Effects of Millet Flour on Rheological Characteristics of Wheat Dought and Noodle Quality
-
摘要: 为探究黍子粉对小麦面团粉质特性、黏弹特性和面条品质的影响以及面团流变学特性与面条品质之间的相关性分析。在小麦粉中添加0%、10%、20%、30%、40%比例的黍子粉,测定不同黍子粉添加量面团的流变学特性和面条的蒸煮特性、质构特性。结果表明:面团的弱化度、弹性模量和黏性模量,面条的断条率和蒸煮损失率随着黍子粉添加量的增加呈上升趋势;而面团的吸水率、稳定时间和形成时间,面条的粘聚性、回复性、拉伸力和拉伸距离则呈下降趋势。当黍子粉添加量为20%时,面条的硬度、胶着度、咀嚼性分别为777.8 g、637.7、588.06,与其他黍子粉添加量相比均达到最优。黍子小麦混合粉面团的弹性模量、黏性模量和弱化度与面条的拉伸力、拉伸距离等呈负相关,证明了黍子粉在面条品质定向改变方面的应用潜力。Abstract: To investigate the effects of millet flour on the farinaceous properties, viscoelastic properties and noodle quality of wheat dough, and the correlation analysis between dough rheological properties and noodle quality. Millet flour was added in the proportion of 0%, 10%, 20%, 30% and 40% to wheat flour, and the rheological properties of dough, cooking properties and texture properties of noodles with different amounts of millet flour were determined. The results showed that the weakening degree, elastic modulus and viscosity modulus of the dough, the breaking rate and the cooking loss rate of the noodles increased with the increase of the amount of millet flour; while the water absorption rate, stabilization time and forming time of the dough, the cohesion, recovery, stretching force and stretching distance of noodles showed a downward trend. When the addition amount of millet flour was 20%, the hardness, stickiness and chewiness of noodles were 777.8 g, 637.7, and 588.06, respectively, which were optimal compared with other additions of millet flour. The elastic modulus, viscous modulus and weakening degree of millet-wheat mixed flour dough were negatively correlated with the stretching force and stretching distance of the noodles, which proved the application potential of millet flour in the directional change of noodle quality.
-
Keywords:
- millet flour /
- silty properties /
- viscoelastic properties /
- cooking properties /
- texture properties /
- correlation
-
