Properties, Physiological Functions and Applications of Starch-Lipid Complexes
-
摘要: 淀粉-脂质复合物是指由淀粉中的长链部分与油脂或脂肪酸结合而形成的第五类抗性淀粉,它改变了原淀粉的结构、性质和生理功能。本文综述了淀粉-脂质复合物的形成对淀粉的理化性质(包括糊化性、膨胀度、冻融稳定性及流变学性质)及消化性质的影响以及稳定肠道环境、糖代谢、脂代谢和缓解神经障碍的生理功能,介绍了其在食品工业中的应用。淀粉-脂质复合物独特的性质和生理功能将在未来研究与应用领域展现出良好的发展前景。Abstract: Starch-lipid complexes, the fifth type of resistant starch, result from the binding of starch's long-chain segments with oils or fatty acids, which alters the original starch's structure, properties, and physiological functions. This review examines the impact of starch-lipid complex formation on the physicochemical characteristics of starch, including gelatinization, swelling, freeze-thaw stability, and rheological properties, as well as its digestive capabilities. Furthermore, it explores the physiological effects on stabilizing the intestinal environment, glucose metabolism, lipid metabolism, and mitigating neurological disorders. The applications of starch-lipid complexes in the food industry are also discussed. The distinctive properties and physiological impacts of starch-lipid complexes suggest promising prospects for future research and applications.
-
抗性淀粉(Resistant Starch,RS)又称抗酶解淀粉,指的是不被健康人体的胃和小肠消化吸收,但在大肠中被细菌发酵或部分发酵代谢后,能够产生对人体有益的短链脂肪酸的淀粉[1],研究人员将抗性淀粉分为五类,分别是物理包埋淀粉(RS1)、天然抗性淀粉(RS2)、回生淀粉(RS3)、化学改性淀粉(RS4)、淀粉-脂质复合物(RS5)[2]。目前,RS作为一类新型功能性食品成分在食品领域得到了广泛的应用。
RS5是由淀粉中的直链淀粉和支链淀粉的较长部分与油脂或脂肪酸相互作用而形成的一种复合物[3]。一定条件下,淀粉中的直链淀粉分子会由线性结构变为螺旋结构,这种螺旋结构的外部排列着葡聚糖的亲水羟基,内部则是亚甲基和糖苷键的氧,形成一种外亲水内疏水的特殊结构[4]。脂肪酸的烷基链通过疏水相互作用进入淀粉的疏水空腔,但脂肪酸的羧基或单酰基甘油的甘油基在空间位阻和静电斥力作用下无法进入,因此暴露在螺旋外侧[5],如图1所示。螺旋内部和螺旋层之间产生的范德华力、大量氢键与直链淀粉螺旋空腔和非极性客体分子之间的疏水相互作用对于稳定复合物结构起到了关键的作用[6]。稳定的螺旋结构使淀粉-脂质复合物具有更低的溶解度和膨胀度、更高的热稳定性和抗消化性以及更好的成膜性等[7]。这些优良特性使淀粉-脂质复合物在改善人体亚健康方面具有独特的优势。
本文探讨了RS5的形成对淀粉的糊化性质、膨胀度、冻融稳定性、流变学性质及消化性质的影响,并对RS5的生理功能及应用进行总结,以期为RS5的深入研究及应用提供参考。
1. RS5的形成对淀粉性质的影响
1.1 RS5的形成对淀粉理化性质的影响
1.1.1 RS5的形成对淀粉糊化性质的影响
淀粉的糊化是指水分子进入淀粉颗粒内部,使其结构发生由有序到无序的变化,通常用糊化温度、峰值温度和峰值时间等来表征淀粉的糊化性质[8]。加入硬脂酸后的燕麦淀粉样品起始糊化温度(由52.75 ℃上升至55.97 ℃)、峰值糊化温度(由54.00 ℃上升至61.94 ℃)、终止糊化温度(由60.08 ℃上升至77.73 ℃)均有升高[9]。另有研究表明,普通荞麦淀粉的峰值时间为5.47 min,而荞麦淀粉-肉豆蔻酸复合物的峰值时间在5.73~7 min左右,也就是说,RS5的形成使淀粉糊化的峰值时间被延迟,从而改变了淀粉的糊化特性[10]。
一般认为,RS5的形成对淀粉糊化特性产生影响的原因有三个方面:第一,RS5形成在淀粉颗粒的表面,保证了内部淀粉颗粒的完整性并阻碍了水分子的进入,使样品的糊化峰值得到显著降低[11],如图2(a)所示。第二,淀粉与脂肪酸形成复合物后,脂肪酸进入淀粉的疏水螺旋空腔,与淀粉形成刚性结构,抑制了淀粉颗粒糊化过程中的吸水溶胀,从而降低了淀粉的峰值黏度[12],如图2(b)所示。第三,油脂的加入使淀粉颗粒的外表面增加了一层脂质层,淀粉颗粒疏水作用增加,降低了淀粉颗粒对水分子的结合吸收[13],如图2(c)所示。
1.1.2 RS5的形成对淀粉膨胀度的影响
淀粉的膨胀度指的是淀粉在加热过程中吸水膨胀的程度,脂质的加入会改变淀粉的结构使其膨胀度发生改变。研究人员[14]测试了马铃薯淀粉与马铃薯淀粉-脂肪酸复合物的膨胀度,发现复合物膨胀度显著下降约16%,说明脂质的加入降低了淀粉的膨胀度,一方面因为复合物的形成减少了直链淀粉的溶出和水分子的进入,使淀粉膨胀度降低,另一方面是脂质的疏水作用,对水分进入淀粉颗粒内部起阻碍作用,抑制淀粉颗粒的溶解与膨胀[15]。还有研究表明[16],普通玉米淀粉-脂肪酸复合物的膨胀度高于高直链玉米淀粉-脂肪酸复合物,而蜡质玉米淀粉-脂肪酸复合物的膨胀度与复合前变化不大,这是因为淀粉中直链淀粉越多,越能与脂质形成更多的复合物,复合物限制了淀粉颗粒的吸水,从而降低了膨胀度[17],而蜡质玉米淀粉中几乎不含直链淀粉,与脂质复合效果不明显,所以膨胀度变化也不明显。淀粉及淀粉-脂质复合物膨胀度见图3。
1.1.3 RS5的形成对淀粉冻融稳定性的影响
淀粉的冻融是淀粉受到水分子和温度的影响,从而改变淀粉分子内部结构的过程。淀粉的冻融稳定性反映了淀粉分子在冷冻和解冻过程中保持原有性质的能力,可以用析水率来表示,析水率越低,淀粉的冻融稳定性就越好[18]。冷冻过程中,淀粉分子会发生脱水收缩,解冻过程又会使游离水析出,水分子的迁移会使淀粉的结构变得松散,一般会对淀粉的其他性质产生负面影响。
