼性、胶粘性,并且红心猕猴桃干评价最佳。但所有果干样品的质构指标与感官评价总分均不存在显著的相关关系(P>0.05),可见不同种类的猕猴桃干参数指标的相关性分析结果有明显差异。由于国内还没有关于不同种类猕猴桃干的感官评定与仪器测定的相关性研究,因此本研究为纯天然猕猴桃干制品的选取研制和客观评价提供了一定的理论依据,弥补猕猴桃干质构指标的研究空缺。后续研究可以在猕猴桃干的质地分析中实现不同条件下的TPA测定分析,如可结合多种测试模式或猕猴桃干的不同部位等条件,更好地优化对猕猴桃干的评价。
-
表 1 猕猴桃干感官评价标准
Table 1 Criteria for sensory evaluation of dried kiwifruit
指标 评分标准 10~8分 7~5分 4~2分 1~0分 气味(10分) 果香浓郁,有猕猴桃特有的果味 无异味,猕猴桃的果味不够浓郁 无猕猴桃的果味,略有其他异味 有明显其他异味 组织形态(10分) 细腻,有皱缩 基本细腻,皱缩较小 不细腻,皱缩较大 有较大皱缩 色泽(10分) 有光泽,透亮,色泽舒适 有光泽,较透亮,色泽较舒适 颜色暗淡,不够透明,色泽较差 不透明,色泽差 硬度(10分) 软硬适中,有韧性 稍硬或稍软,韧性稍差 偏硬或偏软,韧性差 过硬或过软,无韧性 粘度(10分) 无明显粘牙感 略有粘牙感 有粘牙感 粘牙感严重 滋味(10分) 甜酸适宜,回味好 甜酸味较淡,有回味 偏酸或偏甜 太酸或太甜 表 2 猕猴桃干质构测试结果
Table 2 Texture test results of dried kiwifruit
样品 厚度(mm) 温度(℃) 硬度(N) 粘附性(N·mm) 胶粘性(N) 弹性(mm) 咀嚼性(mJ) 回复性 绿心样品 8 60 73.988±15.423c 0.098±0.034c 3.038±0.2a 40.709±7.912b 117.386±20.416c 0.14±0.018abc 65 104.075±15.605b 0.189±0.039bc 3.056±0.191a 61.142±9.816a 159.23±27.235b 0.156±0.011ab 70 170.331±40.508a 0.293±0.139ab 2.488±0.453c 69.514±13.37a 191.89±38.973a 0.163±0.028a 10 60 56.003±14.28d 0.273±0.056ab 2.841±0.316ab 27.546±6.435c 73.699±14.32d 0.135±0.024bc 65 64.187±12.2cd 0.263±0.178ab 2.978±0.294ab 43.91±12.061b 115.854±21.301c 0.137±0.014bc 70 113.254±17.184b 0.352±0.213a 2.828±0.334abc 64.513±14.927a 162.48±18.523b 0.151±0.029abc 12 60 49.527±11.748d 0.356±0.197a 2.661±0.221bc 26.679±6c 72.598±18.148d 0.134±0.019bc 65 60.601±5.863cd 0.377±0.129a 2.789±0.442abc 41.189±12.038b 85.668±17.837d 0.131±0.022c 70 63.413±14.283cd 0.376±0.226a 2.959±0.415ab 28.853±9.877c 90.082±36.537d 0.144±0.024abc 黄心样品 8 60 68.951±10.806c 0.267±0.106cd 2.71±0.161bcd 33.055±3.703c 86.657±10.328c 0.148±0.027b 65 72.62±19.067c 0.247±0.058cd 3.233±0.432a 30.781±6.198c 107.553±27.075b 0.136±0.012b 70 140.875±15.208a 0.265±0.089cd 2.583±0.272bcd 67.114±15.864a 217.169±34.904a 0.22±0.063a 10 60 40.75±15.836e 0.421±0.237ab 2.52±0.261cd 18.926±5.183d 51.38±13.225de 0.161±0.031b 65 41.894±14.779e 0.288±0.176bc 2.915±0.634abc 19.11±6.742d 58.543±21.115d 0.147±0.043b 70 88.071±12.201b 0.229±0.086cd 2.929±0.391ab 52.78±8.635b 113.268±32.489b 0.185±0.024ab 12 60 31.446±10.056e 0.495±0.178a 2.485±0.492d 15.533±6.05d 34.046±17.365e 0.171±0.103ab 65 39.622±11.004e 0.31±0.188bc 2.747±0.38bcd 19.121±5.344d 46.71±15.671de 0.148±0.03b 70 54.751±12.263d 0.131±0.075d 2.578±0.399bcd 27.338±5.253c 62.709±24.053d 0.146±0.029b 红心样品 8 60 60.365±30.951b 0.221±0.127d 2.544±0.449ab 30.032±14.632c 59.574±16.046c 0.13±0.027b 65 65.143±15.726b 0.3±0.18cd 2.887±0.466a 28.863±5.7cd 87.333±18.743b 0.128±0.013b 70 107.786±10.929a 