黍子(Panicum miliaceum L.)属于禾本科黍属,其脱壳后称为黄米[1]。黍子生长期短,主要种植在我国北方干旱半干旱地区[2-3],如山西、内蒙古、陕西、甘肃、宁夏、黑龙江等省[4]。我国目前是世界上黍子栽培面积最大的国家,约为100万公顷[5]。黍子中除含有淀粉、蛋白质、维生素、矿物质等营养成分外还含有黄酮和多酚等功能成分。黍子蛋白质含量为7.25%~17.99%,必需氨基酸种类齐全,且必需氨基酸指数(EAAI)比小麦高51%[6-7]。通过黍子浓缩蛋白(PMP)饲养小鼠试验发现,PMP可显著降低血糖和血浆胰岛素水平,增加血浆高密度脂蛋白胆固醇(HDL–C)的水平显著降低肿瘤坏死因子α在脂肪组织中的表达[8]。黍子蛋白还可有效抑制乳酸脱氢酶、天冬氨酸转氨酶和丙氨酸转氨酶的活性,起到预防肝损伤的作用[9]。黍子淀粉含量在63.81%~76.94%之间,淀粉颗粒多为小球形和大多角形,这种淀粉不易消化,适于心血管疾病和糖尿病等患者的食用[10],脂肪平均含量在0.94%~5.49%之间[7],黍子中脂肪酸可与淀粉互相作用,降低淀粉水解速度,从而起到降血糖的作用[11]。黍子膳食纤维含量在1.20%~6.50%之间[12],食用可加快胃肠蠕动、有防止便秘的作用。黍子中总多酚含量为0.29~4.57 mg/g[13],自由酚可降低人类乳腺癌细胞(MDA)和人类肝癌细胞(HepG2)的增殖活性[14];而结合酚经过胃肠不被消化,在结肠中通过微生物发酵产生积极效应,可预防结肠癌[15]。黍子酚酸提取物可以预防由羟基自由基或过氧自由基引起的DNA损伤[16]。黍子主要有降血脂、降血压、降血糖、抗癌抑瘤、护肝等保健功能,黍子粉由黍子粉碎过筛制得,黍子的营养成分破坏较少,黍子粉可用于加工生产各种具有健康功能的食品。
黍子的传统加工产品主要有黄酒、油炸糕、粽子、黄馍馍、炒米[1]等。在国外,黍子作为原料,加工成饮料、啤酒[17]、婴幼儿方便食品等[18];通过与玉米粉、小麦粉等混合,并添加改良剂,加工成面包、饼干等[19-20]。黍子是一种乳糜泻和麸质过敏患者可食用的无麸质谷物[17],因为不含面筋蛋白,网络空间结构少,淀粉颗粒无法嵌入,所以不能锁住水分,面团过软难以成型[21]。因为单独用黍子制作面条、馒头、面包等都非常困难,但可以与小麦粉及面粉改良剂混合后生产日常主食,不仅增加面筋蛋白含量,还可改善面团及面制品品质[22]。面条作为我国的传统主食,深受人们的喜欢,在饮食中有着重要的地位。本文通过添加不同比例的黍子粉与小麦粉混合制作面条,测定黍子小麦面团流变学特性和面条的质构特性、蒸煮特性,得出黍子不同添加量对混合面团、面条的影响规律,从而为黍子小麦混合粉在主食中的应用提供依据。用黍子粉与小麦粉混合制作的面条相比传统纯小麦面条不仅丰富面条种类也提高了面条的营养。
1. 材料与方法
1.1 材料与仪器
黍子粉 内蒙古乌兰察布市凉城县世纪粮行有限公司;中筋小麦面粉 河北金沙河面业有限责任公司;蒸馏水 实验室自制。
Farinograhp-TF粉质仪 德国Brabender公司;DHR-3流变仪 美国TA公司;俊媳妇电动压面机 永康市富康电器有限公司;TA-XT.PLUS物性测试仪 英国Stable Micro System公司。
1.2 实验方法
1.2.1 黍子小麦面团、面条的制备
黍子粉的添加比例为混合粉总质量的0%、10%、20%、30%、40%。称取不同比例的黍子小麦混合粉50 g放入粉质仪揉面钵中,加入适量蒸馏水开始搅拌揉面,至面团达到最大稠度(480~520 FU)时停止搅拌,在保持30 ℃下面团醒发30 min后,轻轻刮下放入密封保鲜盒备用。醒发好的面团放入孔径为2 mm的压面桶中,压出面条,500 mL沸水煮5 min捞出备用。
1.2.2 黍子小麦面团粉质特性的测定
参照GB/T 14614-2019《小麦粉面团流变学特性测试粉质仪法》的方法进行测定。测定面团弱化度、形成时间、稳定时间、吸水率、粉质指数五个参数值。
1.2.3 黍子小麦面团粘弹特性的测定
选择流变仪P35/Ti型号探头,取2 cm×2 cm×1 cm的面团放在测试台中央,探头压下时,沿探头边刮掉被挤出的面团,在夹具凹槽里加少许蒸馏水,防止面团水分流失,减少实验误差。测定方法条件参照季香青等[23]的方法并稍加修改。面团在25 ℃下静置5 min,使用动态粘弹性模式对样品进行测试。测试条件为:平板直径为40 mm,应变量为0.1%,扫描频率范围为0.1~20 Hz,平板间隙2500 μm。
1.2.4 黍子小麦面条蒸煮特性的测定
面条断条率:取20根长短一致的完整面条,放入500 mL沸水中煮熟后捞出,记录完整面条根数。干物质吸水率:取20根长为20 cm的完整面条称重,在500 mL沸水中煮熟后捞出,用滤纸吸水,沥干5 min并称重。干物质蒸煮损失率:剩余的面汤降至常温,转移至500 mL容量瓶中混匀定容,量取50 mL面汤倒入250 mL已经烘至恒重的烧杯中,于105 ℃烘箱内将面汤烘至恒重后称重。
断条率(%)=20−n20×100 (1) 干物质吸水率(%)=m2−m1m1(1−w)×100 (2) 蒸煮损失率(%)=m3×10m1×(1−w)×100 (3) 式中:n表示未断的熟面条根数;
m1 表示面条煮前质量,g;m2 表示面条煮后质量,g;m3 表示面汤烘干后干物质的质量,g;w 表示面条的含水量,%;10 表示面汤的稀释倍数。1.2.5 黍子小麦面条质构特性的测定
参照Klinmalai等[24]和陈书攀等[25]的方法稍作修改。
1.2.5.1 全质构(TPA)特性的测定
