The Influence of Fermentation of Eurotium cristation on the Flavor Characteristics of Guizhou White Tea
-
摘要: 为了探究冠突散囊菌散茶发酵对贵州白茶风味特征的影响,本文以贵州二级白茶为原料,并用冠突散囊菌进行散茶发酵,利用感官审评法、高效液相色谱法、顶空固相微萃取-气相色谱-质谱联用技术、滋味活度值法、气味活度值法及多元统计方法,对白茶(WT)和冠突散囊菌白茶(ECWT)的风味特征进行分析。结果表明,WT经过冠突散囊菌散茶发酵制成ECWT后感官品质发生显著变化,色泽变得更深,滋味上鲜爽度下降但甜滑度增加,香气方面花香减弱、菌花香增加;经过冠突散囊菌散茶发酵后,ECWT的可可碱、EGCG (epigallocatechin gallate)、GCG (gallocatechin gallate)、ECG (epicatechin gallate)、茶氨酸、谷氨酸、天冬氨酸、丙氨酸、苏氨酸、缬氨酸、亮氨酸、异亮氨酸、酪氨酸、苯丙氨酸、组氨酸、赖氨酸和脯氨酸的含量相较于WT显著下降了41.68%、81.12%、52.48%、68.22%、93.07%、83.64%、50.00%、91.67%、96.49%、65.79%、74.36%、83.33%、94.79%、93.75%、62.50%、92.31%和76.09%(P<0.05),ECWT的丝氨酸、蛋氨酸和半胱氨酸含量相较于WT显著升高了2100.00%、36.25%、725.00%(P<0.05),咖啡碱、甘氨酸和精氨酸的含量无显著变化(P>0.05),ECWT的氨基酸组分总量相较于WT显著下降了86.40%(P<0.05);WT的关键滋味物质为咖啡碱、EGC (epigallocatechin)、C (catechin)、EC (epicatechin)、EGCG、GCG、ECG、茶氨酸、谷氨酸、酪氨酸和蛋氨酸,ECWT的关键滋味物质为咖啡碱、EGCG、GCG、ECG、茶氨酸、蛋氨酸和半胱氨酸;WT和ECWT共检测出74种香气物质,其中62种关键差异香气物质,WT检测出49种,关键香气化合物31种、关键致香成分17种,ECWT检测出55种,关键香气化合物28种、关键致香成分16种。经过冠突散囊菌散茶发酵后,白茶风味特征发生显著变化,研究结果可为冠突散囊菌白茶散茶发酵的工艺优化及产品开发提供理论参考。Abstract: To investigate the effect of fermentation with Eurotium cristatum on the flavor characteristics of Guizhou white tea, this study utilized second-grade white tea from Guizhou as the raw material. Scattered tea was subjected to fermentation with Eurotium cristatum, and the flavor characteristics of traditional white tea (WT) and white tea fermented with Eurotium cristatum (ECWT) were analyzed using a combination of sensory evaluation, high-performance liquid chromatography (HPLC), headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS), flavor activity value (TAV), odor activity value (OAV), and multivariate statistical methods. The results indicated a significant alteration in the organoleptic quality of WT following fermentation to produce ECWT. Specifically, the color of the tea deepened, while freshness diminished; conversely, sweetness and smoothness were enhanced. The floral aroma was notably reduced, whereas fungal flower notes became more pronounced. Upon fermentation with Eurotium cristatum, a significant variation in the concentrations of various bioactive compounds was observed in the Eurotium cristatum-fermented tea (ECWT) as compared to the traditional white tea (WT). Specifically, the levels of theobromine, EGCG (epigallocatechin gallate), GCG (gallocatechin gallate), ECG (epicatechin gallate), theanine, glutamic acid, aspartic acid, alanine, serine, valine, leucine, isoleucine, tyrosine, phenylalanine, histidine, lysine, and proline were markedly decreased by 41.68%, 81.12%, 52.48%, 68.22%, 93.07%, 83.64%, 50.00%, 91.67%, 96.49%, 65.79%, 74.36%, 83.33%, 94.79%, 93.75%, 62.50%, 92.31%, and 76.09%, respectively (P<0.05). In contrast, the levels of serine, methionine, and cysteine in ECWT were significantly increased by 2100.00%, 36.25%, and 725.00%, respectively (P<0.05). Notably, the concentrations of caffeine, glycine, and arginine did not show any significant variation (P>0.05). Collectively, the total amino acid content in ECWT was found to be significantly reduced by 86.40% in comparison to traditional white tea (WT) (P<0.05). The key taste compounds of traditional white tea (WT) included caffeine, EGC (epigallocatechin), C (catechin), EC (epicatechin), EGCG (epigallocatechin gallate), GCG (gallocatechin gallate), ECG (epicatechin gallate), theanine, glutamic acid, tyrosine, and methionine. In contrast, the key taste compounds of Eurotium cristatum-fermented tea (ECWT) were caffeine, EGCG, GCG, ECG, theanine, methionine, and cysteine. A total of 74 aroma substances were detected in WT and ECWT, of which 62 were key differential aroma substances and 49 were detected in WT. This included 31 key aroma compounds and 17 essential aroma-causing ingredients. In the case of white tea fermented with Eurotium cristatum (ECWT), 55 aroma substances were identified, comprising 28 key aroma compounds and 16 critical aroma-causing ingredients. The flavor characteristics of white tea underwent significant changes following the fermentation of scattered tea with Eurotium cristatum. The findings of this research can provide valuable theoretical insights for optimizing fermentation processes and developing products derived from Eurotium cristatum scattered tea.
-
贵州省是我国的产茶大省,茶园面积已突破700万亩[1]。目前,贵州省主要生产绿茶和红茶,茶类结构较为单一,这严重阻碍了贵州省茶产业的发展[2]。白茶具备较强的贮藏性,在一定时效内随贮藏时间的延长其经济价值越高,因此白茶成为贵州丰富茶类结构的重要茶类[3]。冠突散囊菌俗称“金花”[4],最初在茯砖茶等后发酵茶中天然形成[5],随茶叶科学的发展,发现其对改善茶叶品质具有一定效果[6],具备许多对人体有益的保健功能[7],而经常运用到茶叶、谷物、中药等的发酵生产中[8−12]。目前,已有部分利用冠突散囊菌发酵散茶的研究。宋林瑶等[13]利用冠突散囊菌对绿茶散茶进行发酵,结果表明,冠突散囊菌散茶发酵能显著改变绿茶的风味特征,且风味物质也发生显著变化,经过冠突散囊菌散茶发酵后的绿茶芳樟醇、2,2,6-三甲基-6-乙烯基四烯-2H-呋喃3-醇、顺-芳樟醇氧化物、水杨酸甲酯的含量显著增加;巢瑾等[14]利用冠突散囊对青钱柳进行散茶发酵,结果表明,发酵后的青钱柳茶滋味甘甜醇和且具有独特的药香和菌花香,其风味物质含量也发生了显著变化。“散茶发酵”是指在茶叶松散状态下人工接种冠突散囊菌发花的过程,其有别于压制成饼或砖型茶叶再发花的工艺流程。目前针对白茶进行冠突散囊菌发酵的研究已有部分文献报道,但主要集中在白茶的饼茶[15−16],研究发现冠突散囊菌发酵白茶能降低白茶的儿茶素组分含量和氨基酸组分含量,对白茶的滋味品质有显著影响,能降低白茶的苦涩味、增加其菌花香。但是,针对散茶发酵对白茶风味影响的研究鲜有文献报道。因此,探明冠突散囊菌散茶发酵白茶风味特征的影响不仅能补充该方面的科研空白,还能为丰富贵州茶叶花色品类及加强冠突散囊菌的开发利用提供理论参考。