0.439±0.179cd 2.705±0.291ab 49.122±7.744a 136.987±30.28a 0.163±0.029ab 10 60 36.679±18.289cd 1.254±0.518a 2.512±0.31ab 20.099±11.462e 39.139±14.364d 0.16±0.036ab 65 45.874±6.994c 0.442±0.162cd 2.743±0.535ab 22.118±3.224de 63.449±10.49c 0.156±0.019ab 70 66.799±9.242b 0.462±0.21cd 2.776±0.383ab 39.6±5.241b 96.628±16.276b 0.162±0.026ab 12 60 31.317±14.482d 1.374±0.724a 2.367±0.263b 19.228±10.513e 34.444±17.844d 0.183±0.071a 65 36.335±11.166cd 0.89±0.448b 2.385±0.271b 19.299±6.467e 39.668±14.01d 0.176±0.054a 70 42.085±6.866cd 0.557±0.333c 2.763±0.398ab 23.77±4.114cde 61.532±22.574c 0.15±0.042ab 注:同列不同小写字母表示同一样品之间差异显著(P<0.05);表3同。 表 3 猕猴桃干感官品质评定结果
Table 3 Sensory quality evaluation of dried kiwifruit
样品 厚度(mm) 温度(℃) 气味 组织形态 色泽 硬度 粘度 滋味 总分 绿心样品 8 60 7.717±0.94ab 4.200±1.505f 4.817±1.692d 6.967±1.529b 6.800±1.482bc 6.367±1.687ab 36.867±4.260 65 7.300±1.306b 4.650±1.117e 5.300±1.43c 4.600±1.689d 7.233±1.454ab 6.017±1.722bc 35.100±3.187 70 7.383±1.166b 3.967±1.507f 3.783±1.541e 3.083±1.279e 7.417±1.154a 4.817±1.610e 30.450±3.121 10 60 7.683±1.000ab 5.933±1.274d 5.800±1.273b 6.617±1.316b 6.283±1.329de 6.583±1.344a 38.900±3.767 65 7.650±1.388ab 6.55±1.199bc 6.617±1.223a 8.133±1.033a 6.533±1.295cd 6.617±1.658a 42.100±3.128 70 7.483±1.214b 6.633±1.178bc 6.283±1.223a 4.417±1.807d 6.300±1.357de 5.800±1.793cd 36.917±3.876 12 60 7.717±1.415ab 7.067±1.023a 6.250±1.469ab 5.817±1.918c 5.967±1.775e 6.717±1.195a 39.533±4.757 65 8.050±0.790a 6.817±1.308ab 6.233±1.332ab 4.600±1.796d 5.233±1.701f 5.417±1.680d 36.350±3.287 70 7.367±1.314b 6.300±1.488cd 6.167±1.428ab 7.933±1.177a 6.183±1.242de 6.650±1.614a 40.600±3.499 黄心样品 8 60 6.933±1.039bc 3.617±1.379e 6.283±1.563bc 5.567±1.395d 6.067±1.413bc 3.450±2.045bcd 31.817±4.111 65 6.700±1.406cd 4.917±1.670d 6.133±1.478c 5.717±1.975d 5.233±1.577d 3.667±1.847bcd 32.333±4.782 70 5.917±1.759e 5.217±1.668d 6.683±1.142ab 3.817±1.157e 7.467±1.049a 3.217±1.541cd 32.317±3.402 10 60 6.883±1.316bc 6.200±1.232b 6.350±1.376bc 6.883±1.010ab 5.633±1.687cd 3.667±1.810bcd 35.617±3.928 65 7.450±1.185a 5.767±1.320c 6.117±1.391c 7.333±1.130a 5.483±1.702d 4.167±1.888ab 36.183±4.006 70 6.833±1.044bcd 6.533±1.127ab 6.717±1.439ab 6.283±1.209c 6.267±1.274b 4.550±1.588a 37.183±3.432 12 60 7.233±1.198ab 6.817±1.214a 6.533±1.157abc 6.600±1.343bc 4.550±1.702e 4.250±4.1280ab 35.883±5.340 65 7.183±1.049ab 6.833±1.181a 5.400±1.628d 4.250±1.910e 3.100±1.130f 3.050±1.935d 29.700±3.519 70 6.450±1.213d 6.817±1.255a 6.850±1.448a 7.150±1.424a 5.633±1.340cd 3.900±1.602abc 36.800±4.079 红心样品 8 60 7.042±1.590cde 5.400±1.138f 