Response Surface Methodology to Optimize the Process of Fermentation Powder of Cyclocarya paliurus with High Antioxidant Activity by Using Enzyme-Microorganisms Synergy Method
-
摘要: 以青钱柳干燥叶为原料,采用复合酶(纤维素酶和半纤维素酶)对其进行酶解,酶解液经混合菌(植物乳杆菌和酿酒酵母)发酵后冷冻干燥制备成高抗氧化活性的青钱柳发酵粉。单因素实验研究了料液比、复合酶添加量、复合酶质量比、酶解时间、蔗糖添加量、混合菌添加量、混合菌质量比、发酵时间对青钱柳发酵粉DPPH自由基清除效果的影响。再进一步运用Plackett-Burnman(PB)试验设计和响应面法优化了青钱柳酶菌协同发酵工艺。结果表明,最优的青钱柳酶菌协同发酵工艺参数为:料液比1:12 g/mL、复合酶添加量0.80%、复合酶质量比2.20:1 g/g、酶解时间2.5 h、蔗糖添加量8.0%、混合菌添加量5.80%、混合菌质量比2:1 g/g、发酵时间42 h。在此条件下,青钱柳发酵粉DPPH自由基清除率为82.17%。对最优条件下制备的青钱柳发酵粉与未处理的样品进行了比较:DPPH自由基清除率增加了159.9%,青钱柳多糖含量增加了194.0%,青钱柳总黄酮含量增加了72.0%,青钱柳总三萜含量增加了52.6%。本文为青钱柳叶的精深加工和青钱柳即溶茶粉的产业化奠定了研究基础。
-
关键词:
- 青钱柳 /
- 酶菌协同 /
- 抗氧化活性 /
- 响应面法 /
- Plackett-Burnman
Abstract: The dried leaves of Cyclocarya paliurus were enzymatically hydrolyzed with complex enzymes (cellulase and hemicellulase). The fermentation solution was fermented by mixed bacteria (Lactobacillus plantarum and Saccharomyces cerevisiae) and then freeze-dried to prepare Cyclocarya paliurus fermentation powder with high antioxidant activity. Single factor experiment was conducted to study the effects of material-liquid ratio, compound enzyme content, compound enzyme mass ratio, enzymolysis time, sucrose addition, mixed bacteria content, mixed bacteria mass ratio and fermentation time on DPPH free radical scavenging effect of Cyclocarya paliurus fermentation powder. On this basis, Plackett-Burnman (PB) experimental design and response surface methodology were used to optimize the co-fermentation process of cyclocarinase. The results showed that the optimal technological parameters were as follows: Material-liquid ratio 1:12 g/mL, compound enzyme content 0.80%, compound enzyme mass ratio 2.20:1 g/g, enzymolysis time 2.5 h, sucrose addition 8.0%, mixed bacteria content 5.80%, mixed bacteria mass ratio 2:1 g/g, fermentation time 42 h. Under these conditions, the DPPH free radical scavenging rate of Cyclocarya paliurus fermentative powder was 82.17%. The DPPH free radical scavenging rate of Cyclocarya paliurus was increased by 159.9%, the polysaccharide content was increased by 194.0%, and the flavonoids content was increased by 72.0%, the content of triterpene in Cyclocarya paliurus increased by 52.6% .This paper has laid a foundation for Intensive processing of Cyclocarya paliurus leaves and industrialization of instant tea powder. -
青钱柳又名摇钱树,广泛分布于浙江、江西、湖北和湖南等地,是中国特有、国家二级保护的珍惜树种[1-2]。青钱柳叶中含有黄酮、多糖、三萜、有机酸类等多种天然功能性活性物质[3-4],在降血糖、降血压、降血脂、抗氧化等方面具有一定的功效[5-7]。基于青钱柳叶的药食兼用的价值,青钱柳叶茶已通过美国食品药品管理局的认证,青钱柳叶已列入中国新资源食品原料目录[8-9]。青钱柳多糖、黄酮、三萜是青钱柳叶中主要的活性物质并具有较好的抗氧化活性[10-13]。
酶菌协同发酵是指原料经酶解工艺后,再经微生物菌种发酵的过程[14]。酶菌协同发酵工艺应用于青钱柳叶过程,能提高天然活性物质的溶出量[15-16],同时可去除青钱柳的苦涩味[17-18]。杨洁芳等[19]利用酶菌协同工艺制备的大豆肽含量与实验室制备的酶解肽相比,其DPPH自由基清除率提高106.92%,同时解决了单一酶解时酶解产物带有苦味的问题。张倩茹等[20]利用酶菌协同发酵玉米芯制备的木聚糖,与对照组相比木聚糖含量显著提高了257%。研究表明酶菌协同发酵效果优于菌和酶单独使用时的效果[21-22]。毛传亮等[23]研究了青钱柳叶醇提后的水提物对DPPH自由基的清除率为91.29%,郑晓杰等[24]发现浙江文成8月份青钱柳的DPPH清除能力为162.26 μmol AAE/g dm。但关于青钱柳叶酶解或发酵后的抗氧化活性的研究较少。
本研究以产自江西九江修水县的青钱柳叶为原料,应用酶菌协同发酵工艺制备高抗氧化活性的青钱柳发酵粉,解决了单一酶解时青钱柳有苦涩味问题和单一微生物发酵酶系不足等问题,对制备适口性强和高抗氧化活性成分的产品有一定的产业化意义,为青钱柳叶的精深加工和高值化利用奠定基础。
1. 材料与方法
1.1 材料与仪器