面条煮熟后捞出,先放凉水中冷却1 min,再放在滤纸上静置5 min沥干水分后,取3根长度相等的面条,间隔一定距离平行放在载物台的中央。本试验选择P50探头。测试条件为:测前、测试中、测后速度均为0.8 mm/s,接触力5 g,两次挤压时间间隔1 s。重复测试12次,取其中3组实验数据。
1.2.5.2 拉伸特性的测定
取1根沥干水分的面条,将面条缠绕在上下两个探头上后,开始拉伸直至面条被拉断,试验过程不可触碰面条及探头。测试探头型号:Spaghett/Noodle tensile rig code A/SPR。测试条件:测前速度:1 mm/s;测中速度:3 mm/s;测后速度:10 mm/s;测试拉伸距离:100 mm。重复测试12次,取其中3组实验数据。
1.3 数据处理
本试验中的所有数据均为3次平行试验的平均值。采用SPSS 18.0进行统计学分析,显著性分析使用Duncan法,显著水平P<0.05。使用Excel 2016计算标准误差后制图,Origin 2021b进行相关性分析制图。
2. 结果与分析
2.1 黍子小麦面团的粉质特性
由表1可知,面团的弱化度随添加黍子粉比例的增加而逐渐增大;与纯小麦面团相比,当黍子粉添加至40%时,面团的弱化度从98.33 FU增加至152.33 FU,面团的弱化程度表示面团的耐破坏程度,面团弱化度越大说明面团筋力越弱且更易发生流变[26]。在实际生产中,面条类产品的面团稳定时间大约为3~5 min。黍子小麦面团的稳定时间、形成时间随黍子粉比例的增加先减小后增大,纯小麦面团的稳定时间为3.62 min,添加黍子粉的混合粉面团的稳定时间均小于3 min,表明黍子粉的添加使面团的筋性变弱、韧性变差,难以加工成型,制得的面条存在筋力弱、绵软易断、不耐煮、口感差等问题[27]。这可能是由于黍子粉中没有面筋蛋白,黍子粉添加量的增加稀释了混合粉中的面筋蛋白导致的。此粉质特性结果与张庆霞[28]研究的玉米小麦混合粉的结果和孙耀军[29]研究的藜麦小麦混合粉的结果相一致。
表 1 黍子小麦面团的粉质特性Table 1. Flour characteristics of millet wheat dough黍子粉
添加量(%)弱化度
(FU)粉质
指数形成时间(min) 吸水率
(%)稳定时间(min) 0 98.33±3.06a 44.00±2.65d 2.38±0.40c 61.57±0.21c 3.62±0.07d 10 104.67±9.50ab 37.33±3.51c 1.83±0.12b 61.00±0.20b 2.80±0.21c 20 117.67±8.39b 30.33±3.21b 1.44±0.10a 61.00±0.20b 2.21±0.24b 30 150.00±12.17c 21.00±2.65a 1.24±0.14a 61.13±0.25b 1.35±0.20a 40 152.33±8.62c 34.67±2.08bc 1.84±0.08b 60.13±0.15a 2.57±0.12c 注:用Duncan法进行多重比较,同列不同小写字母表示差异显著(P<0.05)。 2.2 黍子小麦面团的黏弹特性
纯小麦面团和4种不同黍子小麦混合粉面团,经流变仪频率扫描后所得的结果如图1所示。在0.1~20 Hz范围内随着振荡频率的增加,弹性模量与黏性模量都在明显增大,且弹性大于黏性,这是一种典型的类固态行为[30]。在相同频率下,混合粉面团的弹性模量和黏性模量随着黍子粉添加量的增加明显增大,这可能是由于黍子粉的添加,一定程度上促进了面团中蛋白质分子之间的交联作用,混合面团的内部结构变强黏弹性增加[31]。黍子粉添加量小于30%时面团黏性模量与纯小麦面团相比差距较小,弹性和黏性模量都缓慢增加,而添加量为40%时达到最大值,即达到弹性和黏性模量最大的状态。
损耗角正切(tanδ=G″/G')值随频率的递增先减小后增大,即在0.01~1 Hz的低频范围内降低,振荡频率大于1 Hz后,tanδ值随频率的增大而增大。当频率处于较低状态时,面筋蛋白之间能形成良好的网络形态,促使弹性比例增大;但随着频率的继续增大,分子间的交联程度被削弱,则黏性比例增加,所以当频率高于一定值时,混合面团凝胶体系流动性增强,出现了类似于剪切稀化的现象[32]。在相同频率下比较,随黍子粉添加量的增大tanδ值整体减小,代表黍子粉与小麦混合粉面团的弹性比纯小麦面团大,而黏性比纯小麦面团小。纯小麦面团的tanδ值均大于添加黍子粉的面团,且都小于1,说明混合面团呈现出弱凝胶的性质[33],添加10%的黍子粉面团的tanδ值与纯小麦面团相比差距最小。该结果与张梦潇等[34]的研究结果一致。
使用Power-law模型对样品的动态流变学曲线进行幂律模型方程拟合,如表2所示系数变化。其中,稠度系数K值可以表示样品的黏度大小,G'和G''的K值随黍子粉添加量增大而增大,分别从10070到19835,从5603.4到9504.5,表明粘弹性升高。当n=1时,样品属于牛顿流体,当n<1时,样品为假塑性流体,n的大小可以表示样品在剪切过程中黏度变化速率的大小,即假塑性的强弱。利用稠度系数分析面团的粘弹特性与面条品质的相关性。