6.750±1.525bcd 6.883±1.106b 6.467±1.346b 8.150±1.117b 40.692±3.948 65 7.833±1.044a 5.667±1.361ef 6.750±1.503bcd 8.433±1.031a 7.267±1.274a 8.633±0.863a 44.583±3.321 70 6.833±1.122e 5.950±1.534e 7.250±1.284a 5.467±1.909d 6.350±1.412b 7.050±1.227c 38.900±4.193 10 60 7.383±1.439bcd 6.983±0.930cd 6.633±1.149cd 7.217±1.027b 6.483±1.578b 7.833±0.960b 42.533±3.286 65 7.850±1.176a 6.783±1.585d 6.517±1.490de 6.467±1.171c 5.467±1.455c 7.417±1.394c 40.500±4.504 70 6.700±1.332e 7.517±1.142a 7.217±0.940ab 7.183±1.501b 6.267±1.133b 7.883±1.209b 42.767±3.377 12 60 7.400±1.330bc 7.467±0.911ab 7.033±1.484abc 7.133±1.127b 4.567±1.711d 7.267±1.313c 40.867±4.324 65 7.717±1.121ab 7.083±1.239bcd 6.117±1.519e 2.983±1.214f 3.217±1.474f 7.033±1.164c 34.150±3.763 70 6.967±1.134de 7.217±1.151abc 7.417±1.109a 4.233±1.254e 4.083±1.418e 7.250±1.323c 37.167±3.037 表 4 感官评价指标间的相关性
Table 4 Correlation of sensory evaluation indicators
样品 感官指标 气味 组织形态 色泽 硬度 粘度 滋味 总分 绿心样品 气味 1 组织形态 0.442 1 色泽 0.358 0.927** 1 硬度 0.121 0.305 0.509 1 粘度 −0.751* −0.838** −0.735* −0.218 1 滋味 0.058 0.411 0.593 0.865** −0.234 1 总分 0.244 0.695* 0.841** 0.879** −0.500 0.888** 1 黄心样品 气味 1 组织形态 0.200 1 色泽 −0.546 0.036 1 硬度 0.450 0.272 0.343 1 粘度 −0.678* −0.457 0.744* −0.031 1 滋味 0.341 0.346 0.512 0.757* 0.131 1 总分 0.133 0.439 0.677* 0.841** 0.278 0.886** 1 红心样品 气味 1 组织形态 −0.079 1 色泽 −0.769* 0.113 1 硬度 0.068 −0.283 0.157 1 粘度 −0.144 −0.600 0.190 0.821** 1 滋味 0.136 −0.499 −0.060 0.773* 0.756* 1 总分 0.017 −0.238 0.208 0.981** 0.853** 0.797* 1 注:*在0.05级别(双尾)相关性显著;**在0.01级别(双尾)相关性极显著;表5~表7同。 表 5 TPA指标间的相关性
Table 5 Correlation between TPA indicators
样品 质构指标 硬度 粘附性 弹性 胶粘性 咀嚼性 回复性 绿心样品 硬度 1 粘附性 −0.105 1 弹性 −0.452 −0.507 1 胶粘性 0.898** −0.170 −0.197 1 咀嚼性 0.941** −0.257 −0.182 0.968** 1 回复性 0.919** −0.178 −0.196 0.832** 0.919** 1 黄心样品 硬度值 1 粘附性 −0.431 1 弹性 0.111 −0.403 1 胶粘性 0.975** −0.446 0.096 1 咀嚼性 0.991** −0.378 0.134 0.944** 1 回复性 0.731* 0.114 −0.385 0.771* 0.724* 1 红心样品 硬度值 1 粘附性 −0.614 1 弹性 0.511 −0.736* 1 胶粘性 0.962** −0.565 0.489 1 咀嚼性 0.963** −0.634 0.667* 0.951** 1 回复性 −0.286 0.747* −0.622 −0.188 −0.255 1 表 6 感官评价指标和TPA指标间的相关性
Table 6 Correlation between sensory evaluation indicators and TPA indicators