本研究选取贵州二级工艺白茶为原料,使用冠突散囊菌对白茶进行散茶发酵制成冠突散囊菌白茶,利用高效液相色谱法对白茶和冠突散囊菌白茶的儿茶素组分和氨基酸组分进行测定,利用气相色谱-质谱法对白茶和冠突散囊菌白茶的香气组分进行定性定量分析,利用感官审评法对白茶和冠突散囊菌白茶感官品质进行评价,基于滋味活度值(TAV)法、气味活度值(OAV)法和多元统计方法对白茶和冠突散囊菌白茶的滋味和香气特征进行分析,探明冠突散囊菌散茶发酵对贵州白茶风味特征的影响,为丰富贵州白茶品类和冠突散囊菌白茶产品的开发提供科学依据。
1. 材料与方法
1.1 材料与仪器
二级白茶 纳雍县茗生茶业有限责任公司;冠突散囊菌(Eurotium cristatum,菌种保藏号为CCTCC NO:M 2022211) 贵州大学茶学院保存;标准品:儿茶素组分、咖啡碱、可可碱、氨基酸组、和癸酸乙酯 美国Cato Research Chemicals公司;乙酸、乙腈、甲醇 色谱纯,美国Tedia公司。
LC2030C Plus高效液相色谱仪、GCMS-2030气相色谱质谱联用仪 Shimadzu公司;HWS-26电热恒温水浴锅、DHG-9245A鼓风干燥箱 上海一恒科学仪器有限公司;YXQ-LB-50S高压蒸汽灭菌锅 上海博迅仪器有限公司。
1.2 实验方法
1.2.1 试样制备方法
冠突散囊菌白茶散茶发酵工艺参照宋林瑶等[13]的方法,流程及操作要点主要分为白茶预处理、发酵剂的制备和发酵后处理3个部分。预处理包括称样、加水、汽蒸渥堆和灭菌;发酵剂制备包括马铃薯葡萄糖琼脂培养基(PDA)纯化培养、取样混合培养、麸皮制备和干燥磨粉备用;发酵后处理包括接种培养和干燥。流程如图1所示,原料白茶用WT表示,冠突散囊菌白茶用ECWT表示。
1.2.2 感官审评方法
按照GB/T 23776-2018《茶叶感官审评方法》[17]对WT和ECWT进行感官审评,感官评价人员均由具有高级评茶员职业资格证的人员组成,共5人,去掉1个最高分和1个最低分,获得感官审评评分数据。
1.2.3 主要品质成分测定及滋味活度值(TAV)评价方法
儿茶素组分、咖啡碱、可可碱参照GB/T 8313-2018《茶叶中茶多酚和儿茶素类含量的检测方法》进行测定[18];氨基酸组分参照GB/T 30987-2020《植物中游离氨基酸的测定》进行测定[19]。TAV值用于评价滋味化合物对茶汤滋味的贡献度,TAV值越大表示滋味化合物对茶汤滋味的贡献度越高,当TAV>1时,化合物对滋味有贡献[20]。TAV按式(1)计算:
(1) 式中:TAV表示滋味活力值;C表示滋味化合物含量(mg/g);T为滋味化合物呈味阈值(mg/g),参考现已发表文献中的滋味化合物阈值。
1.2.4 香气组分提取、检测及香气气味活度值(OAV)评价方法
提取及检测:参照Nie等[21]和Forero等[22]的方法。
1.2.4.1 香气组分的提取
选择HS-SPME法分离香气组分,将含有30 µg癸酸乙酯作为内标(10 mg/kg茶样品)的茶样品(3.0 g)放入提取瓶中(15 mL体积),样品在50 °C的恒温水浴中平衡10 min,然后在顶部萃取30 min后,取出SPME纤维并直接引入GC-MS进行分析,重复三次。
1.2.4.2 GC-MS检测条件
GC-MS分析采用Agilent 7890A/5975C-GC/MSD惰性检测器,EI模式,色谱柱为69.9 eV:毛细管色谱柱DB-5 ms(30 m×250 μm×0.25 μm)。手动进样,不分流,恒温,进样口和GC-MS直接接口的温度分别为250 °C和280 °C。温度程序:柱温50~250 °C;起始柱温度为50 °C,保持3 min,然后以2 °C/min的速度升至150 °C,维持2 min,然后再以2.5 °C/min速度升至250 °C,并保持4 min。氦气以1.0 mL/min的流速用作载气。离子源温度为230 °C,四极杆温度为150 °C,扫描质量范围设置为20~700 amu。
1.2.4.3 香气组分的定性和定量分析
定性分析:NIST 标准光谱库(https://www.nist.gov/)对香气成分进行定性;定量分析:采用内标法对茶叶香气中的挥发性风味化合物进行定量。选择癸酸乙酯作为内标(10 mg/kg茶样品)。计算公式如式(2)所示:
(2) 式中:Wi是分析物浓度(mg/kg),Ws是内标浓度(mg/kg),Ai是分析物面积,As是内标峰面积。
通过OAV值评价香气组分的风味贡献度,OAV值越大说明香气化合物对茶叶香气贡献度越高,当OAV>1时,说明对应香气化合物是茶叶的关键香气成分,当OAV>10时,香气化合物可确定是关键致香成分。OAV按式(3)计算:
(3) 式中:OAV表示香气活力值;D表示香气组分的含量(μg/g);F表示香气组分阈值(μg/g),参考现已发表文献中的香气化合物阈值。
1.3 数据处理
运用Microsoft Excel 2021整理数据及绘制图表;采用SPSS 26.0软件进行方差分析;基于迈维云平台进行正交偏最小二乘判别分析(OPLS-DA),利用TBtools绘制环形热图。
2. 结果与分析
2.1 WT和ECWT感官品质分析
WT和ECWT感官审评结果见表1,WT和ECWT的干茶、茶汤和叶底见图2,WT经过冠突散囊菌散茶发酵后制得ECWT,感官品质发生了显著变化。外形上干茶色泽从灰绿变为棕褐,且ECWT有金花;汤色从杏黄变为棕红,亮度降低;香气方面,WT的香气表现为甜香带花香,ECWT的香气表现为菌花香浓郁、有甜香带陈香;滋味方面,WT的滋味表现为甜醇较爽,ECWT的滋味表现为醇和、有菌香味、较甜、滑;叶底从绿黄变为黑褐。WT的感官评分总分为90.95,ECWT的感官总分为89.30,感官评分差异不显著,但经过冠突散囊菌散茶发酵后白茶的品质风格及风味特点发生了显著变化。综上,经过冠突散囊菌的散茶发酵,ECWT表现出了老白茶的感官品质,这说明冠突散囊菌散茶发酵能加速白茶的陈化。
表 1 WT和ECWT感官审评结果Table 1. Sensory evaluation results of WT and ECWT茶样 外形(25分) 汤色(10分) 香气(25分) 滋味(30分) 叶底(10分) 总分(分) WT 灰绿有毫心较匀整 杏黄较亮 甜香带花香 甜醇较爽 绿黄较亮较软 90.95±0.65 22.50±0.25 9.00±0.07 22.75±0.21 27.60±0.13 9.10±0.17 ECWT 棕褐有毫心较匀整,有金花 棕红尚亮 菌花香浓郁,有甜香带陈香 醇和,有菌香味,较甜、滑 黑褐 89.30±0.37 22.25±0.14 8.80±0.16 22.25±0.43 27.30±0.36 8.70±0.09 2.2 WT和ECWT中可可碱、咖啡碱和儿茶素组分分析
WT和ECWT的可可碱、咖啡碱和儿茶素组分测定结果如表2所示,经过冠突散囊菌散茶发酵后,除咖啡碱外,可可碱和各儿茶素组分含量发生了显著变化(P<0.05)。生物碱方面,ECWT的可可碱含量相较于WT显著降低了41.68%(P<0.05),ECWT的咖啡碱含量相较于WT降低了6.05%,变化不显著(P>0.05)。儿茶素组分方面,WT和ECWT共检出6种儿茶素组分,其中WT检测出表没食子儿茶素(EGC)、表儿茶素(EC)、儿茶素(C)、表没食子儿茶素没食子酸酯(EGCG)、没食子儿茶素没食子酸酯(GCG)、表儿茶素没食子酸酯(ECG),ECWT检测出EGCG、GCG、ECG,ECWT的EGCG、GCG和ECG的含量相较于WT显著降低了81.12%、52.48%和68.22%(P<0.05)。综上,ECWT的可可碱、咖啡碱和儿茶素组分含量均低于WT。咖啡碱和可可碱在茶汤中的呈味特征均为苦味,它们的含量越高茶汤的苦味越重,儿茶素是茶汤中苦涩味的主要呈味物质,它的含量与茶叶的苦涩味呈正相关,冠突散囊菌散茶发酵使得白茶茶汤苦涩味物质含量降低,这说明冠突散囊菌的发酵有利于降低茶汤的苦涩味,使得茶汤更加醇和[23−24]。
表 2 WT和ECWT可可碱、咖啡碱和儿茶素组分含量(mg/g)Table 2. Contents of theobromine, Caffeine, and Catechins in WT and ECWT (mg/g)样品名称 简称 滋味识别阈
值(mg/g)[25]WT ECWT 可可碱 TB NF 7.75±0.10a 4.52±0.31b 咖啡碱 CAF 0.50 42.49±2.85a 39.92±0.48a 表没食子儿茶素 EGC 0.52 17.90±0.26 ND 儿茶素 C 0.41 13.46±0.23 ND 表儿茶素 EC 0.93 6.70±0.12 ND 表没食子儿茶素没
食子酸酯EGCG 0.19 73.94±0.33a 13.96±0.22b 没食子儿茶素没
食子酸酯GCG 0.39 16.94±0.10a 8.05±0.01b 表儿茶素没
食子酸酯ECG 0.26 25.05±1.38a 7.96±0.44b 注:表中“NF”未找到该成分察觉阈值相关文献报道,表5~表6表同;“ND”表示未检出,表4~表6同;不同小写字母表示P﹤0.05,差异显著,表3、表5同。 2.3 WT和ECWT氨基酸组分分析
WT和ECWT氨基酸组分测定结果如表3所示,WT和ECWT均共检出18种氨基酸组分,经过冠突散囊菌散茶发酵后,ECWT的茶氨酸、谷氨酸、天冬氨酸、丙氨酸、苏氨酸、缬氨酸、亮氨酸、异亮氨酸、酪氨酸、苯丙氨酸、组氨酸、赖氨酸和脯氨酸含量相较于WT分别显著下降了93.07%、83.64%、50.00%、91.67%、96.49%、65.79%、74.36%、83.33%、94.79%、93.75%、62.50%、92.31%和76.09%(P<0.05);ECWT的丝氨酸、蛋氨酸和半胱氨酸含量相较于WT显著升高了2100.00%、36.25%、725.00%(P<0.05);甘氨酸和精氨酸的含量无显著变化(P>0.05);WT和ECWT的氨基酸组分总量分别为32.21 mg/g和4.38 mg/g,ECWT相较于WT显著降低了86.40%。综上,冠突散囊菌散茶发酵对白茶的氨基酸组分含量具有显著影响,在散茶发酵过程中,氨基酸可作为冠突散囊菌的营养物质被消耗,从而导致了氨基酸含量的降低[16]。