青钱柳叶 江西九江市修水县;半纤维素酶(10万 U/g)、纤维素酶(10万 U/g) 宁夏和氏璧生物技术有限公司;植物乳杆菌(Lactobacillus plantarum)、酿酒酵母((Saccharomyces cerevisiae) 江西省食品发酵研究所菌种保藏中心提供;DPPH(纯度≥98%) Sigma公司;MRS培养基、PDA培养基 北京陆桥技术股份有限公司;其他试剂均为分析纯。
752N紫外可见分光光度计 上海仪电分析;HHS-6恒温水浴锅 南通三思机电有限公司;FA1204B电子天平 上海精科天美有限公司;SH-100C恒温摇床 英检达仪器(重庆)有限公司;KH22R高速冷冻离心机 湖南凯达科学仪器有限公司;LGJ-100F冻干机 上海豫明仪器有限公司;250B生化培养箱 苏州威尔实验仪器有限公司。
1.2 实验方法
1.2.1 菌种培养
挑取4环斜面植物乳杆菌接种到装有80 mL的MRS液体培养基的250 mL三角瓶后,恒温摇床(35 ℃,140 r/min)培养24 h;挑取4环斜面酿酒酵母接种到装有80 mL PDA培养基的250 mL三角瓶后,恒温摇床(30 ℃,140 r/min)培养24 h。将培养完成的植物乳杆菌和酿酒酵母菌液按照一定的质量比混合后,制备成发酵用的混合菌种。
1.2.2 青钱柳酶菌协同发酵工艺
将经干燥粉碎后过20目筛的青钱柳叶,按照一定的料液比,将青钱柳叶细粉和蒸馏水装于250 mL三角瓶中摇匀。按照青钱柳叶细粉质量的百分比添加复合酶(纤维素酶和半纤维素酶)于装有青钱柳细粉液的三角瓶中,在55 ℃、pH5.0条件下,恒温水浴酶解3.0 h。按照酶解后酶解液总质量的百分比添加蔗糖,经121 ℃、0.12 MPa高压灭菌20 min后冷却,按照酶解液总质量的百分比接种混合菌(植物乳杆菌和酿酒酵母按一定质量比混合),置于恒温摇床内(32 ℃,140 r/min)培养36 h。在5 ℃和8000 r/min条件下,发酵液离心15 min后取上清液,50 ℃下旋转浓缩后,真空冷冻干燥(预冻温度为−40 ℃,预冻时间为6 h,干燥气压为50 Pa,干燥时间48 h)获得青钱柳发酵粉。
1.2.3 单因素实验
按照1.2.2的工艺条件,固定单因素实验条件:料液比为1:8 g/mL,复合酶添加量为0.6%,复合酶(纤维素酶和半纤维素酶)质量比为1:1 g/g,酶解时间为3.0 h,蔗糖添加量为6%,混合菌添加量为4%,混合菌(植物乳杆菌和酿酒酵母)质量比为1:1 g/g,发酵时间为36 h。
分别考察料液比(1:4、1:8、1:12、1:16、1:20、1:24 g/mL)、复合酶添加量(0.2%、0.4%、0.6%、0.8%、1.0%、1.2%)、复合酶质量比(1:3、1:2、1:1、2:1、3:1 g/g)、酶解时间(1.0、1.5、2.0、2.5、3.0 h)、蔗糖添加量(2%、4%、6%、8%、10%)、混合菌添加量(2%、3%、4%、5%、6%)、混合菌质量比(1:3、1:2、1:1、2:1、3:1 g/g)和发酵时间(20、28、36、42、50、58 h)对青钱柳发酵粉DPPH自由基清除率的影响。
1.2.4 PB试验
在1.2.3的实验基础上,以料液比、复合酶添加量、复合酶质量比、酶解时间、蔗糖添加量、混合菌添加量、混合菌质量比、发酵时间为因素水平值,采用PB试验来筛选青钱柳发酵粉对DPPH自由基清除率影响显著的因素。PB试验设计见表1。
表 1 PB试验设计因素及水平表Table 1. Factors and levels of PB test design编码 因素 水平 −1 1 A 料液比(g/mL) 1:8 1:16 B 复合酶添加量(%) 0.6 1.0 C 复合酶质量比(g/g) 1:1 3:1 D 酶解时间(h) 2.0 3.0 E 蔗糖添加量(%) 6 10 F 混合菌添加量(%) 4 6 G 混合菌质量比(g/g) 1:1 3:1 H 发酵时间(h) 36 50 1.2.5 响应面试验
在1.2.4实验基础上,以具有显著性的响应因素复合酶添加量、复合酶质量比和混合菌添加量为自变量,以青钱柳发酵粉对DPPH自由基清除率为响应值,设计响应面试验,具体设计见表2。
表 2 响应面试验设计Table 2. Box-Behnken test design编码 因素 水平 −1 0 1 X1 复合酶添加量(%) 0.6 0.8 1.0 X2 复合酶质量比(g/g) 1:1 2:1 3:1 X3 混合菌添加量(%) 4 5 6 1.2.6 DPPH自由基清除率的测定
参照王珊珊等[25]的方法进行测定。青钱柳发酵粉用85%的乙醇配制成不同浓度(5、10、20、40、80 mg/mL)的待测液。取20 mg/mL浓度的待测液,按照A待测液、A空白和A对照的实验方法,溶液混匀避光静置30 min后测吸光度(517 nm)。
DPPH自由基清除率(%)=(1−A待测液−A空白A对照)×100 式中,A待测液为2 mL的待测液与等体积DPPH乙醇溶液混合反应后的吸光值;A空白为2 mL待测液与等体积乙醇(85%)溶液混合后的吸光值;A对照为2 mL乙醇(85%)溶液与等体积DPPH乙醇溶液混合后的吸光值。
1.2.7 青钱柳发酵粉中主要成分的测定
1.2.7.1 青钱柳多糖含量的测定
苯酚-硫酸法,参照SN/T 4260-2015《出口植物源食品中粗多糖的测定 苯酚-硫酸法》。
1.2.7.2 青钱柳总黄酮含量的测定
分光光度计法,参照SN/T 4592-2016《出口食品中总黄酮的测定》。
1.2.7.3 青钱柳总三萜含量的测定
分光光度计法,参照NY/T 3676-2020《灵芝中总三萜含量的测定 分光光度法》。
1.3 数据处理
所有实验均重复三次,数据以平均值±标准差(SD)表示,单因素实验数据用Excel 2019整理并作图。采用Design-Expert 8.0.6统计软件进行PB和响应面试验设计、数据处理及显著性分析。
2. 结果与分析
2.1 单因素实验结果
2.1.1 料液比对青钱柳发酵粉DPPH自由基清除率的影响
由图1可知,随着料液比的逐渐增加,青钱柳发酵粉的DPPH自由基清除率呈先增大后略减小的趋势。当料液比为1:12 g/mL时,青钱柳发酵粉的DPPH自由基清除率最大。分析原因可能是随着料液比的增加,利于青钱柳抗氧化活性物质从组织细胞内溶出到周围溶液中,但过大的料液比也会造成有效成分的损失[26],从而导致青钱柳发酵粉的DPPH自由基清除率降低。同时,料液比太小则不利于青钱柳的充分发酵,料液比太大会导致发酵液中青钱柳抗氧化活性物质含量的相对减少。选择料液比为1:8~1:16 g/mL进行PB试验。
2.1.2 复合酶添加量对青钱柳发酵粉DPPH自由基清除率的影响
由图2可知,随着复合酶添加量的增加,青钱柳发酵粉的DPPH自由基清除率呈现先增加后逐渐减少的趋势。当复合酶添加量为0.8%时,青钱柳发酵粉的DPPH自由基清除率达到最大值。分析原因可能是复合酶添加量低时,青钱柳抗氧化活性物质等溶出较少,发酵液中营养元素也不是发酵菌的最佳生长条件。随着复合酶添加量的增加,底物和酶的酶解效果较好,青钱柳抗氧化活性物质等溶出较多,但发酵菌生长较快,一些活性物质等营养成分消耗也较快,导致青钱柳发酵粉的DPPH自由基清除率略微下降。选择复合酶添加量为0.6%~1.0%进行PB试验。
2.1.3 复合酶质量比对青钱柳发酵粉DPPH自由基清除率的影响