样品 指标 气味 组织形态 色泽 硬度 粘度 滋味 绿心样品 硬度 −0.577 −0.638 −0.740* −0.731* 0.702* −0.801** 粘附性 0.132 0.734* 0.491 −0.148 −0.625 −0.118 弹性 −0.080 −0.026 0.342 0.610 0.030 0.562 胶粘性 −0.467 −0.499 −0.506 −0.719* 0.601 −0.764* 咀嚼性 −0.622 −0.621 −0.614 −0.623 0.753* −0.683* 回复性 −0.831** −0.659 −0.667* −0.577 0.803** −0.579 黄心样品 硬度 −0.829** −0.405 0.417 −0.596 0.778* −0.235 粘附性 0.462 0.187 −0.214 0.074 −0.336 0.063 弹性 0.151 −0.304 −0.308 −0.017 −0.061 0.142 胶粘性 −0.774* −0.297 0.478 −0.530 0.773* −0.093 咀嚼性 −0.814** −0.420 0.364 −0.611 0.761* −0.273 回复性 −0.579 0.067 0.494 −0.437 0.612 −0.001 红心样品 硬度 −0.480 −0.562 0.418 0.128 0.557 0.078 粘附性 0.188 0.634 −0.170 −0.082 −0.416 −0.385 弹性 −0.130 −0.290 0.427 0.316 0.525 0.433 胶粘性 −0.660 −0.378 0.541 0.126 0.513 0.050 咀嚼性 −0.471 −0.405 0.507 0.126 0.513 0.062 回复性 −0.017 0.754* −0.071 −0.410 −0.620 −0.775* 表 7 所有样品的TPA指标与感官评价总分的相关性
Table 7 Correlation between TPA indicators and overall sensory evaluation scores for all samples
硬度 粘附性 弹性 胶粘性 咀嚼性 回复性 感官总分 感官总分 −0.343 0.290 0.039 −0.238 −0.288 −0.267 1 表 8 TPA指标对感官评价指标的逐步回归分析
Table 8 Stepwise regression analysis between TPA indicators and sensory evaluation indicators
样品 变量 R R2 R2adj Sig 更改统计量 R2更改R2 F更改F 绿心样品 粘附性 0.994 0.948 0.987 0.038 0.987 25.410 弹性 0.998 0.984 0.996 0.012 0.996 82.361 回复性 0.996 0.969 0.992 0.023 0.992 42.708 黄心样品 硬度 0.997 0.98 0.995 0.015 0.995 65.218 弹性 0.995 0.963 0.991 0.027 0.991 36.104 咀嚼性 0.992 0.933 0.983 0.049 0.983 19.690 -
[1] 仇占南, 张茹阳, 彭明朗, 等. 北京野生软枣猕猴桃果实品质综合评价体系[J]. 中国农业大学学报,2017,22(2):45−53. [QIU Zhannan, ZHANG Ruyang, PENG Minglang, et al. Comprehensive evaluation system of the fruit quality of wild Actinidia argutain Beijing[J]. Journal of China Agricultural University,2017,22(2):45−53.] QIU Zhannan, ZHANG Ruyang, PENG Minglang, et al. Comprehensive evaluation system of the fruit quality of wild Actinidia argutain Beijing[J]. Journal of China Agricultural University, 2017, 22(2): 45−53.
[2] KRUPA T, LATOCHA P, LIWINSKA A. Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage[J]. Scientia Horticulturae,2011,130(2):410−417. doi: 10.1016/j.scienta.2011.06.044
[3] PARK Y, KIM C W. Changes of physicochemical quality in hardy kiwifruit (Actinidia arguta) during storage at different temperature[J]. Korean Journal of Plant Resources,2015,28(3):329−332. doi: 10.7732/kjpr.2015.28.3.329
[4] DU Guorong, LI Mingjun, MA Fengwang. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits[J]. Food Chemistry,2009,113:557−562. doi: 10.1016/j.foodchem.2008.08.025
[5] 赵燕妮, 李悦, 雷靖, 等. 不同品种猕猴桃果实的抗氧化活性研究[J]. 陕西科技大学学报,2019,37(6):46−52,72. [ZHAO Yanni, LI Yue, LEI Jing, et al. Study on antioxidant properties of different kiwifruit cultivars[J]. Journal of Shaanxi University of Science and Technology,2019,37(6):46−52,72.] ZHAO Yanni, LI Yue, LEI Jing, et al. Study on antioxidant properties of different kiwifruit cultivars[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(6): 46−52,72.