表 3 WT和ECWT中氨基酸组分含量Table 3. Contents of Amino Acids in WT and ECWT种类 缩写 滋味识别阈值
(mg/g)[25]WT
(mg/g)ECWT
(mg/g)茶氨酸 The 1.05 24.38±1.76a 1.69±0.05b 谷氨酸 Glu 0.59 2.69±0.25a 0.44±0.01b 天冬氨酸 Asp 0.53 0.04±0.01a 0.02±0.01b 丝氨酸 Ser 3.15 0.01±0.00b 0.22±0.01a 丙氨酸 Ala 1.07 0.12±0.00a 0.01±0.00b 苏氨酸 Thr 4.76 0.57±0.06a 0.02±0.00b 甘氨酸 Gly 2.63 0.02±0.01a 0.03±0.01a 缬氨酸 Val 2.34 0.38±0.01a 0.13±0.00b 亮氨酸 Leu 1.30 0.39±0.01a 0.10±0.00b 异亮氨酸 Ile 1.31 0.24±0.03a 0.04±0.00b 酪氨酸 Tyr 0.73 0.96±0.05a 0.05±0.00b 苯丙氨酸 Phe 9.60 0.64±0.01a 0.04±0.01b 精氨酸 Arg 12.20 0.01±0.00a 0.01±0.00a 组氨酸 His 6.98 0.08±0.00a 0.03±0.00b 蛋氨酸 Met 0.39 0.80±0.03b 1.09±0.04a 赖氨酸 Lys 11.70 0.39±0.00a 0.03±0.01b 半胱氨酸 Cys 0.12 0.04±0.01b 0.33±0.01a 脯氨酸 Pro 2.99 0.46±0.09a 0.11±0.00b 合计 32.21±1.48a 4.38±0.09b 2.4 基于滋味活度值(ATV)法的WT和ECWT关键滋味物质筛选
TAV可表征茶汤中的关键滋味物质,TAV越大,则化合物对茶汤的滋味贡献度越高,化合物TAV>1时,表明该化合物对滋味有显著贡献[26],可以认定该化合物为关键滋味物质。WT和ECWT的滋味物质TAV值如表4所示,WT的滋味物质中,TAV大于1的物质有CAF、EGC、C、EC、EGCG、GCG、ECG、茶氨酸、谷氨酸、酪氨酸和蛋氨酸,这些物质是WT的关键滋味物质;ECWT的滋味物质中,TAV大于1的物质有CAF、EGCG、GCG、ECG、茶氨酸、蛋氨酸和半胱氨酸,这些物质是ECTW的关键滋味物质。WT和ECWT各滋味物质的TAV值存在较大差异,这与各滋味物质的含量具有较大关系,冠突散囊菌散茶发酵后儿茶素组分和氨基酸组分含量降低,导致了ECWT的关键滋味物质数量减少。
表 4 WT和ECWT滋味物质TAV值Table 4. WT and ECWT flavor substance TAV values样品名称 TAV 呈味特点[25,27−28] WT ECWT CAF 84.98 79.84 苦味 EGC 34.42 ND 苦味 C 32.83 ND 苦味 EC 7.20 ND 涩味、回甘 EGCG 389.16 73.47 苦涩味 GCG 43.44 20.64 苦涩味 ECG 96.35 30.62 苦涩味 茶氨酸 23.22 1.61 鲜味 谷氨酸 4.56 0.75 鲜味 天冬氨酸 0.08 0.04 鲜味 丝氨酸 0.00 0.07 甜味 丙氨酸 0.11 0.01 甜味 苏氨酸 0.12 0.00 甜味 甘氨酸 0.01 0.01 甜味 缬氨酸 0.16 0.06 苦味 亮氨酸 0.30 0.08 苦味 异亮氨酸 0.18 0.03 苦味 酪氨酸 1.32 0.07 苦味 苯丙氨酸 0.07 0.00 苦味 精氨酸 0.00 0.00 苦味 组氨酸 0.01 0.00 苦味 蛋氨酸 2.05 2.79 苦味 赖氨酸 0.03 0.00 无 半胱氨酸 0.33 2.75 无 脯氨酸 0.15 0.04 无 2.5 基于GC-MS的WT和ECWT香气定性和定量分析
WT和ECWT中香气组分含量测定结果见表5,WT和ECWT共检测出74种香气物质,WT检测出49种,香气组分总量为27.49 μg/g;ECWT检测出55种,香气组分总量为31.62 μg/g;共有香气物质30种,WT特有香气物质19种,ECWT特有香气物质25种。按香气类型分类,两种茶类均表现为酯类>醇类>醛类>酮类>烯类;WT检测出酯类17种、醇类16种、醛类9种、酮类5种、烯类1种和其他1种,含量分别为4.22、15.03、1.13、5.80、1.14和0.18 μg/g;ECWT检测出酯类23种、醇类13种、醛类10种、酮类6种、烯类1种和其他2种,含量分别为21.86、2.81、2.58、3.87、0.08和0.42 μg/g。发酵前后的白茶香气物质含量差异较大,发酵后苯甲醇、(-)-α-侧柏酮、(E)-芳樟醇氧化物、2-壬酮、芳樟醇、2-壬基醇、葑醇、苯乙醇和(E)-β-金合欢烯的含量显著降低,DL-泛酰内酯、水杨酸甲酯、γ-辛内酯、δ-辛内酯、甲基壬基甲酮、γ-癸内酯、δ-癸内酯、十一酸乙酯和γ-十二内酯的含量显著增加。其中,水杨酸甲酯含量的增加为ECWT增加了“菌花香”属性。相关研究表明,具有清香特征的水杨酸甲酯被认为是金花茶“菌花香”的关键成分[29−30],因此,散茶发酵后水杨酸甲酯含量的增加是ECWT形成“菌花香”的重要原因。综上,经过冠突散囊菌散茶发酵,ECWT相对于WT,在香气种类和香气总量上均有提升;香气物质种类含量也发生了显著变化,ECWT相对于WT,酯类的种类及总量显著增加,而醇类的种类及含量显著减少。
表 5 WT和ECWT中香气组分含量Table 5. Content of aroma components in WT and ECWT序号 保留时间(min) 定性结果 CAS号 阈值/
(μg/g)[31]定量结果/(μg/g) WT ECWT 1 8.420 苯甲醛 100-52-7 0.32 0.13±0.015b 0.88±0.229a 2 9.113 乙酸叶醇酯 3681-71-8 0.1 0.11±0.006a 0.06±0.000b 3 9.568 正辛醛 124-13-0 0.00187 ND 0.04±0.006 4 9.887 仲辛醇 4128-31-8 0.0715 0.05±0.006b 0.11±0.030a 5 10.027 DL-泛酰内酯 79-50-5 NF ND 1.19±0.006 6 10.063 柠檬烯 138-86-3 0.034 ND 0.08±0.010 7 10.11 苯甲醇 100-51-6 0.1 0.45±0.025a 0.17±0.040b 8 10.59 γ-己内酯 695-06-7 NF 0.30±0.025a 0.25±0.050a 9 10.645 反-2-辛烯醛 2548-87-0 0.004 ND 0.36±0.042 10 10.647 2,6-二甲基-5-庚烯醛 106-72-9 0.016 0.07±0.002 ND 11 10.812 苯乙酮 98-86-2 0.065 ND 0.2±0.001 12 10.838 反式-2-辛烯-1-醇 18409-17-1 0.02 0.08±0.000 ND 13 10.892 2-乙酰基吡咯 1072-83-9 0.019 0.18±0.031a 0.07±0.007b 14 10.915 (Z)-芳樟醇氧化物 14009-71-3 0.25 0.14±0.016 ND 15 11.298 (-)-α-侧柏酮 546-80-5 0.36 3.21±0.119 ND 16 11.299 (E)-芳樟醇氧化物 34995-77-2 0.25 3.83±0.107 ND 17 11.3 2-壬酮 821-55-6 0.2 1.99±0.049a 0.37±0.041b 18 11.492 芳樟醇 78-70-6 0.0024 0.88±0.255a 0.03±0.000b 19 11.54 甲基麦芽酚 118-71-8 NF ND 0.36±0.039 20 11.542 2-壬基醇 628-99-9 NF 3.72±0.295a 1.57±0.162b 21 11.543 葑醇 1632-73-1 NF 1.31±0.081a 0.22±0.039b 22 11.552 庚酸乙酯 106-30-9 0.0022 ND 0.07±0.003 23 11.602 壬醛 124-19-6 0.0011 0.14±0.037a 0.13±0.033a 24 11.627 乙酸庚酯 112-06-1 0.42 0.02±0.003 ND 25 11.795 苯乙醇 60-12-8 0.009 3.48±0.545a 0.23±0.053b 26 12.09 辛酸甲酯 111-11-5 0.2 0.33±0.019 ND 27 12.277 反式-2-壬醛 18829-56-6 0.00019 0.10±0.019 ND 28 12.479 反,顺-2,6-壬二烯醛 557-48-2 0.00002 0.08±0.030a 0.07±0.015a 29 12.692 γ-庚内酯 105-21-5 NF 0.10±0.028 ND 30 12.835 1-壬醇 143-08-8 0.0455 0.11±0.034a 0.02±0.001b 31 12.934 L-薄荷醇 2216-51-5 NF 0.23±0.002a 0.06±0.013b 32 12.935 (E,Z)-2,6-壬二烯-1-醇 28069-72-9 0.001 0.05±0.002 ND 33 13.128 顺-3-己烯基丁酯 16491-36-4 NF 0.08±0.009 ND 34 13.231 水杨酸甲酯 119-36-8 0.04 1.74±0.136b 4.46±0.156a 35 13.239 α-松油醇 98-55-5 0.314 0.34±0.036a 0.14±0.029b 36 13.305 2-甲基-5-(1-甲基乙烯基)环己酮 7764-50-3 NF ND 0.02±0.002 37 13.353 呋喃酮乙酸酯 4166-20-5 NF ND 0.05±0.007 38 13.357 辛酸乙酯 106-32-1 0.0193 ND 0.03±0.001 39 13.372 5-羟甲基糠醛 67-47-0 1000 ND 0.05±0.006 40 13.381 乙酸辛酯 112-14-1 0.047 ND 0.05±0.006 41 13.415 癸醛 112-31-2 0.0026 0.16±0.014 ND 42 13.692 2-辛炔酸甲酯 111-12-6 0.025 0.07±0.011 ND 43 