表 2 黍子小麦面团体系Power-law方程拟合参数Table 2. Power-law parameters for millet wheat flour dough黍子粉添加量(%) 稠度系数K(Pa.sn) 流体指数(n) 决定系数(R2) 0 10070/5603.4 0.139/0.144 0.951/0.904 10 11500/5992.8 0.136/0.148 0.961/0.933 20 13979/6552.6 0.104/0.127 0.909/0.864 30 16145/7442.6 0.096/0.113 0.929/0.863 40 19835/9504.5 0.113/0.112 0.954/0.879 注:“/”前数据为弹性模量拟合数据;“/”后数据为黏性模量拟合数据。 2.3 黍子小麦面条蒸煮特性
由图2可知,面条的断条率、蒸煮损失率随着黍子粉添加量的增加显著升高(P<0.05),而干物质吸水率先降低后升高。在添加至40%时断条率为73.3%、蒸煮损失率为21.13%,纯小麦面条干物质吸水量为138.71%,黍子小麦面条从135.46%降至123.26%后增加至138.26%,面条干物质吸水率变化没有显著的规律性,这可能是由于本研究各比例混合粉制作面条的加水量不同造成的。添加了黍子粉的面条蒸煮损失率上升,可能是由于面粉筋力下降导致面团网络结构减弱了对淀粉粒的束缚作用,使蒸煮过程中淀粉容易溶出[35]。说明断条率高的面条筋力弱、不耐煮、发粘咀嚼性差。蒸煮损失率越大,则面条中的淀粉、蛋白会流失越多,面汤越混浊,面条的品质就越差[36],相反面条品质也越好。与添加黍子粉的面条相比,纯小麦面条的断条率和蒸煮损失率最小,当添加超过30%的黍子粉时,对黍子小麦面条的品质影响较大。
图 2 黍子小麦面条的蒸煮特性注:用Duncan法进行多重比较,同一指标不同小写字母表示差异显著(P<0.05);图3同。Figure 2. Cooking characteristics of millet wheat noodles2.4 黍子小麦面条质构特性
由图3可知,面条的硬度、胶着度、咀嚼性随着黍子粉添加量的增加先增大后减小,面条的回复性、粘聚性随添加量逐渐减小,而对面条的弹性影响不显著(P>0.05)。在黍子粉添加至20%时,面条的硬度、胶着度、咀嚼性最好。面条的拉伸力和拉伸距离随着黍子粉的添加量增大而减小,面条的拉伸力可反映面条的强度和筋力[37],拉伸距离则反映面条是否容易断裂[38],随着黍子粉添加量的增大,面条筋力越弱且越容易拉断。与纯小麦面条相比,添加20%时的黍子小麦面条拉力从0.23 N降至0.15 N,拉伸距离从58.7 mm降至48.2 mm,添加至40%时,黍子小麦面条绵软易断不可拉伸。
2.5 黍子小麦粉面团流变学特性与面条质构特性、蒸煮品质的相关性
由图4可知,面团的弱化度与面条的粘聚性呈极显著负相关(P<0.001),面团的弹性模量(G')与面条回复性、拉伸力呈极显著负相关(P<0.001),面团的黏性模量(G″)与面条拉伸力、拉伸距离呈极显著负相关(P<0.001),就黍子小麦混合粉面团而言,面团黏弹性、弱化度与面条质构之间呈负相关,黏弹性、弱化度大的面团筋力差、不耐揉,制成的面条绵软不易拉伸,咀嚼性差。
面条断条率与拉伸力、拉伸距离呈显著负相关(P<0.01),与面团黏性模量呈显著正相关(P<0.01),拉伸力与拉伸距离越大的面条断条率越小,面团弹性模量越大制作的面条断条率越大,面条干物质吸水率与面条质构与面团流变特性不相关。面条的硬度与胶着度、咀嚼性呈显著正相关(P<0.01)。面条的拉伸力与拉伸距离呈显著正相关(P<0.01)。面条质构之间呈正相关,黍子小麦面条拉伸力、拉伸距离越大,则面条的咀嚼性越好,硬度越大。经过黍子小麦面团流变学特性、粉质特性与面条质构的相关性分析,黍子小麦面团的弱化度、黏弹性小说明黍子小麦面条质构特性好,其中面团粉质特性与面条质构特性呈负相关的结果与张庆霞[28]的研究结果一致。
3. 结论
不同黍子粉添加量对面团的流变学特性影响显著。添加30%黍子粉的面团弱化度与纯小麦面团弱化度相差51.67 FU,添加20%黍子粉的面团弱化度与纯小麦面团弱化度相差19.34 FU,且添加20%黍子粉面团在0.01~10 Hz范围内的损耗角正切值最小,面团综合弹性最大。不同黍子粉添加量的面条品质相差较大,当黍子粉添加至20%时,面条断条率为16.67%、蒸煮损失率为18.31%,黍子小麦面条硬度为777.8 g、咀嚼性为588.06和胶着度为637.7。黍子小麦面团与面条之间相关性较高,面团的弱化度、弹性模量和黏性模量与面条的品质呈负相关。黍子粉的添加量会降低混合面团的加工性能和面条品质,与纯小麦面条相比少量加入黍子粉对面条品质影响较小,还可以增加面条的营养及种类,在不添加任何改良剂的情况下,添加20%的黍子粉适合制作黍子小麦面条且面条品质较好。由于黍子粉中没有面筋蛋白,不易加工成全黍子粉面条,与小麦粉混合能更好地利用其营养价值;可以添加面粉改良剂增加黍子粉的添加量制作面条,也可以加工成饼干、曲奇等食品。