[6] CAO H, ZHOU S, WAN X Z, et al. Natural polythenes:A potential therapeutic approach to hypoglycemia[J]. eFood,2020,1(2):107−118. doi: 10.2991/efood.k.200302.001
[7] SHRUTI M, VIVEK K, GEETA B, et. al. Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits:A review[J]. Food Frontiers,2022,3:221−238. doi: 10.1002/fft2.129
[8] 卢丹, 赵武奇, 曾祥媛, 等. ‘海沃德’猕猴桃应力松弛特性与品质关系[J]. 中国农业科学,2019,52(14):2548−2558. [LU Dan, ZHAO Wuqi, ZENG Xiangyuan, et al. Relationship between stress relaxation characteristics and quality of 'Hayward' kiwifruit[J]. Chinese Journal of Agricultural Sciences,2019,52(14):2548−2558.] LU Dan, ZHAO Wuqi, ZENG Xiangyuan, et al. Relationship between stress relaxation characteristics and quality of 'Hayward' kiwifruit[J]. Chinese Journal of Agricultural Sciences, 2019, 52(14): 2548−2558.
[9] 阎宁, 刘新婷, 李雯, 等. TPA质构分析氯化钙处理采后番木瓜果实的质地变化[J]. 食品科技,2019,44(9):56−60. [YAN Ning, LIU Xting, LI Wen, et al. Texture analysis of postharvest papaya fruits treated with calcium chloride by TPA[J]. Food Science and Technology,2019,44(9):56−60.] YAN Ning, LIU Xting, LI Wen, et al. Texture analysis of postharvest papaya fruits treated with calcium chloride by TPA[J]. Food Science and Technology, 2019, 44(9): 56−60.
[10] 李树长, 艾民珉, 龙姣丽, 等. 潮汕脆性肉丸的感官评定与质构评价相关性分析[J]. 食品工业科技,2022,43(1):62−70. [LI Shuchang, AI Minmin, LONG Jiaoli, et al. Correlation between sensory and texture evaluation of Chaoshan crisp meatballs[J]. Science and Technology of Food Industry,2022,43(1):62−70.] LI Shuchang, AI Minmin, LONG Jiaoli, et al. Correlation between sensory and texture evaluation of Chaoshan crisp meatballs[J]. Science and Technology of Food Industry, 2022, 43(1): 62−70.
[11] CONDE-PETIT B. Food texture and viscosity-concept and measurement[J]. LWT-Food Science and Technology,2003,36(2):281. doi: 10.1016/S0023-6438(02)00182-2
[12] FRANCK H, CHRISTIAN M, NOEEL A, et al. Effects of cultivar and harvesting conditions (age, season) on the texture and taste of boiled cassava roots[J]. Food Chemistry,2011,126(1):127−133. doi: 10.1016/j.foodchem.2010.10.088
[13] ZHU D S, REN X J, WEI L W, et al. The difference of sensory qualities of apple fruit among eight cultivated varieties[J]. IOP Conference Series:Earth and Environmental Science,2018,186:12−27.
[14] 乔支红, 许荣华, 王恒, 等. 豆腐质构的感官评定与仪器评价的相关性分析[J]. 食品工业科技,2021,42(8):271−276. [QIAO Zhihong, XU Ronghua, WANG Heng, et al. Correlation between sensory and instrumental measurementof tofu texture[J]. Science and Technology of Food Industry,2021,42(8):271−276.] QIAO Zhihong, XU Ronghua, WANG Heng, et al. Correlation between sensory and instrumental measurementof tofu texture[J]. Science and Technology of Food Industry, 2021, 42(8): 271−276.
[15] 李倩, 邹婷婷, 朱麟菲, 等. 葵花籽油煎炸制品感官评价与质构的相关性分析[J]. 美食研究,2022,39(4):56−61. [LI Qian, ZOU Tingting, ZHU Linfei, et al. Correlation analysis between sensory evaluation and texture of fried sunflower oil products[J]. Journal of Gastronomy Research,2022,39(4):56−61.] LI Qian, ZOU Tingting, ZHU Linfei, et al. Correlation analysis between sensory evaluation and texture of fried sunflower oil products[J]. Journal of Gastronomy Research, 2022, 39(4): 56−61.
[16] 孙彩玲, 田纪春, 张永祥. TPA质构分析模式在食品研究中的应用[J]. 实验科学与技术,2007(2):1−4. [SUN Cailing, TIAN Jichun, ZHANG Yongxiang. Application of TPA texture analysis model in food research[J]. Experimental Science and Technology,2007(2):1−4.] SUN Cailing, TIAN Jichun, ZHANG Yongxiang. Application of TPA texture analysis model in food research[J]. Experimental Science and Technology, 2007(2): 1−4.
[17] 牛丽影, 万玉炜, 李大婧, 等. 不同品种紫薯的质构特征比较[J]. 现代食品科技,2020,36(7):96−104. [NIU Liying, WAN Yuwei, LI Dajing, et al. Texture comparison of different purple sweetpotato cultivars[J]. Modern Food Science and Technology,2020,36(7):96−104.] NIU Liying, WAN Yuwei, LI Dajing, et al. Texture comparison of different purple sweetpotato cultivars[J]. Modern Food Science and Technology, 2020, 36(7): 96−104.