加入脂质可以改善淀粉的冻融稳定性,在同一冻融次数下,高直链玉米淀粉-脂肪酸复合物的析水率明显低于高直链玉米淀粉,在冻融次数达到4次时,二者析水率相差约20%[19],这是因为脂质不仅可以包裹在淀粉颗粒表面阻碍水分子的迁移,与淀粉形成复合物后产生的螺旋结构还可以使淀粉颗粒的空间位阻增加,使淀粉的析水受到抑制,保持颗粒的完整性,增加了冻融稳定性[12]。一般情况下,脂质与淀粉复合程度越高,水分进入其内部结晶结构的难度越大[20],复合物冻融稳定性就越高。淀粉及淀粉-脂质复合物冻融稳定性见图4。
1.1.4 RS5的形成对淀粉流变学性质的影响
淀粉的的流变学性质具有动态流变和稳态流变两种情况。淀粉的动态流变学性质研究淀粉糊在动态剪切流场中的黏弹性行为;稳态流变行为则是淀粉乳研究在简单剪切流场中,淀粉分子间摩擦、分子链的取向程度及松弛特性等[21]。RS5的形成会在淀粉糊化时通过交联氢键形成明胶状态,进而改变淀粉糊的流变学性质。
研究表明[22],当淀粉体系中加入脂肪酸时,样品的储能模量(G')和损耗模量(G")都随着脂肪酸碳链长度的增加而降低。同一蒸煮条件下,板栗淀粉与月桂酸、肉豆蔻酸、棕榈酸复合物的G'均显著小于对应空白组的G',尤以板栗淀粉-月桂酸复合物的G'降低更显著,这是因为与其他脂肪酸相比,月桂酸更易与板栗淀粉发生相互作用,生成更多的复合物[23]。在挤压法制备的高直链玉米淀粉-胡麻油复合物的表观黏度就比高直链玉米淀粉降低了约100000 Pa·s,且G'和G"曲线都降低,这说明脂肪酸的加入延缓了淀粉的短期回生[24]。
淀粉-脂质复合物改变淀粉流变学性质可能有以下两个机制:一方面疏水相互作用下,脂质进入直链淀粉螺旋腔内,形成结构致密的复合物,改变了淀粉分子的分子构象,这种转变增加了分子间和分子内的聚集,使得超分子结构形成,抑制了淀粉颗粒的膨胀,能够改变其流变学性质[25]。另一方面,可能是由于脂质能够附着在淀粉颗粒表面,阻止水分子进入淀粉颗粒内部,降低凝胶的粘弹性,从而使淀粉的流变学性质发生改变[26]。
1.2 RS5的形成对淀粉消化性质的影响
淀粉-脂肪酸复合物消化性质示意图见图5。RS5的抗消化性来源于其稳定的结构降低了淀粉酶的敏感性,脂肪酸由于疏水作用进入直链淀粉的螺旋空腔后,与淀粉的无定型区形成了比较稳定的结构体系,产生的空间位阻作用阻碍了淀粉酶与淀粉颗粒接触,从而产生抗酶解性[27]。
RS5的抗消化性受到多种因素影响,根据研究[28],当大米淀粉-玉米油复合物体系中水分含量为20%或30%时,样品中RDS含量下降,当体系中水分含量增加到40%时,样品中RDS含量出现轻微上升趋势。这是因为体系中水分含量增加会导致RS5的黏度降低而膨胀度增大,增加了酶对淀粉作用的几率,导致快消化淀粉(Rapidly Digestible Starch,RDS)含量增加。在对棕色扁豆淀粉(Brown Lentil Starch,BLS)-脂质复合物体外消化率的研究中发现[29],与BLS相比,添加氢化葵花籽油、硬脂酸和棕榈酸的未煮熟样品RDS含量下降约46%,但加入橄榄油的样品RDS含量仅下降4.8%,上述研究结果表明,不同脂肪酸对样品中RDS含量有不同的影响。不仅如此,RS5的形成还与参与复合的脂肪酸碳链长度有关,脂肪酸碳链长度为12时,复合物的复合率最高,抗消化性也最强;脂肪酸碳链长度大于12时,复合率、抗消化性均随着碳链长度的增加而降低[30]。由此可见,RS5的抗消化性会受到体系中水分、脂质类型、脂肪酸链长等因素的影响。
淀粉-脂质复合物的形成对淀粉性质的影响见表1。
表 1 淀粉-脂质复合物的形成对淀粉性质的影响Table 1. Effect of the formation of starch-lipid complexes on starch properties2. 淀粉-脂质复合物的生理功能
2.1 调节糖代谢
脂质抑制淀粉的消化可能有以下两种机制[31],一是脂质与淀粉颗粒外部分子形成复合物,能够抑制淀粉颗粒膨胀,阻碍淀粉分子分散;二是RS5的形成可以抑制消化酶与淀粉结合。这样的抑制作用使得RS5的血糖生成指数(Glycemic Index,GI)从口腔开始就已经呈现出降低趋势[32],而较低的GI值食物可以降低胰岛素敏感性,且可能够持续和稳定的释放葡萄糖,有助于稳定血糖水平应答[33]。研究人员加入玉米淀粉-棕榈酸复合物制作的白面包与普通白面包进行对比,测试发现20名男性受试者GI值和胰岛素浓度均有所降低[34];陈晴[35]对不同脂肪酸与籼米淀粉制备的复合物的消化性质进行了研究,发现复合物的预测GI值均有所下降,且不同脂肪酸对预测GI值的影响不同。LAU等[36]测试添加不同脂质的面包对健康男性受试者的血糖水平存在的不同影响,发现黄油能够促进胰岛素的分泌,而椰子油呈现出最大的血糖衰减,这是由于椰子油中占比最大的脂肪酸为月桂酸,月桂酸作为十二个碳的饱和脂肪酸,相较于黄油,更易与直链淀粉发生反应,形成直链淀粉-月桂酸复合物。
2.2 调节脂代谢
研究表明RS5在肠道被微生物降解后能够产生对肠道健康有益的短链脂肪酸,其中丁酸不仅可以缓解和治疗动物肥胖,还能够为结肠细胞提供能量[37]。丁酸可以以信号分子的形式被细胞G蛋白偶联受体识别,激发下游通路,从而抑制肝脏和脂肪细胞的脂肪合成,也可以通过抑制组蛋白去乙酰化酶的活性来抑制动物肥胖或细胞脂肪沉积[38]。
一方面,RS5发酵产生的丁酸可通过下调PPAR-γ的表达和活性,促进从脂肪生成到脂肪氧化的变化[39],使线粒体解偶联蛋白-2的表达和AMP与ATP的比率增加,从而刺激肝脏和脂肪组织的氧化代谢[40]。通过在大鼠的饮食中添加RS5,发现大鼠体重显著降低,血脂谱和肝脏代谢都得到一定程度的改善[41]。另一方面,丁酸盐也能通过对肠道激素的刺激和食物摄入的抑制来干预肥胖的发生[42],可通过降低食欲和抑制胃排空来减少饮食的摄入[43]。在RS5对高脂饮食所致肥胖大鼠的营养干预研究中发现,大鼠体重减轻、肝脏脂肪堆积得到改善、血清甘油三酯(TG)和总胆固醇(TC)水平也得到有效降低[44]。对糖尿病小鼠分别投喂不同种类的抗性淀粉,发现投喂RS5的小鼠血糖水平得到有效改善,同时甘油三酯、总胆固醇浓度显著降低[45]。RS5的摄入能够通过产生丁酸来调节机体脂代谢,在降低体重和减轻肝脏负担等方面展现了巨大潜力,可将其开发为系列减脂、减重食品。
2.3 改善肠道环境
RS5可以直接作为肠道菌群的营养源,为有益菌群的生长提供能量,这些有益菌可以通过产生短链脂肪酸(SCFAs)等有益产物来对肠道产生积极影响[37]。RS5在被微生物降解时产生的有机酸能够改善肠道的酸碱平衡,增加有益菌群生长的同时也能抑制有害菌的生长。RS5还可以维持粘膜细胞活性,增加肠道黏液层厚度,增强肠道的屏障功能,阻止有害物质的渗透,抑制肠道炎症的发生[46]。且与天然淀粉相比,RS5具有更大的颗粒尺寸,这是因为与脂质复合后,其颗粒表面产生孔隙,这些孔隙有利于有益菌的附着[41]。