13.696 柠檬醛 5392-40-5 0.50 0.14±0.034 ND 44 13.715 壬酸甲酯 1731-84-6 1.12 ND 0.09±0.010 45 14.16 香叶醇 106-24-1 0.60 0.18±0.007a 0.12±0.014b 46 14.168 橙花醇 106-25-2 0.3 0.09±0.002 ND 47 14.214 乙酸苯乙酯 103-45-7 250 0.10±0.021 ND 48 14.235 γ-辛内酯 104-50-7 NF 0.09±0.012b 0.96±0.136b 49 14.347 反式-2-癸烯醛 3913-81-3 0.00035 0.26±0.046a 0.06±0.004b 50 14.621 δ-辛内酯 698-76-0 NF ND 1.54±0.036 51 14.823 甲基壬基甲酮 112-12-9 NF 0.25±0.036b 2.37±0.050a 52 14.972 乙酸壬酯 143-13-5 0.6 0.06±0.008a 0.06±0.003a 53 15.26 反式-2,4-癸二烯醛 2363-88-4 0.000027 ND 0.09±0.016 54 15.291 癸酸甲酯 110-42-9 0.0045 0.07±0.015b 0.61±0.009a 55 15.865 γ-戊基丁内酯 104-61-0 0.0097 0.69±0.081 ND 56 16.373 乙酸香叶酯 105-87-3 0.1 ND 0.32±0.035 57 16.378 辛酸丁酯 589-75-3 NF ND 0.06±0.007 58 16.437 己酸叶醇酯 31501-11-8 0.012 0.11±0.022a 0.03±0.005b 59 16.471 乙酸癸酯 112-17-4 NF ND 0.02±0.003 60 16.811 α-紫罗酮 127-41-3 0.00378 0.29±0.005b 0.36±0.014a 61 17.147 辛酸异戊酯 2035-99-6 NF ND 0.03±0.003 62 17.408 γ-癸内酯 706-14-9 0.0011 0.06±0.004b 3.66±0.528a 63 17.614 3-甲基-丁酸-1-乙基-1,5-二甲基-4-己烯酯 1118-27-0 NF 0.22±0.014 ND 64 17.622 β-紫罗兰酮 14901-07-6 0.006 0.06±0.000b 0.55±0.034a 65 17.625 (E)-β-金合欢烯 18794-84-8 0.087 1.14±0.162 ND 66 17.672 月桂醇 112-53-8 0.016 0.08±0.002a 0.05±0.008b 67 17.732 δ-癸内酯 705-86-2 NF ND 3.52±0.324 68 17.734 十一酸乙酯 627-90-7 NF ND 3.95±0.155 69 18.567 十三醇 112-70-9 NF ND 0.06±0.019 70 18.821 桃醛 104-67-6 0.0021 0.05±0.001b 0.34±0.026a 71 20.08 十四醇 112-72-1 NF ND 0.04±0.001 72 20.344 γ-十二内酯 2305-05-7 0.00043 0.07±0.006b 0.77±0.017a 73 20.414 十五醛 2765-11-9 1 ND 0.55±0.092 74 20.443 δ-十二内酯 713-95-1 NF ND 0.09±0.020 2.6 WT和ECWT香气组分OPLS-DA分析
对WT和ECWT中香气组分进行OPLS-DA分析,其得分如图3(A)所示,WT和ECWT在93.4%置信区间处在不同区域且区分明显,表明WT和ECWT间香气组分存在显著差异。针对OPLS-DA模型进行200次置换检验,得到了如图3(B)所示的置换检验模型,Y轴和Q2回归线的截距均小于0,表明该判别模型不存在过度拟合现象,拟合结果可以接受[32]。为明确OPLS-DA模型下区分WT和ECWT的关键差异挥发性物质,74种香气化合物的VIP值环形热图如图3(C)所示,其中62种香气化合物VIP大于1(P<0.05),这62种特征香气化合物可作为区分WT和ECWT的关键标志,这说明冠突散囊菌散茶发酵对白茶的香气物质影响显著。
2.7 基于OAV法的WT和ECWT关键香气组分筛选
香气组分的含量和阈值对茶叶整体香气轮廓的贡献具有重要作用,研究表明不是所有香气物质对茶叶香气的影响都有作用,只有部分香气组分对茶叶的香气有贡献[33],这些香气组分被称为茶叶的关键香气物质,关键香气物质一般是具有高香气强度、高OAV值的挥发性成分。一般认为当OAV>1时,该香气组分可定义为关键香气成分,且该香气成分对总体风味有直接影响,可对WT和ECWT的关键香气成分进行表征[34]。WT和ECWT的OAV值如表6所示,WT香气组分OAV>1的有31种,ECWT香气组分OAV>1的有28种,相关研究表明,在一定范围内,OAV越大说明该香气成分对总体风味贡献越大,OAV>10的挥发性化合物可被确定为关键致香成分[35]。反,顺-2,6-壬二烯醛、反式-2-癸烯醛、反式-2-壬醛、苯乙醇、芳樟醇、γ-十二内酯、壬醛、α-紫罗酮、γ-戊基丁内酯、癸醛、γ-癸内酯、(E,Z)-2,6-壬二烯-1-醇、水杨酸甲酯、桃醛、(E)-芳樟醇氧化物、癸酸甲酯和(E)-β-金合欢烯为WT的关键致香成分,γ-癸内酯、反,顺-2,6-壬二烯醛、反式-2,4-癸二烯醛、γ-十二内酯、反式-2-癸烯醛、桃醛、癸酸甲酯、壬醛、水杨酸甲酯、α-紫罗酮、β-紫罗兰酮、反-2-辛烯醛、庚酸乙酯、苯乙醇、正辛醛和芳樟醇为ECWT的关键致香成分。WT和ECWT共有的关键致香物质为反,顺-2,6-壬二烯醛、反式-2-癸烯醛、苯乙醇、芳樟醇、γ-十二内酯、壬醛、α-紫罗酮、γ-癸内酯、水杨酸甲酯、桃醛和癸酸甲酯,它们对WT和ECWT的香气均有贡献作用,但含量存在差异,从而对香气贡献程度不同;WT特有的关键致香成分反式-2-壬醛、γ-戊基丁内酯、癸醛、(E,Z)-2,6-壬二烯-1-醇、(E)-芳樟醇氧化物和(E)-β-金合欢烯,ECWT特有的关键致香成分反式-2,4-癸二烯醛、β-紫罗兰酮、反-2-辛烯醛、庚酸乙酯、正辛醛,特有的关键致香物质对形成特有的香气类型贡献程度不一样;综上,共有关键致香物质中,反,顺-2,6-壬二烯醛、反式-2-癸烯醛、苯乙醇、芳樟醇和壬醛经发酵后含量减少,经过冠突散囊菌散茶发酵后这些具有清鲜特征的赋香组分不断减少,这与刘菲[15]的研究结果相似;γ-十二内酯、α-紫罗酮、γ-癸内酯、水杨酸甲酯、桃醛和癸酸甲酯经发酵后含量增加,水杨酸甲酯不仅能够提供坚果香和花香,并且是茯砖茶形成“菌花香”的主要贡献因素之一[36],经过冠突散囊菌散茶后其含量的增加有利于ECWT菌花香的形成。
表 6 WT和ECWT香气组分的OAV分析Table 6. OAV analysis of aroma components in WT and ECWT序号 香气组分 香气描述[37−41] OAV值 WT ECWT 1 苯甲醛 苦杏仁香 0.41 2.76 2 乙酸叶醇酯 强烈的香蕉香气 1.06 0.57 3 正辛醛 油脂香、柑橘香 ND 22.60 4 仲辛醇 NF 0.73 1.50 5 柠檬烯 NF ND 2.36 6 苯甲醇 蜜甜、果香 4.46 1.70 7 反-2-辛烯醛 草香、蜜香 ND 90.98 8 2,6-二甲基-5-庚烯醛 NF 4.19 ND 9 苯乙酮 坚果、果香 ND 3.04 10 反式-2-辛烯-1-醇 NF 4.02 ND 11 2-乙酰基吡咯 面包、烘烤箱 9.31 3.50 12 (Z)-芳樟醇氧化物 柑橘香 0.56 ND 13 (-)-α-侧柏酮 类似薄荷香 8.93 ND 14 (E)-芳樟醇氧化物 木香 15.32 ND 15 2-壬酮 NF 9.94 1.83 16 芳樟醇 花香、铃兰香 366.06 12.25 17 庚酸乙酯 果香 0.00 32.51 18 壬醛 柑橘香、玫瑰花香 127.43 113.73 19 乙酸庚酯 花香、清香 0.06 ND 20 苯乙醇 甜蜜香、玫瑰花香 386.69 25.35 21 辛酸甲酯 果香 1.66 ND 22 反式-2-壬醛 柑橘香、花果香 535.81 ND 23 反,顺-2,6-壬二烯醛 草香、紫罗兰叶气息 3837.32 3293.19 24 1-壬醇 橙花香 2.44 0.52 25 (E,Z)-2,6-壬二烯-1-醇 NF 52.62 ND 26 水杨酸甲酯 薄荷味、冬青树味 43.38 111.59 27 α-松油醇 果香、薄荷香 1.07 0.46 28 辛酸乙酯 花香 ND 1.53 29 5-羟甲基糠醛 NF ND 0.00 30 乙酸辛酯 花香 ND 1.07 31 癸醛 花果香 61.06 ND 32 2-辛炔酸甲酯 NF 2.93 ND 33 柠檬醛 柠檬香、柑橘香 0.27 ND 34 壬酸甲酯 甜果香、酒香 ND 0.08 35 香叶醇 玫瑰花香 0.30 0.19 36 橙花醇 花香、柠檬果香 0.31 ND 37 乙酸苯乙酯 玫瑰花香、蜜香 0.00 ND 38 反式-2-癸烯醛 松脂香 749.54 180.93 39 乙酸壬酯 果香 0.11 0.10 40 反式-2,4-癸二烯醛 NF ND 3249.13 41 癸酸甲酯 NF 14.97 135.94 42 γ-戊基丁内酯 奶香、甜香 70.98 ND 43 乙酸香叶酯 玫瑰花香、薰衣草香 ND 3.19 44 己酸叶醇酯 果香 9.57 2.24 45 α-紫罗酮 果香、甜香 78.01 96.39 46 γ-癸内酯 桃香,草莓香,果香 57.63 3323.78 47 β-紫罗兰酮 似紫罗兰香、木香 9.20 91.63 48 (E)-β-金合欢烯 木香 13.10 ND 49 月桂醇 NF 5.07 2.88 50 桃醛 NF 25.13 162.34 51 γ-十二内酯 NF 156.13 1790.40 52 十五醛 ND 0.55 3. 结论
白茶是我国六大茶类之一,冠突散囊菌散茶发酵白茶属于白茶加工的创新工艺,相较于传统工艺白茶,冠突散囊菌白茶具有其特殊的风味特征。从感官结果来看,白茶经冠突散囊菌散茶发酵后滋味和香气品质发生了明显变化,制成的ECWT菌花香浓郁,滋味更加醇和、甜、滑且有菌香味。从滋味物质含量变化来看,ECWT的咖啡碱、可可碱含量有所下降,儿茶素组分总量和氨基酸组分总量相较于WT显著降低,关键滋味物质的含量、数量均减小。从香气组分变化来看,共检测出74种香气物质,WT检测出50种,ECWT检测出55种,利用OPLS-DA分析得出62种关键差异香气物质,利用OAV法筛选出WT关键香气化合物31种、关键致香成分17种,ECWT关键香气化合物28种、关键致香成分16种。综上,冠突散囊菌散茶发酵对白茶的感官品质、滋味品质成分和香气品质成分均有显著影响,研究结果可为冠突散囊菌白茶散茶发酵加工工艺优化、产品开发等提供理论参考,但仍需进一步解析WT和ECWT滋味成分间和香气成分间的相互作用。