[18] 苏可珍, 陈辉, 胡聪, 等. 珍珠粉圆感官评价与质构的相关性分析[J]. 食品工业,2022,43(3):174−178. [SU Kezhen, CHEN Hui, HU Cong, et al. Correlation analysis between sensory evaluation and texture of pearls[J]. Food Industry,2022,43(3):174−178.] SU Kezhen, CHEN Hui, HU Cong, et al. Correlation analysis between sensory evaluation and texture of pearls[J]. Food Industry, 2022, 43(3): 174−178.
[19] WANG Z Y, SU H N, XUE B, et al. Effect of fragmentation degree on sensory and texture attributes of cooked rice[J]. Abstracts of Papers of the American Chemical Society,2019,258.
[20] 侯培军, 刘怡菲, 孟凡金, 等. 不同干燥方式对软枣猕猴桃品质的影响[J]. 辽宁林业科技,2019(2):14−17. [HOU Peijun, LIU Yifei, MENG Fanjin, et al. Influence of different desiccating methods on fruit quality of Actinidia arguta[J]. Journal of Liaoning Forestry Science & Technology,2019(2):14−17.] HOU Peijun, LIU Yifei, MENG Fanjin, et al. Influence of different desiccating methods on fruit quality of Actinidia arguta[J]. Journal of Liaoning Forestry Science & Technology, 2019(2): 14−17.
[21] 魏丽红, 翟秋喜. 软枣猕猴桃真空冷冻干燥条件的筛选[J]. 辽宁农业职业技术学院学报,2019,21(5):7−9. [WEI Lihong, ZHAI Qiuxi. Screening of vacuum freeze-drying conditions for Actinidia jujube[J]. Journal of Liaoning Agricultural Technical College,2019,21(5):7−9.] WEI Lihong, ZHAI Qiuxi. Screening of vacuum freeze-drying conditions for Actinidia jujube[J]. Journal of Liaoning Agricultural Technical College, 2019, 21(5): 7−9.
[22] 周旭. 猕猴桃切片的射频真空及热风联合干燥研究[D]. 杨凌:西北农林科技大学,2019. [ZHOU Xu. Developing radio frequency-vacuum and combined dehydration with hot air drying for kiwifruit slices[D]. Yangling:Northwest A&F University,2019.] ZHOU Xu. Developing radio frequency-vacuum and combined dehydration with hot air drying for kiwifruit slices[D]. Yangling: Northwest A&F University, 2019.
[23] 张萌, 段续, 任广跃, 等. 预处理方式对热风干燥玫瑰花瓣品质特性的影响[J]. 食品与机械,2019,36(1):204−209,229. [ZHANG Meng, DUAN Xu, REN Guangyue, et al. Effect of pretreatment methods on quality characteristics of rose petals dried by hot air[J]. Food & Machinery,2019,36(1):204−209,229.] ZHANG Meng, DUAN Xu, REN Guangyue, et al. Effect of pretreatment methods on quality characteristics of rose petals dried by hot air[J]. Food & Machinery, 2019, 36(1): 204−209,229.
[24] 邓红, 尤毅娜, 李宁, 等. 猕猴桃片的热风干燥特性[J]. 食品与发酵工业,2014,40(11):165−170. [DENG Hong, YOU Yina, LI Ning, et al. Hot air drying characteristics of kiwifruit slices[J]. Food and Fermentation Industry,2014,40(11):165−170.] DENG Hong, YOU Yina, LI Ning, et al. Hot air drying characteristics of kiwifruit slices[J]. Food and Fermentation Industry, 2014, 40(11): 165−170.
[25] 许牡丹, 黄萌, 马可纯, 等. 基于数学统计分析的猕猴桃品质评价指标筛选[J]. 食品科技,2016,41(6):310−314. [XU Mudan, HUANG Meng, MA Kechun, et al. Selection of kiwifruit quality evaluation indexes based on mathematical statistic[J]. Food Science and Technology,2016,41(6):310−314.] XU Mudan, HUANG Meng, MA Kechun, et al. Selection of kiwifruit quality evaluation indexes based on mathematical statistic[J]. Food Science and Technology, 2016, 41(6): 310−314.
[26] 国家卫生和计划生育委员会. GB 5009.3−2016 食品安全国家标准食品中水分的测定[S]. 北京:中国标准出版社,2016. [National Health and Family Planning Commission. GB 5009.3-2016 National food safety standard determination of moisture in food[S]. Beijing:China Standard Press,2016.] National Health and Family Planning Commission. GB 5009.3-2016 National food safety standard determination of moisture in food[S]. Beijing: China Standard Press, 2016.