研究表明[47],饱和脂肪酸经过结肠时无法被厌氧菌发酵利用,但与淀粉作用形成复合物后,可产生更多的短链脂肪酸,这些短链脂肪酸能够为有益菌提供生长所需的丁酸盐,丁酸进入消化道后产生的氢离子使细菌细胞质稳态改变,抑制有害菌的生长,为有益菌的生长提供适宜的生长环境[48]。与单一月桂酸和肉豆蔻酸相比,玉米淀粉与月桂酸和肉豆蔻酸的复合物具有促进肠道内革兰氏厌氧菌如嗜胆杆菌属和梭杆菌属生长的能力[49];食用含有RS5的饲料喂养结肠炎小鼠体内拟杆菌属的丰度增加而Turicibacter、Oscillospira等有害菌群丰度降低,有效减轻了小鼠结肠炎的程度[37]。但目前对于RS5在肠道内发酵产物的研究多集中于丁酸,对其他短链脂肪酸的研究较少。
2.4 缓解神经障碍
脂肪酸代谢紊乱可能会影响中枢神经系统产生神经功能障碍[50]。通常情况下,人体摄入的脂肪酸在小肠内就被消化吸收[51],为了能使其在特定部位发挥作用,可以采用以淀粉为载体制备RS5,将脂肪酸运送至小肠以外的消化器官,利用RS5的抗消化性来实现脂肪酸在结肠的定点释放,以此增加结肠内短链脂肪酸水平,增殖有益菌群以缓解神经障碍[52]。
认知障碍是神经系统和脑组织老化或损伤带来的疾病[53]。姚轩[54]使用RS5喂养以D-半乳糖诱导的认知障碍衰老大鼠,发现干预后参与水迷宫实验的大鼠认知能力显著提升,这是因为结肠内短链脂肪酸的增加导致阿克曼菌菌种丰度显著增强,这一菌群能够有效缓解由衰老过程引起的海马神经元细胞损伤,从而缓解D-半乳糖造成的大鼠脑部组织病变情况,减轻大鼠认知障碍程度。
抑郁症是一种常见的以持久的情绪消沉、兴趣衰退以及思维迟缓为主要特征的精神障碍疾病[55]。陈烁[56]使用RS5喂养以脂多糖诱导的抑郁行为大鼠,研究发现RS5能够影响TLR4/NF-κB信号通路和TRP-KYN代谢通路,降低肠-脑轴炎症反应,改善结肠及海马体的组织病变,减缓脑神经细胞凋亡,缓解小鼠的抑郁状态。
RS5能够通过调节肠道菌群和信号通路的方式来缓解神经障碍,未来可以尝试不同的淀粉与脂质复合物对神经障碍的调节作用。
淀粉-脂质复合物的生理功能见表2。
表 2 淀粉-脂质复合物生理功能Table 2. Physiological function of starch-lipid complexes3. 淀粉-脂质复合物在食品工业中的应用
3.1 油脂取代物
油脂摄入过多会导致高血压、糖尿病、心血管疾病和肠道炎症等多种代谢疾病。单纯降低油脂含量会使食物出现口感变差、风味受损和稳定性降低等问题[57]。淀粉-脂质复合物可以使淀粉颗粒以类似于乳液液滴的形式单独分散,使其在接近传统脂肪的口感和质地的同时,降低或去除机体对油脂的摄入[58]。
RS5优良的加工性能可以对不同食品起到不同的作用。例如在冰淇凌蛋糕的制作中加入高直链玉米淀粉-脂质复合物来代替起酥油制备糖霜,发现添加RS5制作的糖霜比全脂糖霜具有更低的脂肪含量,且在高温条件下更加稳定[59]。而在蛋黄酱的制作加入用玉米淀粉-硬脂酸复合物代替葵花籽油,会发现复合物在蛋黄酱中形成了规则的、小于100 nm颗粒的结晶结构,这样的结晶结构使蛋黄酱口感更细腻更易吞咽[60];在碎牛肉饼的制作中使用高直链玉米淀粉-菜籽油复合物代替原本的油脂,发现样品具有较高的水分含量及产量,所得肉饼柔软多汁,富有弹性,具有良好的感官性能[61];当在饼干的制作中使用小麦面粉-起酥油复合物替代起酥油,发现制作的饼干口感色泽都明显好于起酥油制备的饼干[62]。
进一步扩大RS5在不同含油食品中应用种类、方式及工艺条件,是未来RS5在食品工业中应用的重要方向。
3.2 面制品辅料
RS5可作为面制品辅料直接加入到高淀粉面制品的制作中,在降低面制品GI值的同时改善面制品品质。老化作为面制品贮存过程中的常见问题,是水分被束缚在支链淀粉的微晶内,难以发生迁移,导致结晶水合物的三维网络难以建立,这些晶体也会导致变性蛋白质所形成的蛋白质网络被破坏,使面筋网络结构缺乏弹性,表现在食品中就是口感变硬、弹性下降[63]。而支链淀粉的重新排序需要以直链淀粉双螺旋的结晶单元为核心连续生长,但直链淀粉-脂质复合物的形成依赖于直链淀粉分子的单螺旋结构,这使得老化过程中直链淀粉分子的双螺旋结构减少,支链淀粉的分子重排被抑制,所以当RS5添加至面条、馒头和玉米饼的制作过程中时,产品的老化速率得到明显降低[64−66]。
此外,通过将RS5添加到油炸面制品中来减少面团对油脂的吸附。当高淀粉食物在被油炸时,其内部含有的水分在高温中沸腾并在表面产生剧烈的湍流效应,使淀粉颗粒的表面被破坏,油脂通过凝结效应和毛细管效应被淀粉快速吸入后会提高了食物中的油脂含量[67]。而RS5的加入提高了淀粉颗粒的疏水性,减少了淀粉内部的水分含量,减弱了油炸过程中湍流效应对淀粉颗粒表面的破坏程度,在减少油脂吸附的同时,还能使体系内慢消化淀粉和抗性淀粉含量增加,且对食品的感官品质无明显影响[68]。
开发不易老化、GI值低、吸油量低的不同种类的RS5及其复配面团是油炸食品减油的一项策略。
3.3 淀粉-脂质Pickering乳液
Pickering乳化体系是以胶体粒子或固体颗粒稳定的乳液体系,具有延缓油脂氧化、递送活性物质等作用。虽然天然淀粉能够形成产生Pickering乳液,但淀粉颗粒的亲水性使得其在油-水界面的吸附困难,适当改变淀粉颗粒的结构可使其更适合成为Pickering乳液的稳定剂,研究表明,疏水改性是制备高效淀粉基Pickering乳液的重要途径[69],所以可以通过添加脂质方式来增加淀粉颗粒的疏水性。
淀粉-脂质Pickering乳液已用于增加食品乳液的稳定性和递送生物活性物质等。研究表明,加入木薯淀粉-硬脂酸复合物的乳液界面润湿性更强,且在储存过程中,添加量7 g/100 mL与10 g/100 mL的样品乳液的液滴分布无显著变化,液滴形状和大小均无较显著的改变,液滴之间能够保持相对稳定的分散状态[70]。在脱支淀粉-癸酸复合物制备Pickering乳液的研究中发现,相对于纯油体系,Pickering乳液拥有更高的稳定性;并且Pickering乳液能够在油水界面形成颗粒保护层对外界的光照、氧气和紫外线起屏障作用,使叶黄素的保留率高于纯油体系[71]。在使用高直链玉米淀粉与脂肪酸复合物构建包埋递送多甲氧基黄酮的Pickering乳液的实验中,发现复合颗粒在油水界面的覆盖能有效阻隔脂肪酶与油相的接触,从而控制多甲氧基黄酮在消化过程中的释放[72]。
进一步研究淀粉-脂质Pickering乳液在复杂食品、药品体系中与其他分子的相互作用,能够构建更多的生物活性递送体系。
3.4 可降解生物薄膜
淀粉因其可降解、低成本和绿色环保等优点被作为生物可降解材料的主要原料,但淀粉作为亲水性聚合物,其生物膜的阻水性较差,限制了淀粉基薄膜的应用[68]。因此,提升淀粉基薄膜的阻水性成为扩大淀粉基薄膜应用过程中急需解决的问题。研究表明,脂质的加入可有效抑制淀粉颗粒在糊化过程中的溶解和膨胀,阻止直链淀粉溢出,减缓淀粉颗粒的变性,从而对水蒸气形成有效屏障,限制水气与薄膜之间的传递[73],可有效改善纯淀粉薄膜阻水性差的问题。
脂肪酸的添加能够使淀粉基薄膜的性质发生改变,研究人员将脂肪酸添加至大米淀粉复合膜中,探究其作为疏水成分对复合膜各项性质的影响,结果表明,添加脂肪酸后的复合膜更光滑,且复合膜的溶解度也随着脂肪酸的加入而降低[74]。而不同脂肪酸对薄膜性质有不同的影响,LIU等[75]探究了不同脂肪酸对甘薯淀粉基薄膜的影响,发现与油酸、亚油酸相比,硬脂酸与直链淀粉的结合能力更强,硬脂酸-甘薯淀粉复合膜也具有更高的拉伸强度、更低的断裂伸长率和更低的水蒸气渗透率。有人将淀粉-脂质复合薄膜投入到鸡肉保鲜的应用中,发现使用复合薄膜的鸡肉汁液损失率均低于纯淀粉薄膜包裹的鸡肉[76]。