由图3可知,青钱柳发酵粉的DPPH自由基清除率随着复合酶(纤维素酶与半纤维素酶)中纤维素酶的质量比的增大而增加,即当复合酶质量比为2:1时,DPPH自由基清除率达最大值。继续增加纤维素酶的质量占比,DPPH自由基清除率略有下降。分析原因可能是,随着纤维素酶质量比的增加,酶解出的青钱柳多糖、黄酮等抗氧化活性物质逐渐增加。发酵菌在较低的纤维素酶质量比时,生长较慢,水解出的青钱柳活性成分较少;发酵菌在较高的纤维素酶质量比时,生长较快,消耗青钱柳多糖、黄酮等营养活性物质较快,DPPH自由基清除率略有降低。选择复合酶质量比为1:1~3:1 g/g进行PB试验。
2.1.4 酶解时间对青钱柳发酵粉DPPH自由基清除率的影响
由图4可知,随着酶解时间的增加,青钱柳发酵粉DPPH自由基清除率呈现先增加后缓慢减少的趋势。当酶解时间达2.5 h后,继续增加酶解时间,青钱柳发酵液中抗氧化活性物质会受酶解作用的影响发生部分水解,导致青钱柳发酵粉DPPH自由基清除率降低[27]。选择酶解时间为2.0~3.0 h进行PB试验。
2.1.5 蔗糖添加量对青钱柳发酵粉DPPH自由基清除率的影响
由图5可知,随着蔗糖添加量的增加,青钱柳发酵粉DPPH自由基清除率呈先递增后略降低的趋势。当蔗糖添加量为8%时,DPPH自由基清除率达最大值。分析原因可能是作为培养基的蔗糖浓度过高,发酵菌种的细胞的渗透压过大,菌体生长缓慢,青钱柳发酵液中抗氧化活性成分含量减少,导致DPPH自由基清除率降低[28]。选择蔗糖添加量为6%~10%进行PB试验。
2.1.6 混合菌添加量对青钱柳发酵粉DPPH自由基清除率的影响
由图6可知,青钱柳发酵粉DPPH自由基清除率随着混合菌添加量的增加呈先增加后略降低的趋势。当混合菌添加量为5%时,青钱柳发酵粉DPPH自由基清除率达最大值。继续增加混合菌添加量,DPPH自由基清除率略下降。分析原因可能是混合菌添加量达到一定量后继续增加,会使培养基中营养物质不能满足发酵菌种的生长,同时消耗培养基中的多糖、黄酮等活性物质作为营养来满足菌种的生长,导致青钱柳发酵粉DPPH自由基清除率降低。选择混合菌添加量为4%~6%进行PB试验。
2.1.7 混合菌质量比对青钱柳发酵粉DPPH自由基清除率的影响
由图7可知, DPPH 自由基清除率随混合菌(植物乳杆菌和酿酒酵母)中植物乳杆菌的增加,呈现先升高后降低的趋势。混合菌在生长过程中,会分泌不同的水解酶,有利于细胞组织结构中抗氧化活性物质释放到发酵液中[29]。混合菌质量比的不同,菌种自身生长和代谢所需要的营养物质不一样,菌种间相互生长和代谢的制约程度不一样,由图7可以看出,当混合菌质量比为2:1时,青钱柳发酵粉DPPH自由基清除率达最大值。选择混合菌质量比为1:1~3:1 g/g进行PB试验。
2.1.8 发酵时间对青钱柳发酵粉DPPH自由基清除率的影响
由图8可知,青钱柳发酵粉DPPH自由基清除率随着发酵时间的延长,呈现先增加后减少的趋势。当发酵时间为42 h时,DPPH自由基清除率达最大值,为69.2%。发酵时间超过42 h后,青钱柳发酵粉DPPH自由基清除率有所下降,分析原因可能是发酵菌种进入生长的衰老期,分泌的酶量不再增加,同时发酵菌产生了能降解青钱柳抗氧化活性物质的酶,使DPPH自由基清除率有所降低[30]。选择发酵时间为36~50 h进行PB试验。
2.2 PB试验结果
表 3 PB设计的各因素水平及响应值Table 3. Experimental design and response results of PB design实验号 A B C D E F G H DPPH自由基清除率(%) 1 1 −1 1 1 1 −1 −1 −1 46.68 2 1 1 −1 −1 −1 1 −1 1 64.62 3 −1 1 −1 1 1 −1 1 1 46.34 4 −1 −1 −1 1 −1 1 1 −1 44.64 5 1 1 −1 1 1 1 −1 −1 55.36 6 1 −1 1 1 −1 1 1 1 58.48 7 −1 1 1 −1 1 1 1 −1 75.85 8 −1 −1 1 −1 1 1 −1 1 62.78 9 −1 −1 −1 −1 −1 −1 −1 −1 37.67 10 1 −1 −1 −1 1 −1 1 1 43.81 11 −1 1 1 1 −1 −1 −1 1 67.92 12 1 1 1 −1 −1 −1 1 −1 71.15 表 4 PB设计方差分析Table 4. Analysis of variance of PB design方差来源 平方和 自由度 均方 F值 P值 显著性 模型 1651.81 8.0000 206.4800 18.4600 0.0178 * A 2 1.0000 2.0000 0.1800 0.7009 B 633.36 1.0000 633.3600 56.6100 0.0049 ** C 681.31 1.0000 681.3100 60.9000 0.0044 ** D 110.78 1.0000 110.7800 9.9000 0.0514 E 15.55 1.0000 15.5500 1.3900 0.3234 F 193.28 1.0000 193.2800 17.2800 0.0253 * G 2.29 1.0000 2.2900 0.2000 0.6818 H 13.23 1.0000 13.2300 1.1800 0.3564 残差 33.56 3.0000 11.1900 综合 1685.37 11.0000 R2=0.9801;R2Adj=0.9270 注:*表示差异显著(P<0.05),**表示差异极显著(P<0.01);表6同。 对表3中的实验数据进行分析,结果见表4。模型的P值为0.0178,表示该模型(P<0.05)显著;从各因素的P值可以看出B(复合酶添加量)、C(复合酶质量比)和F(混合菌添加量)对青钱柳发酵粉DPPH自由基清除率的影响显著(P<0.05)。因此选择复合酶添加量、复合酶质量比和混合菌添加量共3个因素进行响应面试验。
2.3 响应面试验结果
2.3.1 响应面试验设计与结果分析
在2.1和2.2的实验结果的基础上,固定不显著影响因素料液比1:12 g/mL、酶解时间2.5 h、蔗糖添加量8%、混合菌质量比2:1 g/g、发酵时间42 h。以复合酶添加量(X1)、复合酶质量比(X2)和混合菌添加量(X3)3个因素进行响应面试验。响应面试验设计及结果见表5。
表 5 响应面试验设计及结果Table 5. Design and results of Box-Behnken experiment实验号 X1 X2 X3 DPPH自由基清除率(%) 1 −1 −1 0 54.83 2 1 −1 0 52.85 3 −1 1 0 66.21 4 1 1 0 42.98 5 −1 0 −1 55.32 6 1 0 −1 46.44 7 −1 0 1 71.89 8 1 0 1 64.23 9 0 −1 −1 58.29 10 0 1 −1 51.61 11 0 −1 1 68.67 12 0 1 1 73.59 13 0 0 0 80.03 14 0 0 0 78.79 15 0 0 0 77.81 16 0 0 0 81.26 17 0 0 0 76.32 对表5进行统计分析,进而获得实验数据的方差分析(见表6)。经多元回归拟合,模型的二次多项式方程为:
表 6 响应面试验方差分析Table 6. Analysis of variance in Box-Behnken experiment项目 平方和 自由度 均方 F值 P值 显著性 模型 2481.1 9 275.68 74.45 < 0.0001 ** X1 217.88 1 217.88 58.84 0.0001 ** X2 7.81E-03 1 7.81E-03 2.11E-03 0.9646 X3 556.44 1 556.44 150.28 < 0.0001 ** X1X2 112.89 1 112.89 30.49 0.0009 ** X1X3 0.37 1 0.37 0.1 0.7605 X2X3 33.64 1 33.64 9.09 0.0195 * X12 836.77 1 836.77 225.99 < 0.0001 ** X22 466.62 1 466.62 126.02 < 0.0001 ** X32 117.15 1 117.15 31.64 0.0008 ** 残差 25.92 7 3.7 失拟项 11.23 3 3.74 1.02 0.4722 不显著 纯误差 14.69 4 3.67 总和 2507.02 16 R2=0.9897;R2Adj=0.9764 Y=+78.84−5.22X1−0.031X2+8.34X3−5.31X1X2+0.30X1X3+2.90X2X3−14.10X12−10.53 X22−5.27X32
由表6可知,该模型P<0.0001,表明建立的模型极显著(P<0.01);失拟项P值不显著,表明建立的模型拟合度较好[31];方程的校正决定系数R2Adj和决定系数R2分别为0.9764和0.9897,表明约有97.64%的响应值变化能由该模型进行解释,实际实验与模型建立的方程拟合度较好,能用于分析和预测青钱柳酶菌协同发酵的工艺优化。对青钱柳发酵粉DPPH自由基清除率的影响极显著(P<0.01)的因素为X1、X3、X1X2、X12、X22、X32,对青钱柳发酵粉DPPH自由基清除率影响显著的因素为X2X3(P<0.05),其他因素均不显著(P>0.05)。模型的F值越大对青钱柳发酵粉DPPH自由基清除率的影响越大[32]。可见,各因素对酶菌协同发酵青钱柳发酵粉DPPH自由基清除率的影响程度为:X3(混合菌添加量)>X1(复合酶添加量)>X2(复合酶质量比)。
对回归方程进行响应面分析,自变量因素相互间交互作用的响应曲面图见图9。自变量因素对响应值的影响与响应面坡度陡峭程度呈正相关[33];等高线呈椭圆形的程度与两个自变量交互作用的程度呈正相关[34]。由图9可知,对响应值的影响较大的交互作用为X1X2和X2X3。随着各因素数值的增大,青钱柳发酵粉对DPPH自由基清除率呈现先增大后减少的趋势,响应面呈凸型陡峭曲面,对应的等高线呈椭圆形,表明X1X2和X2X3的交互作用显著,DPPH自由基清除率存在极大值。
2.3.2 最优工艺条件及验证试验
根据模型的回归方程分析获得最佳的青钱柳酶菌协同发酵工艺条件为:料液比1:12 g/mL、复合酶添加量0.76%、复合酶质量比2.17:1 g/g、酶解时间2.5 h、蔗糖添加量8%、混合菌添加量5.83%、混合菌质量比2:1 g/g、发酵时间42 h。在此最佳条件下,青钱柳发酵粉DPPH自由基清除率理论上可达82.84%。考虑具体实验的可操作性,修正最佳条件为:料液比1:12 g/mL、复合酶添加量0.80%、复合酶质量比2.20:1 g/g、酶解时间2.5 h、蔗糖添加量8%、混合菌添加量5.80%、混合菌质量比2:1 g/g、发酵时间42 h,在此条件下,得出实际的DPPH自由基清除率为82.17%(RSD=1.19%),与预测值的相对误差为0.81%,说明该模型准确度良好。
2.4 青钱柳发酵粉主要成分分析
按照1.2.2工艺条件,对青钱柳叶细粉未进行酶解和发酵工艺,制备成青钱柳粉对比样品,再与青钱柳发酵粉进行主要活性成分比对,见表7。
表 7 青钱柳发酵粉的主要活性成分分析Table 7. Analysis of main active components of Cyclocarya paliurus fermented powder样品 DPPH自由基
清除率(%)青钱柳多糖含
量(g/100 g)青钱柳总黄
酮含量(%)青钱柳总三
萜含量(%)青钱柳粉
对比样品31.62±0.42b 2.81±0.13b 5.32±0.14b 6.08±0.18b 青钱柳发酵粉 82.17±0.86a 8.26±0.24a 9.15±0.26a 9.28±0.23a 注:同列不同字母表示相互间有显著性差异(P<0.05)。 由表7可知,青钱柳叶细粉经酶菌协同发酵后,与未经处理的青钱柳粉相比,青钱柳发酵粉中的多糖、总黄酮和总三萜等抗氧化活性物质成分含量显著增加(P<0.05)。在酶解过程中,青钱柳叶细粉经纤维素酶和半纤维素酶的作用后释放出多糖等活性物质和营养成分[35],再经植物乳杆菌和酵母菌的发酵后,进一步促进了功能性活性成分的溶出,同时一些抗氧化活性物质由结合态转化为游离态,抗氧化活性成分含量增加的同时,DPPH自由基清除率也显著增加(P<0.05)[36-37]。
3. 结论
以青钱柳发酵粉DPPH自由基清除率为响应值,在单因素实验后通过PB和响应面试验优化了青钱柳酶菌协同发酵工艺,最终获得最佳的工艺条件为:料液比1:12 g/mL、复合酶添加量0.80%、复合酶质量比2.20:1 g/g、酶解时间2.5 h、蔗糖添加量8.0%、混合菌添加量5.80%、混合菌质量比2:1 g/g、发酵时间42 h。在此条件下,青钱柳发酵粉DPPH自由基清除率为82.17%。
青钱柳叶细粉经酶菌协同发酵后,与未处理的青钱柳粉对比,青钱柳发酵粉的DPPH自由基清除率增加了159.9%;青钱柳多糖含量为8.26 g/100 g,增加了194.0%;青钱柳总黄酮含量为9.15%,增加了72.0%;青钱柳总三萜含量为9.28%,增加了52.6%。可见,经酶菌协同发酵制备的青钱柳发酵粉中多糖、总黄酮、总三萜等抗氧化物质显著增加,为青钱柳的精深加工和高效利用提供新的开发思路和途径。
-
表 1 PB试验设计因素及水平表
Table 1 Factors and levels of PB test design
编码 因素 水平 −1 1 A 料液比(g/mL) 1:8 1:16 B 复合酶添加量(%) 0.6 1.0 C 复合酶质量比(g/g) 1:1 3:1 D 酶解时间(h) 2.0 3.0 E 蔗糖添加量(%) 6 10 F 混合菌添加量(%) 4 6 G 混合菌质量比(g/g) 1:1 3:1 H 发酵时间(h) 36 50 表 2 响应面试验设计
Table 2 Box-Behnken test design
编码 因素 水平 −1 0 1 X1 复合酶添加量(%) 0.6 0.8 1.0 X2 复合酶质量比(g/g) 1:1 2:1 3:1 X3 混合菌添加量(%) 4 5 6 表 3 PB设计的各因素水平及响应值
Table 3 Experimental design and response results of PB design