[27] 农业农村部. NY/T 1041-2018 绿色食品干果[S]. 北京:中国标准出版社,2018. [Ministry of Agriculture and Rural Affairs. NY/T 1041-2018 Green food dried fruits[S]. Beijing:Standards Press of China,2018.] Ministry of Agriculture and Rural Affairs. NY/T 1041-2018 Green food dried fruits[S]. Beijing: Standards Press of China, 2018.
[28] 张雯, 韩守安, 王敏, 等. 基于质构和感官评价方法构建绿葡萄干干燥标准及快速检测技术[J]. 中国农学通报,2021,37(28):128−135. [ZHANG Wen, HAN Shouan, WANG Min, et al. Drying standard and rapid detection technology of green raisin based on texture and sensory evaluation method[J]. Chinese Agricultural Science Bulletin,2021,37(28):128−135.] ZHANG Wen, HAN Shouan, WANG Min, et al. Drying standard and rapid detection technology of green raisin based on texture and sensory evaluation method[J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 128−135.
[29] 陈炜璇, 庄婉娴, 吴迁迁, 等. 紫米粉圆感官评价及质构特性的相关性分析[J]. 食品与机械,2023,39(3):11−16,22. [CHEN Weixuan, ZHUANG Wanxian, WU Qianqian, et al. Sensory evaluation and correlation analysis of texture properties of purple rice flour[J]. Food & Machinery,2023,39(3):11−16,22.] CHEN Weixuan, ZHUANG Wanxian, WU Qianqian, et al. Sensory evaluation and correlation analysis of texture properties of purple rice flour[J]. Food & Machinery, 2023, 39(3): 11−16,22.
[30] IMRAN A, TRAYNOR P M. Impact of high-pressure processing and sous vide cooking on the physicochemical, sensorial, and textural properties of fresh whiteleg shrimp (Litopenaeus setiferus)[J]. Journal of Aquatic Food Product Technology,2022,31(6):508−524. doi: 10.1080/10498850.2022.2077157
[31] 邢晓凡, 刘浩楠, 姚飞, 等. 不同干燥方式对黄桃果干品质的影响[J]. 食品工业科技,2023,44(24):1−7. [XING Xiaofan, LIU Haonan, YAO Fei, et al. The effect of different drying methods on the quality of dried yellow peach slices[J]. Science and Technology of Food Industry,2023,44(24):1−7.] XING Xiaofan, LIU Haonan, YAO Fei, et al. The effect of different drying methods on the quality of dried yellow peach slices[J]. Science and Technology of Food Industry, 2023, 44(24): 1−7.
[32] 张群, 刘伟袁, 洪燕, 等. 蓝莓热风干燥过程中水分扩散特性和微观结构变化[J]. 食品工业科技,2019,40(6):76−81. [ZHANG Qun, LIU Weiyuan, Hongyan, et al. Water diffusion characteristics and microstructure changes of blueberry during hot air drying[J]. Science and Technology of Food Industry,2019,40(6):76−81.] ZHANG Qun, LIU Weiyuan, Hongyan, et al. Water diffusion characteristics and microstructure changes of blueberry during hot air drying[J]. Science and Technology of Food Industry, 2019, 40(6): 76−81.
[33] VODA A, HOMAN N, WITEK M, et a1. The impact of freeze-drying on microstmcture and rehydration properties of carrot[J]. Food Research Intemational,2012,49(2):687−693. doi: 10.1016/j.foodres.2012.08.019
[34] 刘峰娟, 冯作山, 孟阳, 等. 脱水速度对“无核白”葡萄果皮褐变和细胞超微结构的影响[J]. 食品科学,2016,37(6):220−225. [LIU Fengjuan, FENG Zuoshan, MENG Yang, et al. Effect of dehydration rate on browning and cell ultrastructure of Thompson seedless Grapes[J]. Food Science,2016,37(6):220−225.] LIU Fengjuan, FENG Zuoshan, MENG Yang, et al. Effect of dehydration rate on browning and cell ultrastructure of Thompson seedless Grapes[J]. Food Science, 2016, 37(6): 220−225.
[35] 张群, 舒楠, 黄余年, 等. 不同干燥方式对黄桃果干结构特性及营养品质的影响[J]. 湖南农业科学,2021(4):86−89. [ZHANG Qun, SHU Nan, HUANG Yunian, et al. Effects of drying methods on quality properties and microstructure of yellow peach (Amygdalus persica)[J]. Hunan Agricultural Sciences,2021(4):86−89.] ZHANG Qun, SHU Nan, HUANG Yunian, et al. Effects of drying methods on quality properties and microstructure of yellow peach (Amygdalus persica)[J]. Hunan Agricultural Sciences, 2021(4): 86−89.