RS5在改善淀粉基薄膜性能方面具有较好的作用,但目前对RS5复合薄膜的研究、应用有限,可以根据实际需求,制备性能优良、环保、安全的可降解生物薄膜。
淀粉-脂质复合物在食品工业中的应用见表3。
表 3 淀粉-脂质复合物在食品工业中的应用Table 3. Application of starch-lipid complexes in the food industry应用 原理 产品特性 文献 油脂取代物 淀粉与脂肪酸结合,产生与脂肪类似的结构 增加产品在高温下的稳定性;赋予产品更易吞咽的特性;
提高产品感官品质[59−61] 面制品辅料 复合物使淀粉分子重排受到抑制 产品老化速率降低 [70] 复合物降低了淀粉颗粒的含水量、减少湍流效应对淀粉颗粒的破坏 降低产品对油脂的吸附,提高产品中抗消化淀粉含量 [71] 面制品辅料 复合物使淀粉分子重排受到抑制 产品老化速率降低 [65−67] 复合物降低了淀粉颗粒的含水量、减少湍流效应对淀粉颗粒的破坏 降低产品对油脂的吸附,提高产品中抗消化淀粉含量 [69] 可降解生物薄膜 淀粉与脂质的相互作用 薄膜更光滑且溶解度降低 [74] RS5增加淀粉的疏水性 水蒸气渗透率降低 [75] 4. 总结与展望
本文总结了RS5的形成对淀粉糊化性质、膨胀度、冻融稳定性、流变学性质及消化性质的影响,以及其在改善肠道环境、糖代谢、脂代谢与缓解神经障碍方面的能力,介绍了其在制备脂肪取代物、Pickering乳液、面制品辅料以及可降解生物薄膜方面的应用。深入研究扩大RS5的应用范围,促进其在食品工业中的应用以及健康食品的进一步发展,是未来RS5的发展趋势。
目前关于RS5的研究还存在着一些不足:(1)对于RS5生理功能的研究大都是动物实验或体外实验,人体摄入后的生物效应研究较少,使RS5的应用受到限制;(2)食品基质复杂,复合物添加至食品中对食品及其本身的营养特性或感官品质的影响尚不明确;(3)食品加工过程中,除淀粉与脂质的相互作用外,淀粉、脂质与蛋白质的相互作用研究尚不足。
未来的研究,可从以下几个方面展开:(1)开发原料丰富、生产成本低、热稳定性高、持水性高、GI值低的淀粉-脂质复合物;(2)深入研究RS5在人体中消化、转运及代谢的情况,把握其作用机制与生理功能的内在关系;(3)进一步探索加工过程中RS5与食品体系淀粉、脂质与蛋白质之间的相互作用方式,评价其对食品体系营养、感官品质的影响,以及贮藏运过程中理化性质的变化规律;(4)扩大新型食品配料RS5的应用范围,为有特殊膳食需求的人群提供系列功能性食品。
-
表 1 淀粉-脂质复合物的形成对淀粉性质的影响
Table 1 Effect of the formation of starch-lipid complexes on starch properties
表 2 淀粉-脂质复合物生理功能
Table 2 Physiological function of starch-lipid complexes
表 3 淀粉-脂质复合物在食品工业中的应用
Table 3 Application of starch-lipid complexes in the food industry
应用 原理 产品特性 文献 油脂取代物 淀粉与脂肪酸结合,产生与脂肪类似的结构 增加产品在高温下的稳定性;赋予产品更易吞咽的特性;
提高产品感官品质[59−61] 面制品辅料 复合物使淀粉分子重排受到抑制 产品老化速率降低 [70] 复合物降低了淀粉颗粒的含水量、减少湍流效应对淀粉颗粒的破坏 降低产品对油脂的吸附,提高产品中抗消化淀粉含量 [71] 面制品辅料 复合物使淀粉分子重排受到抑制 产品老化速率降低 [65−67] 复合物降低了淀粉颗粒的含水量、减少湍流效应对淀粉颗粒的破坏 降低产品对油脂的吸附,提高产品中抗消化淀粉含量 [69] 可降解生物薄膜 淀粉与脂质的相互作用 薄膜更光滑且溶解度降低 [74] RS5增加淀粉的疏水性 水蒸气渗透率降低 [75] -
[1] ENGLYST H N, CUMMINGS J H. Digestion of the polysaccharides of some cereal foods in the human small intestine[J]. The American journal of Clinical Nutrition,1985,42(5):778−787. doi: 10.1093/ajcn/42.5.778
[2] 赵克东, 阮长青, 李志江, 等. 超声辅助制备抗性淀粉研究进展[J]. 食品工业科技,2025,46(5):8−16. [ZHAO K D, RUAN C Q, LI Z J, et al. Research progress on ultrasound-assisted preparation of resistant starch[J]. Science and Technology of Food Industry,2025,46(5):8−16.] ZHAO K D, RUAN C Q, LI Z J, et al. Research progress on ultrasound-assisted preparation of resistant starch[J]. Science and Technology of Food Industry, 2025, 46(5): 8−16.
[3] PUTSEYS J A, LIEVE L, DELCOUR J A. Amylose-inclusion complexes:Formation, identity and physico-chemical properties[J]. Journal of Cereal Science,2010,51(3):238−247. doi: 10.1016/j.jcs.2010.01.011
[4] 董营. 湿法研磨辅助制备淀粉-脂质复合物及其作用机制研究[D]. 泰安:山东农业大学, 2024. [DONG Y. Preparation of starch-lipid complex assisted by wet grinding and its mechanism analysis[D]. Taian:Shandong Agricultural University, 2024.] DONG Y. Preparation of starch-lipid complex assisted by wet grinding and its mechanism analysis[D]. Taian: Shandong Agricultural University, 2024.
