• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

1-MCP预处理对振动胁迫下猕猴桃冷藏品质的调控

李易洋, 杨海英, 邓光廷, 孙玉英, 丁胜华, 王蓉蓉

李易洋,杨海英,邓光廷,等. 1-MCP预处理对振动胁迫下猕猴桃冷藏品质的调控[J]. 食品工业科技,2025,46(11):1−8. doi: 10.13386/j.issn1002-0306.2024080300.
引用本文: 李易洋,杨海英,邓光廷,等. 1-MCP预处理对振动胁迫下猕猴桃冷藏品质的调控[J]. 食品工业科技,2025,46(11):1−8. doi: 10.13386/j.issn1002-0306.2024080300.
LI Yiyang, YANG Haiying, DENG Guangting, et al. Regulation of 1-MCP Pre-treatment on Refrigeration Quality of Kiwifruit under Vibration Stress[J]. Science and Technology of Food Industry, 2025, 46(11): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024080300.
Citation: LI Yiyang, YANG Haiying, DENG Guangting, et al. Regulation of 1-MCP Pre-treatment on Refrigeration Quality of Kiwifruit under Vibration Stress[J]. Science and Technology of Food Industry, 2025, 46(11): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024080300.

1-MCP预处理对振动胁迫下猕猴桃冷藏品质的调控

基金项目: 十四五国家重点研发计划项目(2023YFD2100301-1);湖南省自然科学基金项目(2024JJ5188);长沙市自然科学基金项目(kq2208075)。
详细信息
    作者简介:

    李易洋(2000−),女,硕士研究生,研究方向:果蔬加工及贮藏,E-mail:2178752590@qq.com

    通讯作者:

    王蓉蓉(1985−),女,博士,副教授,研究方向:果蔬加工及贮藏,E-mail:sdauwrr@163.com

  • 中图分类号: TS255.2

Regulation of 1-MCP Pre-treatment on Refrigeration Quality of Kiwifruit under Vibration Stress