-
表 1 WT和ECWT感官审评结果
Table 1 Sensory evaluation results of WT and ECWT
茶样 外形(25分) 汤色(10分) 香气(25分) 滋味(30分) 叶底(10分) 总分(分) WT 灰绿有毫心较匀整 杏黄较亮 甜香带花香 甜醇较爽 绿黄较亮较软 90.95±0.65 22.50±0.25 9.00±0.07 22.75±0.21 27.60±0.13 9.10±0.17 ECWT 棕褐有毫心较匀整,有金花 棕红尚亮 菌花香浓郁,有甜香带陈香 醇和,有菌香味,较甜、滑 黑褐 89.30±0.37 22.25±0.14 8.80±0.16 22.25±0.43 27.30±0.36 8.70±0.09 表 2 WT和ECWT可可碱、咖啡碱和儿茶素组分含量(mg/g)
Table 2 Contents of theobromine, Caffeine, and Catechins in WT and ECWT (mg/g)
样品名称 简称 滋味识别阈
值(mg/g)[25]WT ECWT 可可碱 TB NF 7.75±0.10a 4.52±0.31b 咖啡碱 CAF 0.50 42.49±2.85a 39.92±0.48a 表没食子儿茶素 EGC 0.52 17.90±0.26 ND 儿茶素 C 0.41 13.46±0.23 ND 表儿茶素 EC 0.93 6.70±0.12 ND 表没食子儿茶素没
食子酸酯EGCG 0.19 73.94±0.33a 13.96±0.22b 没食子儿茶素没
食子酸酯GCG 0.39 16.94±0.10a 8.05±0.01b 表儿茶素没
食子酸酯ECG 0.26 25.05±1.38a 7.96±0.44b 注:表中“NF”未找到该成分察觉阈值相关文献报道,表5~表6表同;“ND”表示未检出,表4~表6同;不同小写字母表示P﹤0.05,差异显著,表3、表5同。 表 3 WT和ECWT中氨基酸组分含量
Table 3 Contents of Amino Acids in WT and ECWT
种类 缩写 滋味识别阈值
(mg/g)[25]WT
(mg/g)ECWT
(mg/g)茶氨酸 The 1.05 24.38±1.76a 1.69±0.05b 谷氨酸 Glu 0.59 2.69±0.25a 0.44±0.01b 天冬氨酸 Asp 0.53 0.04±0.01a 0.02±0.01b 丝氨酸 Ser 3.15 0.01±0.00b 0.22±0.01a 丙氨酸 Ala 1.07 0.12±0.00a 0.01±0.00b 苏氨酸 Thr 4.76 0.57±0.06a 0.02±0.00b 甘氨酸 Gly 2.63 0.02±0.01a 0.03±0.01a 缬氨酸 Val 2.34 0.38±0.01a 0.13±0.00b 亮氨酸 Leu 1.30 0.39±0.01a 0.10±0.00b 异亮氨酸 Ile 1.31 0.24±0.03a 0.04±0.00b 酪氨酸 Tyr 0.73 0.96±0.05a 0.05±0.00b 苯丙氨酸 Phe 9.60 0.64±0.01a 0.04±0.01b 精氨酸 Arg 12.20 0.01±0.00a 0.01±0.00a 组氨酸 His 6.98 0.08±0.00a 0.03±0.00b 蛋氨酸 Met 0.39 0.80±0.03b 1.09±0.04a 赖氨酸 Lys 11.70 0.39±0.00a 0.03±0.01b 半胱氨酸 Cys 0.12 0.04±0.01b 0.33±0.01a 脯氨酸 Pro 2.99 0.46±0.09a 0.11±0.00b 合计 32.21±1.48a 4.38±0.09b 表 4 WT和ECWT滋味物质TAV值
Table 4 WT and ECWT flavor substance TAV values
样品名称 TAV 呈味特点[25,27−28] WT ECWT CAF 84.98 79.84 苦味 EGC 34.42 ND 苦味 C 32.83 ND 苦味 EC 7.20 ND 涩味、回甘 EGCG 389.16 73.47 苦涩味 GCG 43.44 20.64 苦涩味 ECG 96.35 30.62 苦涩味 茶氨酸 23.22 1.61 鲜味 谷氨酸 4.56 0.75 鲜味 天冬氨酸 0.08 0.04 鲜味 丝氨酸 0.00 0.07 甜味 丙氨酸 0.11 0.01 甜味 苏氨酸 0.12 0.00 甜味 甘氨酸 0.01 0.01 甜味 缬氨酸 0.16 0.06 苦味 亮氨酸 0.30 0.08 苦味 异亮氨酸 0.18 0.03 苦味 酪氨酸 1.32 0.07 苦味 苯丙氨酸 0.07 0.00 苦味 精氨酸 0.00 0.00 苦味 组氨酸 0.01 0.00 苦味 蛋氨酸 2.05 2.79 苦味 赖氨酸 0.03 0.00 无 半胱氨酸 0.33 2.75 无 脯氨酸 0.15 0.04 无 表 5 WT和ECWT中香气组分含量
Table 5 Content of aroma components in WT and ECWT
序号 保留时间(min) 定性结果 CAS号 阈值/
(μg/g)[31]定量结果/(μg/g) WT ECWT 1 8.420 苯甲醛 100-52-7 0.32 0.13±0.015b 0.88±0.229a 2 9.113 乙酸叶醇酯 3681-71-8 0.1 0.11±0.006a 0.06±0.000b 3 9.568 正辛醛 124-13-0 0.00187 ND 0.04±0.006 4 9.887 仲辛醇 4128-31-8 0.0715 0.05±0.006b 0.11±0.030a 5 10.027 DL-泛酰内酯 79-50-5 NF ND 1.19±0.006 6 10.063 柠檬烯 138-86-3 0.034 ND 0.08±0.010 7 10.11 苯甲醇 100-51-6 0.1 0.45±0.025a 0.17±0.040b 8 10.59 γ-己内酯 695-06-7 NF 0.30±0.025a 0.25±0.050a 9 10.645 反-2-辛烯醛 2548-87-0 0.004 ND 0.36±0.042 10 10.647 2,6-二甲基-5-庚烯醛 106-72-9 0.016 0.07±0.002 ND 11 10.812 苯乙酮 98-86-2 0.065 ND 0.2±0.001 12 10.838 反式-2-辛烯-1-醇 18409-17-1 0.02 0.08±0.000 ND 13 10.892 2-乙酰基吡咯 1072-83-9 0.019 0.18±0.031a 0.07±0.007b 14 10.915 (Z)-芳樟醇氧化物 14009-71-3 0.25 0.14±0.016 ND 15 11.298 (-)-α-侧柏酮 546-80-5 0.36 3.21±0.119 ND 16 11.299 (E)-芳樟醇氧化物 34995-77-2 0.25 3.83±0.107 ND 17 11.3 2-壬酮 821-55-6 0.2 1.99±0.049a 0.37±0.041b 18 11.492 芳樟醇 78-70-6 0.0024 0.88±0.255a 0.03±0.000b 19 11.54 甲基麦芽酚 118-71-8 NF ND 0.36±0.039 20 11.542 2-壬基醇 628-99-9 NF 3.72±0.295a 1.57±0.162b 21 11.543 葑醇 1632-73-1 NF 1.31±0.081a 0.22±0.039b 22 11.552 庚酸乙酯 106-30-9 0.0022 ND 0.07±0.003 23 11.602 壬醛 124-19-6 0.0011 0.14±0.037a 0.13±0.033a 24 11.627 乙酸庚酯 112-06-1 0.42 0.02±0.003 ND 25 11.795 苯乙醇 60-12-8 0.009 3.48±0.545a 0.23±0.053b 26 12.09 辛酸甲酯 111-11-5 0.2 0.33±0.019 ND 27 12.277 反式-2-壬醛 18829-56-6 0.00019 0.10±0.019 ND 28 12.479 反,顺-2,6-壬二烯醛 557-48-2 0.00002 0.08±0.030a 0.07±0.015a 29 12.692 γ-庚内酯 105-21-5 NF 0.10±0.028 ND 30 12.835 1-壬醇 143-08-8 0.0455 0.11±0.034a 0.02±0.001b 31 12.934 L-薄荷醇 2216-51-5 NF 0.23±0.002a 0.06±0.013b 32 12.935 (E,Z)-2,6-壬二烯-1-醇 28069-72-9 0.001 0.05±0.002 ND 33 13.128 顺-3-己烯基丁酯 16491-36-4 NF 0.08±0.009 ND 34 13.231 水杨酸甲酯 119-36-8 0.04 1.74±0.136b 4.46±0.156a 35 13.239 α-松油醇 98-55-5 0.314 0.34±0.036a 0.14±0.029b 36 13.305 2-甲基-5-(1-甲基乙烯基)环己酮 7764-50-3 NF ND 0.02±0.002 37 13.353 呋喃酮乙酸酯 4166-20-5 NF ND 0.05±0.007 38 13.357 辛酸乙酯 106-32-1 0.0193 ND 0.03±0.001 39 13.372 5-羟甲基糠醛 67-47-0 1000 ND 0.05±0.006 40 13.381 乙酸辛酯 112-14-1 0.047 ND 0.05±0.006 41 13.415 癸醛 112-31-2 0.0026 0.16±0.014 ND 42 13.692 2-辛炔酸甲酯 111-12-6 0.025 0.07±0.011 ND 43 13.696 柠檬醛 5392-40-5 0.50 0.14±0.034 ND 44 13.715 壬酸甲酯 1731-84-6 1.12 ND 0.09±0.010 45 14.16 香叶醇 106-24-1 0.60 0.18±0.007a 0.12±0.014b 46 14.168 橙花醇 106-25-2 0.3 