[5] 闫紫晴. 茶多酚对淀粉-脂质复合物形成及体外发酵特性的影响[D]. 天津:天津科技大学, 2024. [YAN Z Q. Effects of polyphenols on the formation and in vitro fermentation properties of starch-lipid complexes[D]. Tanjin:Tianjin University of Science and Technology, 2024.] YAN Z Q. Effects of polyphenols on the formation and in vitro fermentation properties of starch-lipid complexes[D]. Tanjin: Tianjin University of Science and Technology, 2024.
[6] NARJABADIFAM A, ABAZADEH B, FAKHRABADI M M S. Graphyne nano-spirals under tension:Effects of base structures on superelasticity and fracture mechanisms[J]. Mechanics of Materials,2022,171:104367. doi: 10.1016/j.mechmat.2022.104367
[7] 石少侠, 董瑶瑶, 李琪, 等. 淀粉-脂质复合物功能及营养特性研究进展[J]. 食品科学,2020,41(9):238−245. [SHI S X, DONG Y Y, LI Q, et al. Asvances in functional and nutritional properties of starch-lipid complexes[J]. Food Science,2020,41(9):238−245.] SHI S X, DONG Y Y, LI Q, et al. Asvances in functional and nutritional properties of starch-lipid complexes[J]. Food Science, 2020, 41(9): 238−245.
[8] OYEYINKA S A, SINGH S, AMONSOU E O. A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes[J]. Food Chemistry,2021,349:129165. doi: 10.1016/j.foodchem.2021.129165
[9] 董吉林, 杨溢, 申瑞玲, 等. 燕麦淀粉-硬脂酸复合物的制备及其性质研究[J]. 粮食与油脂,2019,32(5):15−19. [DONG J L, YANG Y, SHEN R L, et al. Study on preparation and properties of oat starch-stearic acid complex[J]. Cereals & Oils,2019,32(5):15−19.] doi: 10.3969/j.issn.1008-9578.2019.05.005 DONG J L, YANG Y, SHEN R L, et al. Study on preparation and properties of oat starch-stearic acid complex[J]. Cereals & Oils, 2019, 32(5): 15−19. doi: 10.3969/j.issn.1008-9578.2019.05.005
[10] B OSKAYBAŞ - EMLEK, A ÖZBEY, LY AYDEMIR, et al. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra[J]. International Journal of Biological Macromolecules,2022,207:978−989. doi: 10.1016/j.ijbiomac.2022.03.189
[11] YANG Y, WANG L, LI Y, et al. Investigation the molecular degradation, starch-lipid complexes formation and pasting properties of wheat starch in instant noodles during deep-frying treatment[J]. Food Chemistry,2019,283(283):287−293.
[12] 孙梦. 大米淀粉-甘油单棕榈酸酯复合物的制备及其对米蛋糕品质的影响[D]. 哈尔滨:哈尔滨商业大学, 2024. [SUN M. Preparation of rice starch-glycerol monopalmiate complex and its effect on the quality of rice cake[D]. Harbin:Harbin University of Commerce, 2024.] SUN M. Preparation of rice starch-glycerol monopalmiate complex and its effect on the quality of rice cake[D]. Harbin: Harbin University of Commerce, 2024.
[13] 陈旭. 蛋白和脂质对淀粉消化特性的影响机理研究[D]. 广州:华南理工大学, 2018. [CHEN X. Mechanism for the digestion properties of starch influenced by lipid and protein[D]. Guangzhou:South China University of Technology, 2018.] CHEN X. Mechanism for the digestion properties of starch influenced by lipid and protein[D]. Guangzhou: South China University of Technology, 2018.
[14] 王睿. 马铃薯淀粉-脂质复合物的构建及其耐酶解机理研究[D]. 济宁:齐鲁工业大学, 2019. [WANG R. Construction of potato starch-lipid complex and its mechanism of enzymatic hydrolysis[D]. Jining:Qilu University of Technology, 2019.] WANG R. Construction of potato starch-lipid complex and its mechanism of enzymatic hydrolysis[D]. Jining: Qilu University of Technology, 2019.