-
图 2 黍子小麦面条的蒸煮特性
注:用Duncan法进行多重比较,同一指标不同小写字母表示差异显著(P<0.05);图3同。
Figure 2. Cooking characteristics of millet wheat noodles
表 1 黍子小麦面团的粉质特性
Table 1 Flour characteristics of millet wheat dough
黍子粉
添加量(%)弱化度
(FU)粉质
指数形成时间(min) 吸水率
(%)稳定时间(min) 0 98.33±3.06a 44.00±2.65d 2.38±0.40c 61.57±0.21c 3.62±0.07d 10 104.67±9.50ab 37.33±3.51c 1.83±0.12b 61.00±0.20b 2.80±0.21c 20 117.67±8.39b 30.33±3.21b 1.44±0.10a 61.00±0.20b 2.21±0.24b 30 150.00±12.17c 21.00±2.65a 1.24±0.14a 61.13±0.25b 1.35±0.20a 40 152.33±8.62c 34.67±2.08bc 1.84±0.08b 60.13±0.15a 2.57±0.12c 注:用Duncan法进行多重比较,同列不同小写字母表示差异显著(P<0.05)。 表 2 黍子小麦面团体系Power-law方程拟合参数
Table 2 Power-law parameters for millet wheat flour dough
黍子粉添加量(%) 稠度系数K(Pa.sn) 流体指数(n) 决定系数(R2) 0 10070/5603.4 0.139/0.144 0.951/0.904 10 11500/5992.8 0.136/0.148 0.961/0.933 20 13979/6552.6 0.104/0.127 0.909/0.864 30 16145/7442.6 0.096/0.113 0.929/0.863 40 19835/9504.5 0.113/0.112 0.954/0.879 注:“/”前数据为弹性模量拟合数据;“/”后数据为黏性模量拟合数据。 -
[1] WANG R Y, WANG H G, XU X Y, et al. Drought-induced transcription of resistant and sensitive common millet varieties[J]. The Journal of Animal & Plant Sciences,2017,27(4):1303−1314.
[2] WANG R Y, HUNT H V, QIAO Z J, et al. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: A review[J]. Economic Botany,2016,70(3):332−342. doi: 10.1007/s12231-016-9357-8
[3] WANG R Y, WANG H G, LIU X H, et al. Waxy allelic diversity in common millet (Panicum miliaceum L.) in China[J]. The Crop Journal,2018,6(4):377−385. doi: 10.1016/j.cj.2018.02.004
[4] 刘晓欢, 王瑞云, 杜海娥, 等. 糜子(Panicum miliaceum L.)品种间农艺性状的形态解剖差异[J]. 山西农业大学学报(自然科学版),2013,33(4):295−298. [LIU X H, WANG R Y, DU H E, et al. The study on the morphological and anatomical structures of agronomic traits among different cultivars of common millet (Panicum miliaceum L.)[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2013,33(4):295−298. LIU X H, WANG R Y, DU H E, et al. The study on the morphological and anatomical structures of agronomic traits among different cultivars of common millet (Panicum miliaceum L. )[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2013, 33(4): 295-298.