0.09±0.002 ND 47 14.214 乙酸苯乙酯 103-45-7 250 0.10±0.021 ND 48 14.235 γ-辛内酯 104-50-7 NF 0.09±0.012b 0.96±0.136b 49 14.347 反式-2-癸烯醛 3913-81-3 0.00035 0.26±0.046a 0.06±0.004b 50 14.621 δ-辛内酯 698-76-0 NF ND 1.54±0.036 51 14.823 甲基壬基甲酮 112-12-9 NF 0.25±0.036b 2.37±0.050a 52 14.972 乙酸壬酯 143-13-5 0.6 0.06±0.008a 0.06±0.003a 53 15.26 反式-2,4-癸二烯醛 2363-88-4 0.000027 ND 0.09±0.016 54 15.291 癸酸甲酯 110-42-9 0.0045 0.07±0.015b 0.61±0.009a 55 15.865 γ-戊基丁内酯 104-61-0 0.0097 0.69±0.081 ND 56 16.373 乙酸香叶酯 105-87-3 0.1 ND 0.32±0.035 57 16.378 辛酸丁酯 589-75-3 NF ND 0.06±0.007 58 16.437 己酸叶醇酯 31501-11-8 0.012 0.11±0.022a 0.03±0.005b 59 16.471 乙酸癸酯 112-17-4 NF ND 0.02±0.003 60 16.811 α-紫罗酮 127-41-3 0.00378 0.29±0.005b 0.36±0.014a 61 17.147 辛酸异戊酯 2035-99-6 NF ND 0.03±0.003 62 17.408 γ-癸内酯 706-14-9 0.0011 0.06±0.004b 3.66±0.528a 63 17.614 3-甲基-丁酸-1-乙基-1,5-二甲基-4-己烯酯 1118-27-0 NF 0.22±0.014 ND 64 17.622 β-紫罗兰酮 14901-07-6 0.006 0.06±0.000b 0.55±0.034a 65 17.625 (E)-β-金合欢烯 18794-84-8 0.087 1.14±0.162 ND 66 17.672 月桂醇 112-53-8 0.016 0.08±0.002a 0.05±0.008b 67 17.732 δ-癸内酯 705-86-2 NF ND 3.52±0.324 68 17.734 十一酸乙酯 627-90-7 NF ND 3.95±0.155 69 18.567 十三醇 112-70-9 NF ND 0.06±0.019 70 18.821 桃醛 104-67-6 0.0021 0.05±0.001b 0.34±0.026a 71 20.08 十四醇 112-72-1 NF ND 0.04±0.001 72 20.344 γ-十二内酯 2305-05-7 0.00043 0.07±0.006b 0.77±0.017a 73 20.414 十五醛 2765-11-9 1 ND 0.55±0.092 74 20.443 δ-十二内酯 713-95-1 NF ND 0.09±0.020 表 6 WT和ECWT香气组分的OAV分析
Table 6 OAV analysis of aroma components in WT and ECWT
序号 香气组分 香气描述[37−41] OAV值 WT ECWT 1 苯甲醛 苦杏仁香 0.41 2.76 2 乙酸叶醇酯 强烈的香蕉香气 1.06 0.57 3 正辛醛 油脂香、柑橘香 ND 22.60 4 仲辛醇 NF 0.73 1.50 5 柠檬烯 NF ND 2.36 6 苯甲醇 蜜甜、果香 4.46 1.70 7 反-2-辛烯醛 草香、蜜香 ND 90.98 8 2,6-二甲基-5-庚烯醛 NF 4.19 ND 9 苯乙酮 坚果、果香 ND 3.04 10 反式-2-辛烯-1-醇 NF 4.02 ND 11 2-乙酰基吡咯 面包、烘烤箱 9.31 3.50 12 (Z)-芳樟醇氧化物 柑橘香 0.56 ND 13 (-)-α-侧柏酮 类似薄荷香 8.93 ND 14 (E)-芳樟醇氧化物 木香 15.32 ND 15 2-壬酮 NF 9.94 1.83 16 芳樟醇 花香、铃兰香 366.06 12.25 17 庚酸乙酯 果香 0.00 32.51 18 壬醛 柑橘香、玫瑰花香 127.43 113.73 19 乙酸庚酯 花香、清香 0.06 ND 20 苯乙醇 甜蜜香、玫瑰花香 386.69 25.35 21 辛酸甲酯 果香 1.66 ND 22 反式-2-壬醛 柑橘香、花果香 535.81 ND 23 反,顺-2,6-壬二烯醛 草香、紫罗兰叶气息 3837.32 3293.19 24 1-壬醇 橙花香 2.44 0.52 25 (E,Z)-2,6-壬二烯-1-醇 NF 52.62 ND 26 水杨酸甲酯 薄荷味、冬青树味 43.38 111.59 27 α-松油醇 果香、薄荷香 1.07 0.46 28 辛酸乙酯 花香 ND 1.53 29 5-羟甲基糠醛 NF ND 0.00 30 乙酸辛酯 花香 ND 1.07 31 癸醛 花果香 61.06 ND 32 2-辛炔酸甲酯 NF 2.93 ND 33 柠檬醛 柠檬香、柑橘香 0.27 ND 34 壬酸甲酯 甜果香、酒香 ND 0.08 35 香叶醇 玫瑰花香 0.30 0.19 36 橙花醇 花香、柠檬果香 0.31 ND 37 乙酸苯乙酯 玫瑰花香、蜜香 0.00 ND 38 反式-2-癸烯醛 松脂香 749.54 180.93 39 乙酸壬酯 果香 0.11 0.10 40 反式-2,4-癸二烯醛 NF ND 3249.13 41 癸酸甲酯 NF 14.97 135.94 42 γ-戊基丁内酯 奶香、甜香 70.98 ND 43 乙酸香叶酯 玫瑰花香、薰衣草香 ND 3.19 44 己酸叶醇酯 果香 9.57 2.24 45 α-紫罗酮 果香、甜香 78.01 96.39 46 γ-癸内酯 桃香,草莓香,果香 57.63 3323.78 47 β-紫罗兰酮 似紫罗兰香、木香 9.20 91.63 48 (E)-β-金合欢烯 木香 13.10 ND 49 月桂醇 NF 5.07 2.88 50 桃醛 NF 25.13 162.34 51 γ-十二内酯 NF 156.13 1790.40 52 十五醛 ND 0.55 -
[1] 涂梦情. 贵州省茶产业高质量发展评价研究[D]. 贵阳:贵州大学, 2023. [TU Mengqing. Evaluation of high quality development of tea industry in Guizhou province[D]. Guiyang:Guizhou University, 2023.] TU Mengqing. Evaluation of high quality development of tea industry in Guizhou province[D]. Guiyang: Guizhou University, 2023.
[2] 杨艳飞, 刘晓然. 贵州茶产业发展路径探究[J]. 农业技术与装备,2024(6):93−94,97. [YANG Yanfei, LIU Xiaoran. Exploration of the development path of Guizhou tea industry[J]. Agricultural Technology & Equipment,2024(6):93−94,97.] doi: 10.3969/j.issn.1673-887X.2024.06.034 YANG Yanfei, LIU Xiaoran. Exploration of the development path of Guizhou tea industry[J]. Agricultural Technology & Equipment, 2024(6): 93−94,97. doi: 10.3969/j.issn.1673-887X.2024.06.034
[3] 石碧滢, 周承哲, 田采云, 等. 不同贮藏时间白牡丹茶风味品质差异分析[J]. 食品科学,2023,44(14):313−325. [SHI Biying, ZHOU Chengzhe, TIAN Caiyun, et al. Analysis of differences in flavor and quality of white peony tea at different storage times[J]. Food Science,2023,44(14):313−325.] doi: 10.7506/spkx1002-6630-20220913-111 SHI Biying, ZHOU Chengzhe, TIAN Caiyun, et al. Analysis of differences in flavor and quality of white peony tea at different storage times[J]. Food Science, 2023, 44(14): 313−325. doi: 10.7506/spkx1002-6630-20220913-111
[4] 谢宁轩, 张文刚, 党斌, 等. 冠突散囊菌发酵对青稞多酚组成及其体外抗氧化及糖脂代谢酶抑制活性的影响[J]. 食品与发酵工业,2024,50(23):87−94. [XIE Ningxuan, ZHANG Wengang, DANG Bin, et al. Effects of eurotium cristatum fermentation on polyphenolic composition and in vitro antioxidant and glycolipid metabolic enzyme inhibition activity of highland barley[J]. Food and Fermentation Industries,2024,50(23):87−94.] XIE Ningxuan, ZHANG Wengang, DANG Bin, et al. Effects of eurotium cristatum fermentation on polyphenolic composition and in vitro antioxidant and glycolipid metabolic enzyme inhibition activity of highland barley[J]. Food and Fermentation Industries, 2024, 50(23): 87−94.