[15] HU X Y, LI Z Y, WANG F Y, et al. Formation of starch-lipid complexes during the deep-frying process and its effects on lipid oxidation[J]. Foods,2022,11(19):3083. doi: 10.3390/foods11193083
[16] LIU P, KANG X, CUI B, et al. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes[J]. Carbohydrate Polymers,2019,222:115000. doi: 10.1016/j.carbpol.2019.115000
[17] CIEŚLA K, ELIASSON A C. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,265(1):399−405.
[18] 牛海力, 卢柏志, 马朗天, 等. 藜麦淀粉和藜麦抗性淀粉的理化性质[J]. 食品研究与开发,2023,44(18):45−52. [NIU H L, LU B Z, MA L T, et al. Physicochemical properties of quinoa starch and quinoa resistant starch[J]. Food Research and Development,2023,44(18):45−52.] NIU H L, LU B Z, MA L T, et al. Physicochemical properties of quinoa starch and quinoa resistant starch[J]. Food Research and Development, 2023, 44(18): 45−52.
[19] 张佳艳, 熊建文, 崔娜, 等. 脂质类型对淀粉-脂质复合物性质的影响[J]. 食品工业,2021,42(4):235−238. [ZHANG J Y, XIONG J W, CUI N, et al. Effect of types of lipid on the properties of rice starch-lipid complexes[J]. The Food Industry,2021,42(4):235−238.] ZHANG J Y, XIONG J W, CUI N, et al. Effect of types of lipid on the properties of rice starch-lipid complexes[J]. The Food Industry, 2021, 42(4): 235−238.
[20] 江佳妮, 向贵元, 邓佳宜, 等. 脂肪酸链长对高直链玉米淀粉-脂质复合物结构及理化性质的影响[J]. 食品与机械,2022,38(3):25−31. [JIANG J N, XIANG G Y, DENG J Y, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose corn starch-lipid complexes[J]. Food & Machinery,2022,38(3):25−31.] JIANG J N, XIANG G Y, DENG J Y, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose corn starch-lipid complexes[J]. Food & Machinery, 2022, 38(3): 25−31.
[21] 黄峻榕, 严青, 蒲华寅, 等. 各种因素对淀粉流变学性质的影响[J]. 食品工业科技,2014,35(13):364−368. [HUANG J R, YAN Q, PU H Y, et al. Effects of different factors on the rheological properties of starch[J]. Science and Technology of Food Industry,2014,35(13):364−368.] HUANG J R, YAN Q, PU H Y, et al. Effects of different factors on the rheological properties of starch[J]. Science and Technology of Food Industry, 2014, 35(13): 364−368.
[22] WANG L, WANG W, WANG Y W, et al. Effects of fatty acid chain length on properties of potato starch-fatty acid complexes under partially gelatinization[J]. International Journal of Food Properties,2018,21(1):2121−2134. doi: 10.1080/10942912.2018.1489842
[23] 董慧娜. 板栗淀粉—脂质复合物的构建及特性对抗老化影响的研究[D]. 郑州:河南工业大学, 2022. [DONG H N. Study on preparation of chestnut starch lipid complex and its anti-aging mechanism[D]. Zhengzhou:Henan University of Technology, 2022.] DONG H N. Study on preparation of chestnut starch lipid complex and its anti-aging mechanism[D]. Zhengzhou: Henan University of Technology, 2022.
[24] 于小帅, 张俊杰, 王鹏, 等. 挤压制备高直链玉米淀粉脂工艺优化及结构功能特性[J]. 农业工程学报,2022,38(19):277−284. [YU X S, ZHANG J J, WANG P, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(19):277−284.] doi: 10.11975/j.issn.1002-6819.2022.19.030 YU X S, ZHANG J J, WANG P, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 277−284. doi: 10.11975/j.issn.1002-6819.2022.19.030
[25] LI Q, DONG Y Y, GAO Y, et al. Functional properties and structural characteristics of starch-fatty acid complexes prepared at high temperature[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9076−9085. doi: 10.1021/acs.jafc.1c00110
[26] SHEN M, HUANG K, CAO H W, et al. Rheological thermal and in vitro starch digestibility properties of oat starch-lipid complexes[J]. International Journal of Biological Macromolecules,2024,268(1):131550.
[27] WU X L, YU H P, BAO G H, et al. Preparation of adzuki bean starch-lipid complexes and their anti-digestion mechanism[J]. Journal of Food Measurement and Characterization,2022,16(2):1−12.
[28] CHEN X, HE X W, FU X, et al. Complexation of rice starch/flour and maize oil through heat moisture treatment:Structural, in vitro digestion and physicochemical properties[J]. International Journal of Biological Macromolecules,2017,98:557−564. doi: 10.1016/j.ijbiomac.2017.01.105
[29] OKUMUS B N, TACER-CABA Z, KAHRAMAN K, et al. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids[J]. Food Chemistry,2018,240(240):550−558.
[30] 赵小云, 黄琪琳, 张宾佳, 等. 淀粉-脂质/脂肪酸复合物研究进展[J]. 食品科学, 2020, 41(15):338−347. [ZHAO X Y, HUANG Q L, ZHANG B J, et al. Recent progress in research on starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(9):238−245.] ZHAO X Y, HUANG Q L, ZHANG B J, et al. Recent progress in research on starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(9): 238−245.
[31] 刘常念, 郭岩, 张嘉欣, 等. 蛋白质/脂质-淀粉相互作用及其对淀粉消化速率减缓作用研究进展[J/OL]. 食品工业科技, 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226. [LIU C N, GUO Y, ZHANG J X, et al. Protein/Lipid-starch interactions and their effect in slowing down starch digestion rate[J/OL]. Science and Technology of Food Industr, 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226.] LIU C N, GUO Y, ZHANG J X, et al. Protein/Lipid-starch interactions and their effect in slowing down starch digestion rate[J/OL]. Science and Technology of Food Industr, 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226.
[32] 张昀, 张康逸, 赵迪, 等. 糯麦淀粉-脂质复合物的结构及体外消化特性[J]. 食品工业科技,2022,43(20):97−106. [ZHANG Y, ZHANG K Y, ZHAO D, et al. Structure and in vitro digestion properties of waxy wheat starch-lipid complexes[J]. Science and Technology of Food Industry,2022,43(20):97−106.] ZHANG Y, ZHANG K Y, ZHAO D, et al. Structure and in vitro digestion properties of waxy wheat starch-lipid complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106.
[33] LEHMANN U, ROBIN F. Slowly digestible starch-its structure and health implications:A review[J]. Trends in Food Science & Technology,2007,18(7):346−355.
[34] HASJIM J, LEE S O, HENDRICH S, et al. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses[J]. Cereal Chemistry,2010,87(4):257−262. doi: 10.1094/CCHEM-87-4-0257
[35] 陈晴. 籼米淀粉-脂肪酸复合物的形成及消化特性研究[D]. 杭州:浙江工商大学, 2022. [CHEN Q. Study on the formation and digestive properties ofindica rice starch-fatty acid complexes[D]. Hangzhou:Zhejiang Gongshang University, 2022.] CHEN Q. Study on the formation and digestive properties ofindica rice starch-fatty acid complexes[D]. Hangzhou: Zhejiang Gongshang University, 2022.