实验号 A B C D E F G H DPPH自由基清除率(%) 1 1 −1 1 1 1 −1 −1 −1 46.68 2 1 1 −1 −1 −1 1 −1 1 64.62 3 −1 1 −1 1 1 −1 1 1 46.34 4 −1 −1 −1 1 −1 1 1 −1 44.64 5 1 1 −1 1 1 1 −1 −1 55.36 6 1 −1 1 1 −1 1 1 1 58.48 7 −1 1 1 −1 1 1 1 −1 75.85 8 −1 −1 1 −1 1 1 −1 1 62.78 9 −1 −1 −1 −1 −1 −1 −1 −1 37.67 10 1 −1 −1 −1 1 −1 1 1 43.81 11 −1 1 1 1 −1 −1 −1 1 67.92 12 1 1 1 −1 −1 −1 1 −1 71.15 表 4 PB设计方差分析
Table 4 Analysis of variance of PB design
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 1651.81 8.0000 206.4800 18.4600 0.0178 * A 2 1.0000 2.0000 0.1800 0.7009 B 633.36 1.0000 633.3600 56.6100 0.0049 ** C 681.31 1.0000 681.3100 60.9000 0.0044 ** D 110.78 1.0000 110.7800 9.9000 0.0514 E 15.55 1.0000 15.5500 1.3900 0.3234 F 193.28 1.0000 193.2800 17.2800 0.0253 * G 2.29 1.0000 2.2900 0.2000 0.6818 H 13.23 1.0000 13.2300 1.1800 0.3564 残差 33.56 3.0000 11.1900 综合 1685.37 11.0000 R2=0.9801;R2Adj=0.9270 注:*表示差异显著(P<0.05),**表示差异极显著(P<0.01);表6同。 表 5 响应面试验设计及结果
Table 5 Design and results of Box-Behnken experiment
实验号 X1 X2 X3 DPPH自由基清除率(%) 1 −1 −1 0 54.83 2 1 −1 0 52.85 3 −1 1 0 66.21 4 1 1 0 42.98 5 −1 0 −1 55.32 6 1 0 −1 46.44 7 −1 0 1 71.89 8 1 0 1 64.23 9 0 −1 −1 58.29 10 0 1 −1 51.61 11 0 −1 1 68.67 12 0 1 1 73.59 13 0 0 0 80.03 14 0 0 0 78.79 15 0 0 0 77.81 16 0 0 0 81.26 17 0 0 0 76.32 表 6 响应面试验方差分析
Table 6 Analysis of variance in Box-Behnken experiment
项目 平方和 自由度 均方 F值 P值 显著性 模型 2481.1 9 275.68 74.45 < 0.0001 ** X1 217.88 1 217.88 58.84 0.0001 ** X2 7.81E-03 1 7.81E-03 2.11E-03 0.9646 X3 556.44 1 556.44 150.28 < 0.0001 ** X1X2 112.89 1 112.89 30.49 0.0009 ** X1X3 0.37 1 0.37 0.1 0.7605 X2X3 33.64 1 33.64 9.09 0.0195 * X12 836.77 1 836.77 225.99 < 0.0001 ** X22 466.62 1 466.62 126.02 < 0.0001 ** X32 117.15 1 117.15 31.64 0.0008 ** 残差 25.92 7 3.7 失拟项 11.23 3 3.74 1.02 0.4722 不显著 纯误差 14.69 4 3.67 总和 2507.02 16 R2=0.9897;R2Adj=0.9764 表 7 青钱柳发酵粉的主要活性成分分析
Table 7 Analysis of main active components of Cyclocarya paliurus fermented powder
样品 DPPH自由基
清除率(%)青钱柳多糖含
量(g/100 g)青钱柳总黄
酮含量(%)青钱柳总三
萜含量(%)青钱柳粉
对比样品31.62±0.42b 2.81±0.13b 5.32±0.14b 6.08±0.18b 青钱柳发酵粉 82.17±0.86a 8.26±0.24a 9.15±0.26a 9.28±0.23a 注:同列不同字母表示相互间有显著性差异(P<0.05)。 -
[1] 李彦坡, 邹盈, 李群和, 等. 超高压提取青钱柳多糖条件优化及抗氧化活性[J]. 食品工业,2020,33(15):287−290. [LI Yanbo, ZOU Ying, LI Qunhe, et al. Optimization of ultra-high pressure extraction process from Cyclocarya paliurus polysaccharide and its antioxidant activity[J]. The Food Industry,2020,33(15):287−290. LI Yanbo, ZOU Ying, LI Qunhe, et al. Optimization of ultra-high pressure extraction process from Cyclocarya paliurus polysaccharide and its antioxidant activity[J]. The Food Industry, 2020, 33(15): 287-290.
[2] WU Zhengfeng, GAO Tianhong, ZHONG Rongling, et al. Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats[J]. Pharmaceutical Biology,2017,55(1):712−721. doi: 10.1080/13880209.2016.1267231
[3] 陈琼, 吴菲菲, 李化强, 等. 超声-表面活性剂提取青钱柳总黄酮的工艺优化[J]. 食品安全质量检查学报,2019,10(24):8323−8330. [CHEN Qiong, WU Feifei, LI Huaqiang, et al. Optimization of ultrasonic-surfactant extraction of total flavonoids from Cyclocarya paliurus[J]. Journal of Food Safety & Quality,2019,10(24):8323−8330. CHEN Qiong, WU Feifei, LI Huaqiang, et al. Optimization of ultrasonic-surfactant extraction of total flavonoids from Cyclocarya paliurus[J]. Journal of Food Safety & Quality, 2019, 10(24): 8323-8330.