[5] 王昕, 范晨伟, 刘金虎. 茯砖茶加工工艺及其发酵过程中优势菌群研究进展[J]. 商洛学院学报,2024,38(4):62−69,87. [WANG Xin, FAN Chenwei, LIU Jinhu. Research progress on processing technology and advantageous microbial communities during fermentation of Fuzhuan tea[J]. Journal of Shangluo University,2024,38(4):62−69,87.] WANG Xin, FAN Chenwei, LIU Jinhu. Research progress on processing technology and advantageous microbial communities during fermentation of Fuzhuan tea[J]. Journal of Shangluo University, 2024, 38(4): 62−69,87.
[6] 郑选东, 许姗姗, 刘江文, 等. 冠突散囊菌固态发酵夏秋茶工艺优化和理化特性分析[J]. 食品工业科技,2024,45(16):220−230. [ZHENG Xuandong, XU Shanshan, LIU Jiangwen, et al. Optimization of solid state fermentation process and analysis of physical and chemical characteristics of summer and autumn tea by Eurotium cristatum[J]. Science and Technology of Food Industry,2024,45(16):220−230.] ZHENG Xuandong, XU Shanshan, LIU Jiangwen, et al. Optimization of solid state fermentation process and analysis of physical and chemical characteristics of summer and autumn tea by Eurotium cristatum[J]. Science and Technology of Food Industry, 2024, 45(16): 220−230.
[7] 刘泽楠, 明朗, 汪洋. 茯砖茶中冠突散囊菌的保健功效研究进展[J]. 食品界,2019(04):145. [LIU Zenan, MING Lang, WANG Yang. Research progress on the health benefits of Eurotium cristatum in Fuzhuan tea[J]. Food Industry,2019(04):145.] doi: 10.3969/j.issn.2095-638X.2019.04.096 LIU Zenan, MING Lang, WANG Yang. Research progress on the health benefits of Eurotium cristatum in Fuzhuan tea[J]. Food Industry, 2019(04): 145. doi: 10.3969/j.issn.2095-638X.2019.04.096
[8] 罗茜, 巢瑾, 周令欣, 等. 冠突散囊菌发酵青钱柳茶的工艺优化[J]. 食品研究与开发,2024,45(13):150−156. [LUO Qian, CHAO Jin, ZHOU Lingxin, et al. Optimization of the fermentation process of Qingqianliu tea by Eurotium cristatum[J]. Food Research and Development,2024,45(13):150−156.] doi: 10.12161/j.issn.1005-6521.2024.13.021 LUO Qian, CHAO Jin, ZHOU Lingxin, et al. Optimization of the fermentation process of Qingqianliu tea by Eurotium cristatum[J]. Food Research and Development, 2024, 45(13): 150−156. doi: 10.12161/j.issn.1005-6521.2024.13.021
[9] 赵千慧, 周慧玲, 秦洋. 冠突散囊菌对高粱酒酿造过程糖化效率的促进作用与原理[J]. 食品与发酵工业,2024,50(15):72−78. [ZHAO Qianhui, ZHOU Huiling, QIN Yang. Promoting effect and principle of Eurotium cristatum on saccharification efficiency in sorghum wine brewing process[J]. Food and Fermentation Industries,2024,50(15):72−78.] ZHAO Qianhui, ZHOU Huiling, QIN Yang. Promoting effect and principle of Eurotium cristatum on saccharification efficiency in sorghum wine brewing process[J]. Food and Fermentation Industries, 2024, 50(15): 72−78.
[10] 李鹏程, 肖咪, 薛宏坤, 等. 冠突散囊菌发酵枸杞工艺优化及其抗氧化活性研究[J]. 食品科技,2021,46(2):51−58. [LI Pengcheng, XIAO Mi, XUE Hongkun, et al. Optimization of fermentation process and antioxidant activity of goji berry by eurotium cristatum[J]. Food Science and Technology,2021,46(2):51−58.] LI Pengcheng, XIAO Mi, XUE Hongkun, et al. Optimization of fermentation process and antioxidant activity of goji berry by eurotium cristatum[J]. Food Science and Technology, 2021, 46(2): 51−58.
[11] 陈银翠. 冠突散囊菌发酵黄连不同药对化学成分变化和降糖功效初探[D]. 贵阳:贵州师范大学, 2023. [CHEN Yincui. Preliminary study on chemical composition changes and hypoglycemic efficacy of different drugs in huanglian fermented by Eurotium cristatum[D]. Guiyang:Guizhou Normal University, 2023.] CHEN Yincui. Preliminary study on chemical composition changes and hypoglycemic efficacy of different drugs in huanglian fermented by Eurotium cristatum[D]. Guiyang: Guizhou Normal University, 2023.
[12] 刘子君. 冠突散囊菌对牛蒡、桑叶的生物转化及其机理研究[D]. 济南:齐鲁工业大学, 2024. [LIU Zijun. Study on the biotransformation and mechanism of burdock and mulberry leaves by Eurotium cristatum [D]. Jinan:Qilu University of Technology, 2024.] LIU Zijun. Study on the biotransformation and mechanism of burdock and mulberry leaves by Eurotium cristatum [D]. Jinan: Qilu University of Technology, 2024.
[13] 宋林瑶, 徐辉, 吴思瑶, 等. “散茶发花”发酵贵州绿茶的工艺优化及其特征挥发性化合物解析[J]. 食品工业科技,2025,46(1):33−44. [SONG Linyao, XU Hui, WU Siyao, et al. Optimization of fermentation process and analysis of characteristic volatile compounds of Guizhou green tea with "Scattered Tea Blossoming"[J]. Science and Technology of Food Industry,2025,46(1):33−44.] SONG Linyao, XU Hui, WU Siyao, et al. Optimization of fermentation process and analysis of characteristic volatile compounds of Guizhou green tea with "Scattered Tea Blossoming"[J]. Science and Technology of Food Industry, 2025, 46(1): 33−44.
[14] 巢瑾, 罗茜, 李佳莲, 等. 冠突散囊菌发酵青钱柳前后特征风味与挥发性物质的变化[J]. 食品与发酵工业,2023,49(9):57−64,81. [CHAO Jin, LUO Qian, LI Jialian, et al. Changes in characteristic flavor and volatile compounds before and after fermentation of Salix matsudana by eurotium cristatum[J]. Food and Fermentation Industries,2023,49(9):57−64,81.] CHAO Jin, LUO Qian, LI Jialian, et al. Changes in characteristic flavor and volatile compounds before and after fermentation of Salix matsudana by eurotium cristatum[J]. Food and Fermentation Industries, 2023, 49(9): 57−64,81.
[15] 刘菲. 白茶饼接种冠突散囊菌“发花”工艺研究及其品质评价[D]. 福州:福建农林大学, 2016. [LIU Fei. Study on the "flowering" process of white tea cake inoculated with eurotium cristatum and its quality evaluation[D]. Fuzhou:Fujian Agriculture and Forestry University, 2016.] LIU Fei. Study on the "flowering" process of white tea cake inoculated with eurotium cristatum and its quality evaluation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
[16] 刘菲, 孙威江, 黄艳, 等. 人工接种冠突散囊菌对白茶主要呈味物质的影响[J]. 菌物学报,2016,35(8):975−983. [LIU Fei, SUN Weijiang, HUANG Yan, et al. The effect of artificial inoculation of Eurotium cristatum on the main flavor substances of white tea[J]. Mycosystema,2016,35(8):975−983.] LIU Fei, SUN Weijiang, HUANG Yan, et al. The effect of artificial inoculation of Eurotium cristatum on the main flavor substances of white tea[J]. Mycosystema, 2016, 35(8): 975−983.
[17] 中华全国供销合作总社. 茶叶感官审评方法:GB/T 23776—2018[S]. 北京:中国标准出版社, 2018. [All China Federation of supply and marketing cooperatives. method for sensory evaluation of tea:GB/T 23776-2018[S]. Beijing:China Standard Press, 2018.] All China Federation of supply and marketing cooperatives. method for sensory evaluation of tea: GB/T 23776-2018[S]. Beijing: China Standard Press, 2018.
[18] 中华全国供销合作总社. 茶叶中茶多酚和儿茶素类含量的检测方法:GB/T 8313—2018[S]. 北京:中国标准出版社, 2018. [All China federation of supply and marketing cooperatives method for detecting the content of tea polyphenols and catechins in tea:GB/T 8313-2018[S]. Beijing:China Standard Press, 2018.] All China federation of supply and marketing cooperatives method for detecting the content of tea polyphenols and catechins in tea: GB/T 8313-2018[S]. Beijing: China Standard Press, 2018.
[19] 全国生化检测标准化技术委员会. 植物中游离氨基酸的测定:GB/T 30987—2020[S]. 北京:中国标准出版社, 2014. [National biochemical testing standardization technical committee determination of free amino acids in plants:GB/T 30987-2020[S]. Beijing:China Standard Press, 2014.] National biochemical testing standardization technical committee determination of free amino acids in plants: GB/T 30987-2020[S]. Beijing: China Standard Press, 2014.
[20] CHEN D W, ZHANG M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis)[J]. Food Chemistry,2007,104(3):1200−1205. doi: 10.1016/j.foodchem.2007.01.042
[21] NIE C N, ZHONG X X, HE L, et al. Comparison of different aroma-active compounds of Sichuan Dark brick tea (Camellia sinensis) and Sichuan Fuzhuan brick tea using gas chromatography–mass spectrometry (GC–MS) and aroma descriptive profile tests[J]. European Food Research and Technology,2019,245(9):1963−1979. doi: 10.1007/s00217-019-03304-1
[22] FORERO D P, ORREGO C E, PETERSON D G, et al. Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam. ) fruit aroma[J]. Food Chemistry,2015,169:85−91. doi: 10.1016/j.foodchem.2014.07.111
[23] SCHARBERT S, HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural & Food Chemistry,2005,53(13):5377−5384.