[5] 郑璐, 王兴国, 韩飞, 等. 发芽对糜子酚类化合物及抗氧化活性的影响[J]. 食品工业科技,2015,36(16):124−128. [ZHENG L, WANG X G, HAN F, et al. Effect of germination on phenolics and antioxidant activity of proso millet[J]. Science and Technology of Food Industry,2015,36(16):124−128. ZHENG L, WANG X G, HAN F, et al. Effect of germination on phenolics and antioxidant activity of proso millet[J]. Science and Technology of Food Industry, 2015, 36(16): 124-128.
[6] 王纶, 王星玉, 温琪汾, 等. 中国黍稷种质资源蛋白质和脂肪含量的鉴定分析[J]. 植物遗传资源学报,2007,8(2):165−169. [WANG L, WANG X Y, WEN Q F, et al. Identification and analysis of protein and fat content of Chinese millet germplasm resources[J]. Journal of Plant Genetic Resources,2007,8(2):165−169. doi: 10.3969/j.issn.1672-1810.2007.02.008 WANG L, WANG X Y, WEN Q F, et al. Identification and analysis of protein and fat content of Chinese millet germplasm resources[J]. Journal of Plant Genetic Resources, 2007, 8(2): 165–169. doi: 10.3969/j.issn.1672-1810.2007.02.008
[7] KALINOVA J, MOUDRY J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties[J]. Plant Foods for Human Nutrition,2006,61(1):43−47. doi: 10.1007/s11130-006-0013-9
[8] PARK K O, ITO Y, NAGASAWA T, et al. Effect of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice[J]. Bioscience, Biotechnology, and Biochemistry,2008,72(11):2918−2925. doi: 10.1271/bbb.80395
[9] NISHIZAWA N, SATO D, ITO Y, et al. Effects of dietary protein of proso millet on liver injury induced by D-galactosamine in rats[J]. Bioscience, Biotechnology, and Biochemistry,2002,66(1):92−96. doi: 10.1271/bbb.66.92
[10] YANEZ G A, WALKER C E, NELSONL A. Some chemical and physical properties of proso millet (Panicum miliaceum L.) starch[J]. Journal of Cereal Science,1991,13(3):299−305. doi: 10.1016/S0733-5210(09)80008-8
[11] ANNOR G A, MASSIMO M, CORREDIG M, et al. Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI)[J]. Journal of Cereal Science,2015,64:76−81. doi: 10.1016/j.jcs.2015.05.004
[12] THILAGAVATHI T, BANUMATHI P, KANCHANA S, et al. Effect of heat moisture treatment on functional and phytochemical properties of native and modified millet flours[J]. Plant Archives,2015,15(1):15−21.
[13] CHANDRASEKARA A, NACZK M, SHAHIDI F. Effect of processing on the antioxidant activity of millet grains[J]. Food Chemistry,2012,133(1):1−9. doi: 10.1016/j.foodchem.2011.09.043
[14] ZHANG L, LIU R, NIU W, et al. Phytochemical and antiproliferative activity of proso millet[J]. Plos One,2014,9(8):1−10.
[15] SHAHIDIA F, CHANDRASEKARAB A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review[J]. Journal of Functional Foods,2013,5(2):570−581. doi: 10.1016/j.jff.2013.02.004
[16] CHANDRASEKARA A, SHAHIDI F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains[J]. Journal of Functional Foods,2011,3(3):159−170. doi: 10.1016/j.jff.2011.03.008
[17] ZARNKOW M, KESSIER M, BURBERG F. The use of response surface methodology to optimise malting conditions of proso millet (Panicum miliaceum L.) as a raw material for gluten-free foods[J]. Journal of the Institute of Brewing,2007,113(3):280−292. doi: 10.1002/j.2050-0416.2007.tb00288.x
[18] SR IVASTAVA S, THATHOLA A, BATRA A, et a1. Development and nutrition evaluation of proso millet-based convenience mix for infants and children[J]. Journal of Food Science and Technology,2001,38(5):480−483.
[19] DEVISETTI R, RAVI R, BHATTACHARYA S. Effect of hydrocolloids on quality of proso millet cookie[J]. Food and Bioprocess Technology,2015,8(11):2298−2308. doi: 10.1007/s11947-015-1579-8
[20] MCSWEENEY M B, DUIZER L M, SEETHARAMAN K, et al. Assessment of important sensory attributes of millet based snacks and biscuits[J]. Journal of Food Science,2016,81(5):1203−1209. doi: 10.1111/1750-3841.13281
[21] 韩薇薇, 郭晓娜, 朱科学, 等. 无麸质食品[J]. 粮食与饲料工业,2013(2):30−33. [HAN W W, GUO X N, ZHU K X, et al. Gluten-free food[J]. Grain and Feed Industry,2013(2):30−33. HAN W W, GUO X N, ZHU K X, et al. Gluten-free food[J]. Grain and Feed Industry, 2013 (2): 30–33.