[4] 应瑞峰, 黄梅桂, 王耀松, 等. 超声波微波协同提取青钱柳超微粉多糖及活性研究[J]. 食品研究与开发,2017,38(23):32−37. [YING Ruifeng, HUANG Meigui, WANG Yaosong, et al. Ultrasonic-microwave synergistic extraction and activity of polysaccharides from Cyclocarya paliurus[J]. Food Research and Development,2017,38(23):32−37. doi: 10.3969/j.issn.1005-6521.2017.23.006 YING Ruifeng, HUANG Meigui, WANG Yaosong, et al. Ultrasonic-microwave synergistic extraction and activity of polysaccharides from Cyclocarya paliurus[J]. Food Research and Development, 2017, 38(23): 32-37. doi: 10.3969/j.issn.1005-6521.2017.23.006
[5] WANG Xiaohong, LI Wanzhong, KONG Deng. Cyclocarya paliurus extract alleviates diabetic nephropathy by inhibiting oxidative stress and aldose reductase[J]. Renal Failure,2016,38(5):678−685. doi: 10.3109/0886022X.2016.1155394
[6] ZHAO Lichun, WANG Xue, LI Junxiu, et al. Effect of Cyclocarya paliurus on hypoglycemic effect in type 2 diabetic mice[J]. Medical Science Monitor,2019,23(4):2976−2983.
[7] TANG Wei, LIN Lihua, XIE Jianhua, et al. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus[J]. Carbohydr Polym,2016,151(20):305−312.
[8] 刘同方, 于燕波, 李淑娟, 等. 新资源食品提取物辅助降血糖配方的确定[J]. 食品科学技术学报,2019,37(4):78−83. [LIU Tongfang, YU Yanbo, LI Shujuan, et al. Determination of hypoglycemic formula assisted by new resources food extracts[J]. Journal of Food Science and Technology,2019,37(4):78−83. doi: 10.3969/j.issn.2095-6002.2019.04.011 LIU Tongfang, YU Yanbo, LI Shujuan, et al. Determination of hypoglycemic formula assisted by new resources food extracts[J]. Journal of Food Science and Technology, 2019, 37(4): 78-83. doi: 10.3969/j.issn.2095-6002.2019.04.011
[9] ZHOU Mingming, CHEN Pei, LIN Yuan, et al. A comprehensive assessment of bioactive metabolites, antioxidant and antiproliferative activities of Cyclocarya paliurus (Batal.) Iljinskaja leaves[J]. Journal of Pharmaceutical Sciences,2019,10(625):2−10.
[10] LIU Wei, DENG Shengping P, ZHOU Dexiong, et al. 3, 4-Seco-dammarane triterpenoid saponins with anti-inflammatory activity isolated from the leaves of Cyclocarya paliurus[J]. Journal of Agricultural and Food Chemistry,2020,68(7):2041−2053. doi: 10.1021/acs.jafc.9b06898
[11] XIAO Haitao, WEN Bo, NING Ziwan, et al. Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis[J]. Scientific Reports,2017,7(1):9155−9166. doi: 10.1038/s41598-017-09641-z
[12] 张怡评, 杨婷, 洪专, 等. 青钱柳多酚提取工艺及抗氧化活性[J]. 食品工业,2021,42(6):212−216. [ZHANG Yiping, YANG Ting, HONG Zhuan, et al. Extraction and antioxidant activities of polyphenols in Cyclocarya paliurus[J]. The Food Industry,2021,42(6):212−216. ZHANG Yiping, YANG Ting, HONG Zhuan, et al. Extraction and antioxidant activities of polyphenols in Cyclocarya paliurus[J]. The Food Industry, 2021, 42(6): 212-216.
[13] 夏和元, 杨玉莹, 张丹丹, 等. 采收时间及加工方式对青钱柳叶化学成分含量及抗氧化和降血糖活性的影响[J]. 湖北中医药大学学报,2021,23(1):45−49. [XIA Heyuan, YANG Yuying, ZHANG Dandan, et al. Effects of harvest time and processing methods on chemical components and antioxidant and hypoglycemic activities of leaves[J]. Journal of Hubei University of Chinese Medicine,2021,23(1):45−49. doi: 10.3969/j.issn.1008-987x.2021.01.11 XIA Heyuan, YANG Yuying, ZHANG Dandan, et al. Effects of harvest time and processing methods on chemical components and antioxidant and hypoglycemic activities of leaves[J]. Journal of Hubei University of Chinese Medicine, 2021, 23 (1): 45−49. doi: 10.3969/j.issn.1008-987x.2021.01.11
[14] 王芳, 贾万利, 张浩男, 等. 混合菌发酵对豆粕品质的影响[J]. 甘肃农业大学学报,2017,52(4):45−51. [WANG Fan, JIA Wanli, ZHANG Haonan, et al. Effect of mixed bacteria fermentation on the quality of soybean meal[J]. Journal of Gansu Agricultural University,2017,52(4):45−51. WANG Fan, JIA Wanli, ZHANG Haonan, et al. Effect of mixed bacteria fermentation on the quality of soybean meal[J]. Journal of Gansu Agricultural University, 2017, 52(4): 45-51.
[15] 秦楠, 郭丽丽, 王小敏, 等. 响应面优化超声辅助酶法提取北芪菇多糖及其抑菌活性研究[J]. 中国食品添加剂,2018(8):120−127. [QIN Nan, GUO Lili, WANG Xiaomin, et al. Optimization of ultrasonic-assisted enzymatic extraction of polysacchairides from Astragali mushroom by response surface analysis and its antimicrobial activity[J]. China Food Additives,2018(8):120−127. doi: 10.3969/j.issn.1006-2513.2018.08.012 QIN Nan, GUO Lili, WANG Xiaomin, et al. Optimization of ultrasonic-assisted enzymatic extraction of polysacchairides from astragali mushroom by response surface analysis and its antimicrobial activity[J]. China Food Additives, 2018(8): 120-127. doi: 10.3969/j.issn.1006-2513.2018.08.012
[16] 包智影, 张智, 杜亚飞, 等. 微生物法提取黄精多糖及体外降脂功能评价[J]. 中南林业科技大学学报,2021,41(5):142−151. [BAO Zhiying, ZHANG Zhi, DU Yafei, et al. Microbial fermentation technology of Polygonatum sibiricum polysaccharides and evaluation of lipid-lowering function in vitro[J]. Journal of Central South University of Forestry & Technology,2021,41(5):142−151. BAO Zhiying, ZHANG Zhi, DU Yafei, et al. Microbial fermentation technology of Polygonatum sibiricum polysaccharides and evaluation of lipid-lowering function in vitro[J]. Journal of Central South University of Forestry & Technology, 2021, 41(5) : 142-151.