[24] NARUKAWA M, KIMATA H, NOGA C, et al. Taste characterisation of green tea catechins[J]. International Journal of Food Science & Technology,2010,45(8):1579−1585.
[25] 许佳聪. 富集γ-氨基丁酸的冷泡型绿茶加工工艺及品质形成研究[D]. 成都:四川农业大学, 2 022. [XU Jiacong. Research on processing technology and quality formation of cold brewed green tea enriched with gamma aminobutyric acid[D]. Chengdu:Sichuan Agricultural University, 2022.] XU Jiacong. Research on processing technology and quality formation of cold brewed green tea enriched with gamma aminobutyric acid[D]. Chengdu: Sichuan Agricultural University, 2022.
[26] YAMAGUCHI S. Basic properties of umami and effects on humans[J]. Physiol Behav,1991,49(5):833−841. doi: 10.1016/0031-9384(91)90192-Q
[27] CAO C, SUN H, SONG X, et al. Effect of fermentation with Tetragenococcus halophilus and Zygosaccharomyces rouxii on selected non-volatile taste compounds in soybean protein hydrolysates[J]. LWT – Food Science and Technology,2023,184:115053. doi: 10.1016/j.lwt.2023.115053
[28] 罗金龙, 陈盛相, 沈强, 等. ‘巴山早’紫色芽叶红茶加工工艺研究及品质评价[J]. 食品工业科技,2023,44(2):185−195. [LUO Jinlong, CHEN Shengxiang, SHEN Qiang, et al. Research on processing technology and quality evaluation of 'Bashan Zao' purple sprout leaf black tea[J]. Science and Technology of Food Industry,2023,44(2):185−195.] LUO Jinlong, CHEN Shengxiang, SHEN Qiang, et al. Research on processing technology and quality evaluation of 'Bashan Zao' purple sprout leaf black tea[J]. Science and Technology of Food Industry, 2023, 44(2): 185−195.
[29] LÜ S, WU Y S, LI C, et al. Comparative analysis of Pu-erh and Fuzhuan teas by fully automatic headspace solid-phasemicroextraction coupled with gas chromatography-massspectrometry and chemometric methods[J]. Journal of Agricultural and Food Chemistry,2014,62(8):1810−1818. doi: 10.1021/jf405237u
[30] SHEN S S, ZHANG J X, SUN H R, et al. Sensomics-assisted characterization of fungal-flowery aroma components in fermented tea using Eurotium cristatum[J]. Journal of Agricultural and Food Chemistry,2023(48):71.
[31] van Gemert, L. J. 化合物香味阈值汇编[M]. 北京:科学出版社, 2015. [Van Gemert, L. J. Compilation of compound aroma thresholds[M]. Beijing:Science Press, 2015.] Van Gemert, L. J. Compilation of compound aroma thresholds[M]. Beijing: Science Press, 2015.
[32] HE C J, LI Z Y, LIU H G, et al. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis[J]. Food Research International,2020,131:108948. doi: 10.1016/j.foodres.2019.108948
[33] 蒋容港, 黄燕, 金友兰, 等. 茯砖茶呈香挥发性物质及其来源[J]. 食品与生物技术学报,2021,40(9):101−111. [JIANG Ronggang, HUANG Yan, JIN Youlan, et al. Fragrant volatile compounds and their sources in Fuzhuan tea[J]. Journal of Food Science and Biotechnology,2021,40(9):101−111.] doi: 10.3969/j.issn.1673-1689.2021.09.013 JIANG Ronggang, HUANG Yan, JIN Youlan, et al. Fragrant volatile compounds and their sources in Fuzhuan tea[J]. Journal of Food Science and Biotechnology, 2021, 40(9): 101−111. doi: 10.3969/j.issn.1673-1689.2021.09.013
[34] ZHU J C, NIU Y W, XlAO Z B. Characterization of the key aroma compounds in laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GCxGC-qMS)[J]. Food Chemistry,2021,339:128−136.
[35] 陈芝飞, 蔡莉莉, 郝辉, 等. 香气活力值在食品关键香气成分表征中的应用研究进展[J]. 食品科学,2018,39(19):329−335. [CHEN Zhifei, CAI Lili, HAO Hui, et al. Research progress on the application of aroma vitality value in the characterization of key aroma components in food[J]. Food Science,2018,39(19):329−335.] doi: 10.7506/spkx1002-6630-201819049 CHEN Zhifei, CAI Lili, HAO Hui, et al. Research progress on the application of aroma vitality value in the characterization of key aroma components in food[J]. Food Science, 2018, 39(19): 329−335. doi: 10.7506/spkx1002-6630-201819049
[36] LI Q, LI Y D, LUO Y, et al. Characterization of the key aroma compounds and microorganisms during the manufacturing process of Fu brick tea[J]. LWT– Food Science and Technology,2020,127:109355. doi: 10.1016/j.lwt.2020.109355
[37] 胡双明, 艾仄宜, 穆兵, 等. 基于电子鼻与HS-SPME-GC-MS技术的江苏红茶香气特征研究[J]. 南京农业大学学报,2024,47(4):760−771. [HU Shuangming, AI Zheyi, MU Bing, et al. Study on aroma characteristics of jiangsu red tea based on electronic nose and HS-SPME-GC-MS technology[J]. Journal of Nanjing Agricultural University,2024,47(4):760−771.] doi: 10.7685/jnau.202310025 HU Shuangming, AI Zheyi, MU Bing, et al. Study on aroma characteristics of jiangsu red tea based on electronic nose and HS-SPME-GC-MS technology[J]. Journal of Nanjing Agricultural University, 2024, 47(4): 760−771. doi: 10.7685/jnau.202310025
[38] 潘牧, 李俊, 刘辉, 等. 4种不同酵母酿造杨梅酒的风味特征差异分析[J]. 食品安全质量检测学报,2023,14(23):214−226. [PAN Mu, LI Jun, LIU Hui, et al. Analysis of flavor differences in Yangmei wine brewed with four different yeasts[J]. Journal of Food Safety & Quality,2023,14(23):214−226.] PAN Mu, LI Jun, LIU Hui, et al. Analysis of flavor differences in Yangmei wine brewed with four different yeasts[J]. Journal of Food Safety & Quality, 2023, 14(23): 214−226.
[39] 戴浩民, 张灵枝, 梁轶琳, 等. 乌龙茶茶树品种制白茶的风味特征及特征组分分析[J]. 食品科学,2024,45(2):229−239. [DAI Haomin, ZHANG Lingzhi, LIANG Yilin, et al. Analysis of flavor characteristics and characteristic components of white tea produced from oolong tea tree varieties[J]. Food Science,2024,45(2):229−239.] doi: 10.7506/spkx1002-6630-20230303-035 DAI Haomin, ZHANG Lingzhi, LIANG Yilin, et al. Analysis of flavor characteristics and characteristic components of white tea produced from oolong tea tree varieties[J]. Food Science, 2024, 45(2): 229−239. doi: 10.7506/spkx1002-6630-20230303-035
[40] 丁凤娇, 李元朝, 柳紫琼, 等. 不同烘焙次数对美人茶风味品质的影响[J]. 南方农业学报,2024,55(2):551−565. [DING Fengjiao, LI Yuanchao, LIU Ziqiong, et al. The effect of different baking times on the flavor and quality of meiren tea[J]. Journal of Southern Agriculture,2024,55(2):551−565.] doi: 10.3969/j.issn.2095-1191.2024.02.025 DING Fengjiao, LI Yuanchao, LIU Ziqiong, et al. The effect of different baking times on the flavor and quality of meiren tea[J]. Journal of Southern Agriculture, 2024, 55(2): 551−565. doi: 10.3969/j.issn.2095-1191.2024.02.025
[41] 胡腾飞, 萧涵, 谢贺, 等. 基于GC×GC-TOFMS-O分析3种武夷岩茶的关键香气成分[J]. 现代食品科技,2024,40(6):221−230. [HU Tengfei, XIAO Han, XIE He, et al. Analysis of key aroma components of three Wuyi rock teas based on GC×GC-TOFMS-O[J]. Modern Food Science and Technology,2024,40(6):221−230.] HU Tengfei, XIAO Han, XIE He, et al. Analysis of key aroma components of three Wuyi rock teas based on GC×GC-TOFMS-O[J]. Modern Food Science and Technology, 2024, 40(6): 221−230.
-
期刊类型引用(5)
1. 陈聪,薛桥丽,胡永金,魏美娟,陈中爱. 云南木姜子醇提物抑菌活性及其稳定性研究. 食品工业科技. 2023(16): 147-154 . 本站查看
2. 段雪娟,黄煜强,张潼,韩雅莉,吴克刚,黄庶识. 肉桂醛熏蒸对金黄色葡萄球菌胞内生物大分子的影响. 中国食品学报. 2023(10): 90-100 . 百度学术
3. 张文艳,李俊杰,艾玲松,李茂东,赵仲霞,师睿. 青花椒总生物碱对金黄色葡萄球菌抑菌活性研究. 工业微生物. 2023(06): 50-54 . 百度学术
4. 王建梅,王国盼,陆安静,秦琳,鲁艳柳,白朝钧,何芋岐,谭道鹏. 金钗石斛提取物对5种耐药菌的体外抑菌活性评价. 遵义医科大学学报. 2022(03): 334-338 . 百度学术
5. 黄藩,王迎春,叶玉龙,龚雪蛟,黄颖博,熊元元. 变温萎凋技术对贡眉白茶品质的影响. 中国农学通报. 2022(19): 159-164 . 百度学术
其他类型引用(6)