[22] 杜文娟, 马玉玲, 姜龙波, 等. 黄米-小麦混合粉流变学特性的研究[J]. 食品工业科技,2016,37(6):114−118. [DU W J, MA Y L, JIANG L B, et al. Research on the rheological properties of yellow rice-wheat mixed flour[J]. Science and Technology of Food Industry,2016,37(6):114−118. DU W J, MA Y L, JIANG L B, et al. Research on the rheological properties of yellow rice-wheat mixed flour[J]. Science and Technology of Food Industry, 2016, 37(6): 114–118.
[23] 季香青, 杨定宽, 曾承, 等. 四种生物酶对红豆小麦面团流变性质和面条质构性质的影响[J]. 食品工业科技,2021,42(20):94−99. [JI X Q, YANG D K, ZENG C, et al. Effects of four enzymes on rheology of dough and texture of noodles of red bean wheat[J]. Science and Technology of Food Industry,2021,42(20):94−99. JI X Q, YANG D K, ZENG C, et al. Effects of four enzymes on rheology of dough and texture of noodles of red bean wheat[J]. Science and Technology of Food Industry, 2021, 42(20): 94-99.
[24] KLINMALAI P, HAGIWARA T, SAKIYAMA T, et al. Chitosan effects on physical properties, texture, and microstructure of flat rice noodles[J]. LWT-Food Science and Technology,2017,76:117−123. doi: 10.1016/j.lwt.2016.10.052
[25] 陈书攀, 何国庆, 谢卫忠, 等. 菊粉对面团流变性及面条质构的影响[J]. 中国食品学报,2014,14(7):170−175. [CHEN S P, HE G Q, XIE W Z, et al. Effect of inulin addition on rheological properties of wheat flour dough and noodle quality[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(7):170−175. doi: 10.16429/j.1009-7848.2014.07.028 CHEN S P, HE G Q, XIE W Z, et al. Effect of inulin addition on rheological properties of wheat flour dough and noodle quality[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(7): 170-175. doi: 10.16429/j.1009-7848.2014.07.028
[26] 荆鹏, 郑学玲, 刘翀, 等. 面条制作中面絮特性与面团流变学特性的关系研究[J]. 现代食品科技,2014,30(9):73−78, 191. [JING P, ZHENG X L, LIU C, et al. Relationship between the characteristics of dough pieces and the rheological properties of dough during noodle production[J]. Modern Food Science & Technology,2014,30(9):73−78, 191. JING P, ZHENG X L, LIU C, et al. Relationship between the characteristics of dough pieces and the rheological properties of dough during noodle production[J]. Modern Food Science & Technology, 2014, 30(9): 73-78, 191.
[27] 田晓红, 汪丽萍, 谭斌, 等. 小米粉含量对小米小麦混合粉及其挂面品质特性的影响研究[J]. 中国粮油学报,2014,29(8):17−22. [TIAN X H, WANG L P, TAN B, et al. The effect of different content of millet flour on the millet and wheat mixed flour and noodle quality[J]. Journal of the Chinese Cereals and Oils Association,2014,29(8):17−22. TIAN X H, WANG L P, TAN B, et al. The effect of different content of millet flour on the millet and wheat mixed flour and noodle quality[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(8): 17-22.
[28] 张庆霞. 玉米-小麦混合粉面团流变学特性、面条品质及两者相关性[J]. 食品工业科技,2019,40(22):73−76, 81. [ZHANG Q X. The rheological properties of dough, the quality of noodles of corn-wheat blended flour and their correlation[J]. Science and Technology of Food Industry,2019,40(22):73−76, 81. ZHANG Q X. The rheological properties of dough, the quality of noodles of corn-wheat blended flour and their correlation[J]. Science and Technology of Food Industry, 2019, 40(22): 73-76, 81.
[29] 孙耀军. 藜麦全粉对面条品质的影响[J]. 食品研究与开发,2020,41(7):47−51. [SUN Y J. Effect of quinoa flour on quality of noodles[J]. Food Research and Development,2020,41(7):47−51. SUN Y J. Effect of quinoa flour on quality of noodles[J]. Food Research and Development, 2020, 41(7): 47-51.
[30] MA S, HAN W, LI L, et al. Small and large strain rheology of gluten and gluten-starch doughs containing wheat bran dietary fiber[J]. Journal of Science of Food and Agriculture,2020,100(1):177−183. doi: 10.1002/jsfa.10012
[31] BALESTRA F, COCCI E, PINNAVAIA G G, et al. Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder[J]. LWT-Food Science and Technology,2010,44(3):700−705.