[17] 鲁青, 张超凤, 严美婷, 等. 青钱柳-葛根复合发酵型饮料发酵工艺优化[J]. 中国酿造,2019,38(7):189−193. [LU Qin, ZHANG Chaofeng, YAN Meiting, et al. Optimization of fermentation technology of Cyclocarya paliurus-Radix Pueariae compound fermented beverage[J]. China Brewing,2019,38(7):189−193. doi: 10.11882/j.issn.0254-5071.2019.07.037 LU Qin, ZHANG Chaofeng, YAN Meiting, et al. Optimization of fermentation technology of Cyclocarya paliurus-Radix Pueariae compound fermented beverage[J]. China Brewing, 2019, 38(7): 189-193. doi: 10.11882/j.issn.0254-5071.2019.07.037
[18] SMIT G , SMIT B A , ENGELS W. Flavour formation by lactic acid bacteria and biochemical flavour profiling of heese products[J]. Fems Microbiology Reviews,2006,29(3):591−610.
[19] 杨洁芳, 刘会平, 张宇, 等. 菌酶协同制备大豆肽的工艺优化及其抗氧化特性的研究[J]. 食品工业科技,2013,34(13):245−249. [YANG Jiefang, LIU Huiping, ZHANG Yu, et al. Study on fermentation conditions of the soybean peptides by cooperation of bacteria and enzyme and its antioxidant activity[J]. Science and Technology of Food Industry,2013,34(13):245−249. YANG Jiefang, LIU Huiping, ZHANG Yu, et al. Study on fermentation conditions of the soybean peptides by cooperation of bacteria and enzyme and its antioxidant activity[J]. Science and Technology of Food Industry, 2013, 34(13): 245-249.
[20] 张倩茹, 安晓萍, 王园, 等. 菌酶协同发酵玉米芯制备木聚糖的研究[J]. 中国饲料,2017(22):23−26. [ZHANG Qianru, AN Xiaoping, WANG Yuan, et al. Study on preparation of xylan from corncob by microbial-enzyme co-fermentation[J]. China Feed,2017(22):23−26. doi: 10.15906/j.cnki.cn11-2975/s.20172206 ZHANG Qianru, AN Xiaoping, WANG Yuan, et al. Study on preparation of xylan from corncob by microbial-enzyme co-fermentation[J]. China Feed, 2017(22): 23-26. doi: 10.15906/j.cnki.cn11-2975/s.20172206
[21] 王田田, 汪腾蛟, SAYTHON, 等. 菌、酶协同发酵对辣木茎叶粉的营养价值及抗氧化活性的影响[J]. 黑龙江畜牧兽医,2020(12):117−121. [WANG T T, WANG T J, SAYTHON, et al. Effects of co-fermentation with bacteria and enzyme on nutritional value and antioxidant activity of Moringa oleifera leaf powder[J]. Heilongjiang Animal Science and Veterinary Medicine,2020(12):117−121. WANG Tiantian, WANG Tengjiao, Saython, et al. Effects of co-fermentation with bacteria and enzyme on nutritional value and antioxidant activity of Moringa oleifera leaf powder[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020, (12): 117-121.
[22] 邹俊哲, 林凯, 谯飞, 等. 菌酶协同发酵水解大米蛋白ACE抑制肽及其活性的研究[J]. 食品研究与开发,2019,40(9):1−7. [ZOU Junzhe, LIN Kai, QIAO Fei, et al. Lactobacillus plantarum and Bacillus subtilis coupled with enzymes to remove rice protein and the angiotensin I-converting enzyme inhibitory activities of removal liquid[J]. Food Research and Development,2019,40(9):1−7. doi: 10.3969/j.issn.1005-6521.2019.09.001 ZOU Junzhe, LIN Kai, QIAO Fei, et al. Lactobacillus plantarum and Bacillus subtilis coupled with enzymes to remove rice protein and the angiotensin I-Converting enzyme inhibitory activities of removal liquid[J]. Food Research and Development, 2019, 40(9): 1-7. doi: 10.3969/j.issn.1005-6521.2019.09.001
[23] 毛传亮, 黄宏亮, 董国庭, 等. 青钱柳叶提取物的抗氧化活性及其与黄酮含量的关系研究[J]. 浙江林业科技,2021,41(3):32−38. [MAO Chuanliang, HUANG Hongliang, DONG Guoting, et al. Study on relation between antioxidant activity of extracts from Cyclocarya paliurus leaves and total flavonoid content[J]. Journal of Zhejiang Forestry Science and Technology,2021,41(3):32−38. MAO Chuanliang, HUANG Hongliang, DONG Guoting, et al. Study on relation between antioxidant activity of extracts from Cyclocarya paliurus leaves and total flavonoid content[J]. Journal of Zhejiang Forestry Science and Technology, 2021, 41(3): 32-38.
[24] 郑晓杰, 林胜利, 吴聪聪, 等. 青钱柳叶抗氧化物质积累的差异性研究[J]. 食品与发酵工业,2020,46(11):238−243. [ZHENG Xiaojie, HUANG Hongliang, WU Congcong, et al. Comparison study on antioxidant compounds accumulation in Cyclocarya paliurus[J]. Food and Fermentation Industries,2020,46(11):238−243. ZHENG Xiaojie, HUANG Hongliang, WU Congcong, et al. Comparison study on antioxidant compounds accumulation in Cyclocarya paliurus[J]. Food and Fermentation Industries, 2020, 46(11): 238-243.
[25] 王珊珊, 孙晓琦, 马玉洁, 等. 响应面法优化黄浆水发酵液制备工艺及其抗氧化活性研究[J]. 食品研究与开发,2020,41(4):45−51. [WANG Shanshan, SUN Xiaoqi, MA Yujie, et al. Optimization of preparation of fermented tofu whey by response surface methodology and their antioxidant activity[J]. Food Research and Development,2020,41(4):45−51. WANG Shanshan, SUN Xiaoqi, MA Yujie, et al. Optimization of preparation of fermented tofu whey by response surface methodology and their antioxidant activity[J]. Food Research and Development, 2020, 41(4): 45-51.
[26] 冉俊枫, 任艳, 田余波, 等. 苦笋壳多糖提取工艺及抗氧化活性研究[J]. 食品科技,2021,46(6):207−214. [RAN Junfeng, REN Yan, TIAN Yubo, et al. Extraction optimization for polysaccharides from bamboo shoot shell of Pleioblastus amarus and the in vitro antioxidant activity[J]. Food Science and Technology,2021,46(6):207−214. RAN Junfeng, REN Yan, TIAN Yubo, et al. Extraction optimization for polysaccharides from bamboo shoot shell of Pleioblastus amarus and the in vitro antioxidant activity[J]. Food Science and Technology, 2021, 46(6): 207-214.
[27] 唐健波, 吕都, 彭梅, 等. 酶法辅助热水浸提刺梨多糖工艺优化及其抗肿瘤活性研究[J]. 食品工业科技,2021,42(18):98−105. [TANG Jianbo, LÜ Du, PENG Mei, et al. Optimization of enzymatic-assisted thermal water extraction of Rosa roxburghii polysaccharide and its antitumor activity[J]. Science and Technology of Food Industry,2021,42(18):98−105. TANG Jianbo, LÜ Du, PENG Mei, et al. Optimization of enzymatic-assisted thermal water extraction of Rosa roxburghii polysaccharide and its antitumor activity[J]. Science and Technology of Food Industry, 2021, 42(18): 98-105.