[36] 张鑫, 郭雨婷, 孙时光, 等. 猕猴桃果酒发酵过程中色泽变化因素的相关性研究[J]. 食品研究与开发,2019,40(6):99−104. [ZHANG Xin, GUO Yuting, SUN Shiguang, et al. Study on correlation of color change factors in kiwi fruit wine fermentation production[J]. Food Research and Development,2019,40(6):99−104.] ZHANG Xin, GUO Yuting, SUN Shiguang, et al. Study on correlation of color change factors in kiwi fruit wine fermentation production[J]. Food Research and Development, 2019, 40(6): 99−104.
[37] 郭静. 猕猴桃果实及果酒香气成分研究[D]. 杨凌:西北农林科技大学,2007. [GUO Jing. Study on aroma components of kiwifruit and fruit wine[D]. Yangling:Northwest A&F University,2007.] GUO Jing. Study on aroma components of kiwifruit and fruit wine[D]. Yangling: Northwest A&F University, 2007.
[38] 靳政时, 牛犇, 刘瑞玲, 等. 干燥方式对猕猴桃果干品质的影响[J]. 食品工业科技,2022,43(24):62−71. [JIN Zhengshi, NIU Ben, LIU Ruiling, et al. Effect of drying method on dry quality of kiwifruit[J]. Science and Technology of Food Industry,2022,43(24):62−71.] JIN Zhengshi, NIU Ben, LIU Ruiling, et al. Effect of drying method on dry quality of kiwifruit[J]. Science and Technology of Food Industry, 2022, 43(24): 62−71.
[39] 张维, 付复华, 罗赛男, 等. 湖南红心猕猴桃品种品质评价及综合分析[J]. 食品与发酵工业,2021,47(5):201−210. [ZHANG Wei, FU Fuhua, LUO Sainan, et al. Quality analysis and evaluation of Hunan red kiwifruit varieties[J]. Food and Fermentation Industries,2021,47(5):201−210.] ZHANG Wei, FU Fuhua, LUO Sainan, et al. Quality analysis and evaluation of Hunan red kiwifruit varieties[J]. Food and Fermentation Industries, 2021, 47(5): 201−210.
[40] LIU Y, QI Y, CHEN X, et al. Phenolic compounds and antioxidant activity in red-and in green-fleshed kiwifruits[J]. Food Research International,2019,116:291−301. doi: 10.1016/j.foodres.2018.08.038
[41] 王凤昭, 吕健, 毕金峰, 等. 去皮方式对黄桃渗透脱水组合干燥特性及理化品质的影响[J]. 中国食品学报,2019,21(9):121−129. [WANG Fengzhao, LÜ Jian, BI Jinfeng, et al. Effects of peeling methods on drying characteristics and physicochemical quality of yellow peach combined with osmotic dehydration[J]. Journal of Chinese Institute of Food Science and Technology,2019,21(9):121−129.] WANG Fengzhao, LÜ Jian, BI Jinfeng, et al. Effects of peeling methods on drying characteristics and physicochemical quality of yellow peach combined with osmotic dehydration[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 21(9): 121−129.
[42] 但杭妍, 李仍树, 张铭月, 等. 产自攀枝花市的四种水果果干品质特性分析[J]. 食品工业科技,2019,41(3):33−39,45. [DAN Hangyan, LI Rengshu, ZHANG Mingyue, et al. Analysis on the quality characteristics of four kinds of dried fruits from Panzhihua city[J]. Science and Technology of Food Industry,2019,41(3):33−39,45.] DAN Hangyan, LI Rengshu, ZHANG Mingyue, et al. Analysis on the quality characteristics of four kinds of dried fruits from Panzhihua city[J]. Science and Technology of Food Industry, 2019, 41(3): 33−39,45.
[43] 李丽娜, 赵武奇, 曾祥源, 等. 苹果的质构与感官评定相关性研究[J]. 食品与机械,2017,33(6):37−41,45. [LI Lina, ZHAO Wuqi, ZENG Xiangyuan, et al. Correlation between texture and sensory evaluation of apple[J]. Food & Machinery,2017,33(6):37−41,45.] LI Lina, ZHAO Wuqi, ZENG Xiangyuan, et al. Correlation between texture and sensory evaluation of apple[J]. Food & Machinery, 2017, 33(6): 37−41,45.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0