[36] LAU E, ZHOU W B, HENRY C J. Effect of fat type in baked bread on amylose–lipid complex formation and glycaemic response[J]. British Journal of Nutrition,2016,115(12):2122−2129. doi: 10.1017/S0007114516001458
[37] QIN N N, MENG Y, MA Z H, et al. Pea starch-lauric acid complex alleviates dextran sulfate sodium-induced colitis in C57BL/6J Mice[J]. Nutrition and Cancer,2023,75(8):1673−1686. doi: 10.1080/01635581.2023.2223789
[38] 徐进, 王劼, 舒鼎铭, 等. 丁酸对脂肪代谢的调节及其作用机制[J]. 动物营养学报,2022,34(6):3495−3502. [XU J, WANG J, SHU D M, et al. Regulation of butyric acid on fat metabolism and its mechanism of action[J]. Chinese Journal of Animal Nutrition,2022,34(6):3495−3502.] XU J, WANG J, SHU D M, et al. Regulation of butyric acid on fat metabolism and its mechanism of action[J]. Chinese Journal of Animal Nutrition, 2022, 34(6): 3495−3502.
[39] DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-γ dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398−2408. doi: 10.2337/db14-1213
[40] GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes,2009,58(7):1509−1517. doi: 10.2337/db08-1637
[41] CHEN Z S, HU A, IHSAN A, et al. The formation, structure, and physicochemical characteristics of starch-lipid complexes and the impact of ultrasound on their properties:A review[J]. Trends in Food Science & Technology,2024,148(148):104515.
[42] LIN H V, FRASSETTO A, KOWALIK JR E J, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PloS One,2012,7(4):e35240. doi: 10.1371/journal.pone.0035240
[43] RONDAS D, D'HERTOG W, OVERBERGH L, et al. Glucagon-like peptide-1:Modulator of β-cell dysfunction and death[J]. Diabetes, Obesity and Metabolism,2013,15(s3):185−192. doi: 10.1111/dom.12165
[44] LI D, ZHANG X Y, MENG X X, et al. Studies on nutritional intervention of ginkgo starch-lauric acid complex in obese rats induced by a high-fat diet[J]. Food Bioscience,2023,53:102644. doi: 10.1016/j.fbio.2023.102644
[45] 位雅莉. 淀粉-脂质复合物的制备及其对糖尿病小鼠的影响[D]. 济南:山东大学, 2021. [WEI Y L. Preparation of starch-lipid complex and its effect on diabetic mice[D]. Jinan:Shandong University, 2021.] WEI Y L. Preparation of starch-lipid complex and its effect on diabetic mice[D]. Jinan: Shandong University, 2021.
[46] 段仪, 刘秦明, 卢开华, 等. 咖啡生物活性物质及其健康功效研究进展[J/OL]. 食品工业科技, 1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149. [DUAN Y, LIU Q M, LU K H, et al. Progress in the study of bioactive substances in coffee and health effects[J/OL]. Science and Technology of Food Industry, 1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149.] DUAN Y, LIU Q M, LU K H, et al. Progress in the study of bioactive substances in coffee and health effects[J/OL]. Science and Technology of Food Industry, 1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149.
[47] QIN R B, WANG J, CHAO C, et al. RS5 produced more butyric acid through regulating the microbial community of human gut microbiota[J]. Journal of Agricultural and Food Chemistry,2021,69(10):3209−3218. doi: 10.1021/acs.jafc.0c08187
[48] 狄嘉欣, 郭梅芳, 肖嫩群, 等. 肠道丁酸的研究进展[J]. 中国感染控制杂志,2024,23(9):1192−1198. [DI J X, GUO M F, XIAO N Q, et al. Research progress of intestinal butyric acid[J]. Chinese Journal of Infection Control,2024,23(9):1192−1198.] DI J X, GUO M F, XIAO N Q, et al. Research progress of intestinal butyric acid[J]. Chinese Journal of Infection Control, 2024, 23(9): 1192−1198.
[49] ZHOU Q W, FU X, DHITAL S, et al. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type[J]. Food Hydrocolloids,2021,120(120):106941.
[50] BLAZEK J, GILBERT E P, COPELAND L. Effects of monoglycerides on pasting properties of wheat starch after repeated heating and cooling[J]. Journal of Cereal Science,2011,54(1):151−159. doi: 10.1016/j.jcs.2011.02.014
[51] CÂNDIDO F G, VALENTE F X, GRZEŚKOWIAK Ł M, et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation:Mechanisms and clinical implications on obesity[J]. International Journal of Food Sciences and Nutrition,2018,69(2):125−143. doi: 10.1080/09637486.2017.1343286
[52] 贾祥泽, 陈秉彦, 赵蓓蓓, 等. 直链淀粉-脂质复合物的形成及其结构性质研究进展[J]. 食品与发酵工业,2017,43(3):276−284. [JIA X Z, CHEN B Y, ZHAO B B, et al. Research advance in the formation and structural properties of amylose-lipid complex[J]. Food and Fermentation Industries,2017,43(3):276−284.] JIA X Z, CHEN B Y, ZHAO B B, et al. Research advance in the formation and structural properties of amylose-lipid complex[J]. Food and Fermentation Industries, 2017, 43(3): 276−284.
[53] WU M L, YANG X Q, XUE L, et al. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice[J]. Behavioural Brain Research,2021,402:113125. doi: 10.1016/j.bbr.2021.113125
[54] 姚轩. 淀粉-脂肪酸复合物对衰老大鼠认知障碍的干预作用[D]. 天津:天津科技大学, 2022. [YAO X. Effects of complex of starch fatty acid on cognitive impairment in aging rats[D]. Tianjin:Tianjin University of Science and Technology, 2022.] YAO X. Effects of complex of starch fatty acid on cognitive impairment in aging rats[D]. Tianjin: Tianjin University of Science and Technology, 2022.
[55] HUANG Y, WANG Y U, WANG H, et al. Prevalence of mental disorders in China:A cross-sectional epidemiological study[J]. The Lancet Psychiatry,2019,6(3):211−224. doi: 10.1016/S2215-0366(18)30511-X
[56] 陈烁. RS-FA对脂多糖诱导的小鼠抑郁样行为的作用研究[D]. 天津:天津科技大学, 2023. [CHEN S. Effect of RS-FA on lipopolysaccharide-induced depressive behaviorin mice. [D]. Tianjin:Tianjin University of Science and Technology, 2023.] CHEN S. Effect of RS-FA on lipopolysaccharide-induced depressive behaviorin mice. [D]. Tianjin: Tianjin University of Science and Technology, 2023.