[28] 杨静, 高泽鑫, 朱莉, 等. 产胞外多糖的苏云金芽孢杆菌的筛选及发酵工艺优化[J]. 食品与发酵工业,2021,47(24):124−131. [YANG Jing, GAO Zexin, ZHU Li, et al. Screening of an extracellular polysaccharides producing Bacillus thuringiensis strain and its fermentation optimization[J]. Food and Fermentation Industries,2021,47(24):124−131. YANG Jing, GAO Zexin, ZHU Li, et al. Screening of an extracellular polysaccharides producing Bacillus thuringiensis strain and its fermentation optimization[J]. Food and Fermentation Industries, 2021, 47(24): 124-131.
[29] 阙发秀. 超声波刺激二阶段培养粗糙脉孢菌发酵产番茄红素的研究[D]. 南昌: 南昌大学, 2019. QUE Faxiu. Study on lycopene production by two-stage culture of Neurospora crassa under ultrasound stimulation[D]. Nangchang: Journal of Nanchang University, 2019.
[30] 康林芝, 熊荣园, 林小乔. 金耳发酵茶发酵条件优化研究[J]. 食品科技,2021,46(3):49−53. [KANG Linzhi, XIONG Rongyuan, LI Xiaoqiao. Optimization on fermentation conditions of Tremella fermented tea[J]. Food Science and Technology,2021,46(3):49−53. KANG Linzhi, XIONG Rongyuan, LI Xiaoqiao. Optimization on fermentation conditions of Tremella fermented tea[J]. Food Science and Technology, 2021, 46(3): 49-53.
[31] 刘刚, 梁琪, 宋雪梅, 等. Plackett-Burman和Box-Behnken试验优化嗜热链球菌Q4F8产胞外多糖工艺[J]. 食品科学,2019,40(20):136−143. [LIU Gan, LIANG Qi, SONG Xuemei, et al. Optimization of extracellular polysaccharide production by Streptococcus thermophilus QF48 using Plackett-Burman and Box-Behnken design[J]. Food Science,2019,40(20):136−143. doi: 10.7506/spkx1002-6630-20181008-028 LIU Gan, LIANG Qi, SONG Xuemei, et al. Optimization of extracellular polysaccharide production by Streptococcus thermophilus QF48 using Plackett-Burman and Box-Behnken design[J]. Food Science, 2019, 40(20): 136-143. doi: 10.7506/spkx1002-6630-20181008-028
[32] 张良, 刘媛洁, 肖勇生, 等. 响应面法优化柑橘复合生物保鲜剂配方[J]. 食品工业科技,2016,37(16):340−345. [ZHANG Liang, LIU Yuanjie, XIAO Yongsheng, et al. Optimization of citrus complex biopreservatives microcapsules technology by response surface methodology[J]. Science and Technology of Food Industry,2016,37(16):340−345. ZHANG Liang, LIU Yuanjie, XIAO Yongsheng, et al. Optimization of citrus complex biopreservatives microcapsules technology by response surface methodology[J]. Science and Technology of Food Industry, 2016, 37(16): 340-345.
[33] 赵刚, 顾佳丽, 顾建荣. Plackett-Burman设计及响应面法优化芹菜中总黄酮的超声提取工艺[J]. 中国食品学报,2017,17(8):147−155. [ZHAO Gan, GU Jiali, GU Janrong. Optimization of ultrasonic extraction of total flavonoids from celery by Plackett-Burman design and response surface methodology[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(8):147−155. ZHAO Gan, GU Jiali, GU Janrong. Optimization of ultrasonic extraction of total flavonoids from celery by Plackett-Burman design and response surface methodology[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(8): 147-155.
[34] 李慧凝, 张明振, 孟少珂, 等. 响应面法优化鲣鱼肽的复合酶酶解工艺及氨基酸评价[J]. 食品工业科技,2021,42(4):121−127. [LI Huining, ZHANG Mingzhen, MENG Shaoke, et al. Optimization process condition using response surface for Bi-enzymatic of Katsuwonus pelamis peptides and amino acid evaluation[J]. Science and Technology of Food Industry,2021,42(4):121−127. LI Huining, ZHANG Mingzhen, MENG Shaoke, et al. Optimization process condition using response surface for Bi-enzymatic of Katsuwonus pelamis peptides and amino acid evaluation[J]. Science and Technology of Food Industry, 2021, 42(4): 121-127.
[35] 蔡树杏, 邹江林, 徐友阳, 等. 响应面法优化三七茎叶茶酶解工艺[J]. 食品与发酵科技,2021,57(2):108−114. [CAI Shuxing, ZOU Jianglin, XU Youyang, et al. Optimization of enzymatic hydrolysis process of panax notoginseng stem-leaf tea by response surface methodology[J]. Food and Fermentation Sciences & Technology,2021,57(2):108−114. CAI Shuxing, ZOU Jianglin, XU Youyang, et al. Optimization of enzymatic hydrolysis process of panax notoginseng stem-leaf tea by response surface methodology[J]. Food and Fermentation Sciences & Technology, 2021, 57(2): 108-114.
[36] 卫春会, 黄亮, 姚亚林, 等. 山葡萄酒发酵过程中活性物质、抗氧化能力及有机酸的变化[J]. 食品工业科技,2021,42(6):9−14. [WEI Chunhui, HUANG Liang, YAO Yalin, et al. Changes of active substances antioxidant capacity and organic acids during the fermentation of Vitis amurensis wine[J]. Science and Technology of Food Industry,2021,42(6):9−14. WEI Chunhui, HUANG Liang, YAO Yalin, et al. Changes of active substances antioxidant capacity and organic acids during the fermentation of Vitis amurensis wine[J]. Science and Technology of Food Industry, 2021, 42(6) : 9-14.
[37] 张业芳, 唐诗, 周艳, 等. 植物乳杆菌发酵对猕猴桃抗氧化物质含量及抗氧化活性的影响[J]. 中国酿造,2018,37(12):154−159. [ZHANG Yefang, TANG Shi, ZHOU Yan, et al. Effects of Lactobacillus plantarum fermentation on the antioxidants content and antioxidant activities of kiwifruit[J]. China Brewing,2018,37(12):154−159. doi: 10.11882/j.issn.0254-5071.2018.12.030 ZHANG Yefang, TANG Shi, ZHOU Yan, et al. Effects of Lactobacillus plantarum fermentation on the antioxidants content and antioxidant activities of kiwifruit[J]. China Brewing, 2018, 37(12): 154-159. doi: 10.11882/j.issn.0254-5071.2018.12.030
-
期刊类型引用(1)
1. 石长波,徐朔,凌衍东,杨江江,金美琳,赵钜阳. 基于小角X射线散射技术测定淀粉结构研究进展. 中国调味品. 2025(03): 223-226+240 . 百度学术
其他类型引用(0)