[32] 曾瑞琪, 苗钟化, 李苇舟, 等. 羧甲基纤维素钠对低酯果胶凝胶流变特性及凝胶形成的影响[J]. 食品与发酵工业,2017,43(8):108−114. [ZENG R Q, MIAO Z H, LI W Z, et al. Effect of sodiumcarboxy methyl cellulose on rheological properties and gel formation of low-methoxyl pectin[J]. Food and Fermentation Industries,2017,43(8):108−114. ZENG R Q, MIAO Z H, LI W Z, et al. Effect of sodiumcarboxy methyl cellulose on rheological properties and gel formation of low-methoxyl pectin[J]. Food and Fermentation Industries, 2017, 43(8): 108-114.
[33] MCCANN T H, HOMER S H, ØISETH S K, et al. High amylose wheat starch increases the resistance to deformation of wheat flour dough[J]. Journal of Cereal Science,2018,79:440−448. doi: 10.1016/j.jcs.2017.12.001
[34] 张梦潇, 周文化, 杨代明, 等. 不同品种紫薯淀粉结构与其面团品质的关系[J]. 中国食品学报,2021,21(8):182−192. [ZHANG M X, ZHOU W H, YANG D M, et al. Relationship between starch structure and dough quality characteristics of different varieties of purple sweet potato[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(8):182−192. ZHANG M X, ZHOU W H, YANG D M, et al. Relationship between starch structure and dough quality characteristics of different varieties of purple sweet potato[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(8): 182-192.
[35] SUHENDRO E L, KUNETZ C F, MCDONOUGH C M, et al. Cooking characteristics and quality of noodles from food sorghum[J]. Cereal Chemistry,2000,77(2):96−100. doi: 10.1094/CCHEM.2000.77.2.96
[36] 单珊. 紫薯—小麦混合粉的性质及面条品质研究[D]. 无锡: 江南大学, 2012 SHAN S. Study on the properties of purple sweet potato-wheat mixed flour and noodle quality[D]. Wuxi: Jiangnan University, 2012.
[37] 代春华, 刘晓叶, 屈彦君, 等. 不同产地马铃薯全粉的营养及理化性质分析[J]. 食品工业科技,2019,40(19):29−33. [DAI C H, LIU X Y, QU Y J. Analysis on the nutritional components and physical and chemical properties of potato granules from different provinces[J]. Science and Technology of Food Industry,2019,40(19):29−33. doi: 10.13386/j.issn1002-0306.2019.19.006 DAI C H, LIU X Y, QU Y J. Analysis on the nutritional components and physical and chemical properties of potato granules from different Provinces[J]. Science and Technology of Food Industry, 2019, 40(19): 29-33. doi: 10.13386/j.issn1002-0306.2019.19.006
[38] ZHAO B B, DENG J W, LI M Y, et al. Effects of gluten on rheological properties of dough and qualities of noodles with potato-wheat flour blends[J]. Cereal Chemistry,2020,97(3):601−611. doi: 10.1002/cche.10276
-
期刊类型引用(8)
1. 杜彦锋,邓晓东,赵志伟,魏玉颖,蒋璐遥,燕文柏,黄德莲,张薇薇. 我国石斛质量标准建立研究进展. 食品与发酵科技. 2025(01): 142-148 . 百度学术
2. 高敏,王晴,王欣兰,乔雪婷,赵惠茹. 低共熔溶剂提取黄酮类化合物的研究进展. 化学工程师. 2024(02): 55-58 . 百度学术
3. 周美,廖秀,李立郎,王瑜,安巧,罗鸣,王道平. 铁皮石斛酵素制备工艺及其免疫活性研究. 食品科技. 2024(01): 94-102 . 百度学术
4. 陈媛,陈苗苗,杨善彬,刘冰,李霄,蒲道俊. 低共熔溶剂优化芹菜中芹菜素提取工艺研究. 广东化工. 2024(05): 36-40 . 百度学术
5. 乔雪婷,李敏琦,许鑫玉,赵惠茹. 低共熔溶剂提取植物多糖的研究进展. 化学工程师. 2024(06): 60-63 . 百度学术
6. 王清,周舟,刘涛,李晓星,郑雪珂,桑大席. 基于低共熔溶剂的南瓜多糖超声辅助提取工艺及其动力学研究. 粮食与油脂. 2024(07): 70-75+132 . 百度学术
7. 禹晓梅,周忠云. 超声辅助低共熔溶剂提取韩信草总黄酮的工艺优化. 天然产物研究与开发. 2024(11): 1910-1919 . 百度学术
8. 吴均,杨碧文,赵珮,马婧秋,王晓静,黄越. 桑叶多糖提取工艺优化及体外抗氧化活性研究. 食品与机械. 2024(12): 170-177 . 百度学术
其他类型引用(3)