[57] 沈雪丽, 蒲媛媛, 曹亚楠, 等. 脂肪模拟物及其在食品中的应用研究进展[J]. 食品科学,2024,45(15):351−359. [SHEN X L, PU Y Y, CAO Y N, et al. Research progress in fat mimics and their applications in foods[J]. Food Science,2024,45(15):351−359.] SHEN X L, PU Y Y, CAO Y N, et al. Research progress in fat mimics and their applications in foods[J]. Food Science, 2024, 45(15): 351−359.
[58] 李君, 崔怀田, 刘瑞琦, 等. 脂肪替代物在低脂人造黄油中的应用研究进展[J]. 中国粮油学报,2021,36(6):173−180,189. [LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association,2021,36(6):173−180,189.] LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(6): 173−180,189.
[59] SINGH M, BYARS J A. Jet-cooked high amylose corn starch and shortening composites for use in cake icings[J]. Journal of Food Science,2011,76(8):530−535.
[60] AGYEI-AMPONSAH J, MACAKOVA L, DEKOCK H L, et al. Effect of substituting sunflower oil with starch-based fat replacers on sensory profile, tribology, and rheology of reduced-fat mayonnaise-type emulsions[J]. Starch-Stä rke,2021,73(3-4):2000092.
[61] WARNER K, ESKINS K, FANTA G F, et al. Use of starch-lipid composites in low-fat ground beef products[J]. Food Technology (Chicago),2001,55(2):36−41.
[62] 陈雪华, 陈山, 陈旭, 等. 玉米淀粉-脂质复合物对曲奇饼干体外消化和血糖生成指数的影响[J]. 食品安全质量检测学报,2022,13(8):2680−2686. [CHEN X H, CHEN S, CHEN X, et al. Effects of maize starch-lipid complexes on in vitro digestion and glycemic index of cookies[J]. Journal of Food Safety & Quality,2022,13(8):2680−2686.] doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040 CHEN X H, CHEN S, CHEN X, et al. Effects of maize starch-lipid complexes on in vitro digestion and glycemic index of cookies[J]. Journal of Food Safety & Quality, 2022, 13(8): 2680−2686. doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040
[63] BÁRCENAS M E, ROSELL C M. Effect of frozen storage time on the bread crumb and aging of par-baked bread[J]. Food Chemistry,2006,95(3):438−445. doi: 10.1016/j.foodchem.2005.01.023
[64] YAN H L, LU Q Y. Physicochemical properties of starch-wheat germ oil complex and its effects on water distribution and hardness of noodles[J]. LWT-Food Science and Technology 2021, 135:110211.
[65] KANG X M, YU B, ZHANG H Y, et al. The formation and in vitro enzymatic digestibility of starch-lipid complexes in steamed bread free from and supplemented with different fatty acids:Effect on textural and retrogradation properties during storage[J]. International Journal of Biological Macromolecules,2021,166:1210−1219. doi: 10.1016/j.ijbiomac.2020.11.003
[66] MARISCAL-MORENO R M, FIGUEROA-CÁRDENAS J D, SANTIAGO-RAMOS D, et al. Amylose lipid complexes formation as an alternative to reduce amylopectin retrogradation and staling of stored tortillas[J]. International Journal of Food Science & Technology,2019,54(5):1651−1657.
[67] 陈龙. 油炸过程中淀粉结构变化与吸油特性研究[D]. 无锡:江南大学, 2019. [CHEN L. Investigation on the structural changes and oilabsorption of starch during frying[D]. Wuxi:Jiangnan University, 2019.] CHEN L. Investigation on the structural changes and oilabsorption of starch during frying[D]. Wuxi: Jiangnan University, 2019.
[68] 李仙宝. 淀粉-油体系中淀粉-脂质复合物的形成及其对淀粉吸油性的影响[D]. 南昌:南昌大学, 2022. [LI X B. Formation of starch-lipid complexes in starch-oil system and its effect on the oil absorption of starch[D]. Nanchang:Nanchang University, 2022.] LI X B. Formation of starch-lipid complexes in starch-oil system and its effect on the oil absorption of starch[D]. Nanchang: Nanchang University, 2022.
[69] GUIDA C, AGUIAR A C, CUNHA R L. Green techniques for starch modification to stabilizePickering emulsions:A current review and future perspectives[J]. Current Opinion in Food Science,2021,38:52−61. doi: 10.1016/j.cofs.2020.10.017
[70] 姚先超, 钟庆旭, 刘鑫, 等. 木薯淀粉硬脂酸复合纳米颗粒的表征及其Pickering乳液稳定性分析[J]. 食品科学,2023,44(16):61−70. [YAO X C, ZHONG Q X, LIU X, et al. Characterization of cassava starch-stearic acid complex nanoparticles and stability of Pickering emulsions stabilized by it[J]. Food Science,2023,44(16):61−70.] YAO X C, ZHONG Q X, LIU X, et al. Characterization of cassava starch-stearic acid complex nanoparticles and stability of Pickering emulsions stabilized by it[J]. Food Science, 2023, 44(16): 61−70.
[71] 贾雨含. 脱支淀粉-脂肪酸纳米复合粒子构建叶黄素高内相Pickering乳液及其评价[D]. 广州:华南理工大学, 2022. [JIA Y H. Fabrication of lutein-loaded high internal phase Pickering emulsion stabilized by debranched starch-fattyacid and its evaluation[D]. Guangzhou:South China University of Technology, 2022.] JIA Y H. Fabrication of lutein-loaded high internal phase Pickering emulsion stabilized by debranched starch-fattyacid and its evaluation[D]. Guangzhou: South China University of Technology, 2022.
[72] LU X, HUANG Q. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions:Role of fatty acid complexation and heat treatment[J]. Food & function,2019,10(9):5969−5980.
[73] LIU P F, SUN S L, LU H L, et al. Effect of the ways of adding stearic acid on properties of sweet potato starch and sweet-potato-starch-based films[J]. Starch-Stä rke,2016,68(1−2):76−83.
[74] THAKUR R, PRISTIJONO P, GOLDING J B, et al. Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch-Ɩ-carrageenan biodegradable edible film[J]. Food Packaging and Shelf Life,2017,14:108−115. doi: 10.1016/j.fpsl.2017.10.002
[75] LIU P, SUN S, HOU H, et al. Effects of fatty acids with different degree of unsaturation on properties of sweet potato starch-based films[J]. Food Hydrocolloids,2016,61:351−357. doi: 10.1016/j.foodhyd.2016.05.033
[76] 吴小念. 淀粉-脂肪酸纳米复合物的制备、结构表征及应用[D]. 长沙:中南林业科技大学, 2024. [WU X N. Preparation, characterization and application of starch-fatty acid nanocomposites[D]. Changsha:Central South University of Forestry&Technology, 2024.] WU X N. Preparation, characterization and application of starch-fatty acid nanocomposites[D]. Changsha: Central South University of Forestry&Technology, 2024.