  • 摘要: 振动胁迫是造成猕猴桃果实采后损失的主要原因之一。本研究通过对‘红阳’猕猴桃在其上下、左右及前后三个方向进行三维振动(频率5 Hz、振幅5 mm、振动时间12 h),模拟沥青路面长时间运输,分析振动胁迫对猕猴桃果实冷藏期间(温度4±0.5 ℃、相对湿度90%~95%、冷藏时间40 d)品质的影响,并进一步探究1-甲基环丙烯(1-methylcyclopropene,1-MCP)预处理对振动胁迫的调控效果。结果表明,振动胁迫会加速猕猴桃果实冷藏期间失水皱缩和软化。与对照组相比,振动组果实冷藏期间呼吸峰值提高42.4%,达110.01 mg/(kg·h);失重率上升6.7%~14.4%;丙二醛和可溶性固形物含量分别提高了7.1%~28.8%和6.5%~12.6%;色泽变化明显,∆E值增加了9.3%~17.2%;细胞壁结构破坏严重。然而,振动前经1-MCP预处理可有效降低新陈代谢水平,其呼吸峰值减小至振动组的62.35%,仅为68.59 mg/(kg·h);果实细胞壁中胶层未被降解,且较振动组保留较多的细胞质内容物,更好地维持细胞壁原有结构;延迟了冷藏期间丙二醛及可溶性固形物含量上升、抗坏血酸含量下降,维持冷藏后期抗坏血酸过氧化物酶和过氧化氢酶活性。聚类分析进一步证实,在冷藏前期,振动组与同时期其他组果实品质相差较大劣变明显;而1-MCP+振动组与同时期对照组果实品质较接近,可缓解振动胁迫所造成的猕猴桃果实品质劣变。本研究可为猕猴桃物流运输保鲜及调控采后机械损伤造成的果实品质劣变提供一定的理论基础。
    Abstract: Vibration stress is one of the main causes of postharvest loss of kiwifruit. In this study, the effects of vibration stress on the quality of kiwifruit during refrigeration (temperature 4±0.5 °C, relative humidity 90%~95%, refrigeration time 40 d) were analyzed by performing three-dimensional vibration (frequency 5 Hz, amplitude 5 mm, vibration time 12 h) in the three directions of up and down, left and right, front and back of 'Hongyang' kiwifruit to simulate long-term transportation of asphalt pavement. Further, the regulation of 1-methylcyclopropene (1-MCP) pre-treatment on vibration stress was investigated. The results showed that vibration stress could accelerate the water loss, wrinkling and softening of kiwifruit during refrigeration. Compared with the control group, the peak value of respiration in the vibration group increased by 42.4% up to 110.01 mg/(kg·h), weight loss rate increased by 6.7%~14.4%, the contents of malondialdehyde and soluble solid increased respectively by 7.1%~28.8% and 6.5%~12.6%, the change in color was obvious and the value of ∆E increased by 9.3%~17.2%, and the cell wall structure was severely damaged during refrigeration. However, 1-MCP pre-treatment before vibration could effectively reduce the metabolic levels, its respiratory peak decreased to 62.35% of the vibration group and was only 68.59 mg/(kg·h). Meanwhile, the colloidal layer in the fruit cell wall was not degraded and more cytoplasmic contents were retained in 1-MCP+vibration group than that of vibration group, the original structure of the cell wall was better maintained. The increase of malondialdehyde and soluble solids content and the decrease of ascorbic acid content were delayed in 1-MCP+vibration group during refrigeration, and the activities of ascorbate peroxidase and catalase in the late stage of refrigeration were retained. The cluster analysis further verified that the fruit quality of vibration group was significantly different from that of other groups in the same period. The fruit quality of 1-MCP+vibration group was close to that of control group, which could alleviate the quality deterioration of kiwifruit caused by vibration stress. This study can provide a theoretical basis for kiwifruit preservation by logistics transportation and regulation of fruit quality deterioration caused by mechanical damage after harvest.
  • 猕猴桃(Actinidia chinensis Planch),又名奇异果、阳桃、羊桃等,属于猕猴桃科(Actini-diaceae)猕猴桃属(Actinidia),是原产于我国的落叶藤本植物[12]。我国猕猴桃种植面积和总产量均居世界之首,由于其风味独特,含有丰富的维生素C,具有提高免疫功能、降血脂等功效,备受消费者喜爱,被誉为“果中之王”[36]。然而,猕猴桃属于呼吸跃变型果实,后熟过程非常活跃,采后极易失水软化,从而加速品质劣变降低产品价值[7]。机械损伤是造成果实采后损失的主要原因之一,既包括采收、包装、运输、贮藏和销售环节中发生的静压损伤、振动损伤、冲击损伤、穿刺损伤及摩擦损伤,也包括加工过程中产生的鲜切损伤[8]。其中,振动胁迫主要发生在运输过程中,是由长时间低应力循环振动造成的累积损伤[9],由于目前我国果蔬运输方式大多采用公路运输,因此不可避免的振动胁迫使其损耗巨大。猕猴桃皮薄且含水量高,在长距离运输时由于受振动胁迫的影响,会加速表皮失水皱缩、果肉软化、营养物质流失等,严重降低产品品质[1013]

    1-甲基环丙烯(1-methylcyclopropene,1-MCP)作为乙烯竞争性抑制剂已被广泛应用于苹果[14]、黄瓜[15]、猕猴桃[16]等果蔬保鲜中,但关于其是否可缓解由于振动胁迫造成的果蔬品质劣变仍研究得较少。曹森等[17]使用不同浓度1-MCP熏蒸‘贵长’猕猴桃后,以100 km/h时速模拟运输5 d,发现经1-MCP处理的猕猴桃均能延缓腐烂率、丙二醛(malondialdehyde,MDA)含量、乙烯生成速率和呼吸强度的上升,且明显抑制果实硬度、营养物质含量及超氧化物歧化酶活性的下降。洪伟荣等[4]发现1-MCP预处理可有效抑制跌落损伤导致的‘徐香’猕猴桃失重率和乙烯释放量的升高,推迟呼吸峰值的出现,延缓果实硬度下降、颜色劣变、可溶性固形物含量上升和可滴定酸含量下降。可见,1-MCP对机械损伤造成的猕猴桃果实品质劣变有一定的缓解作用。‘红阳’猕猴桃作为“国家级品种保护资源”[18],1-MCP预处理对其振动胁迫下品质的调控目前未见报道。因此,探究1-MCP预处理对振动胁迫下‘红阳’猕猴桃品质劣变的影响,对后期调控果实品质提升商品价值具有重要的指导意义。

    本文以‘红阳’猕猴桃为试验材料,通过研究1-MCP预处理对振动胁迫下猕猴桃冷藏品质的影响,分析其冷藏期间生理特性、理化品质及细胞壁微观结构变化,为后期有效调控由机械损伤引发的猕猴桃采后品质劣变提供一定的理论基础。

    ‘红阳’猕猴桃 采自长沙县九甲冲猕猴桃种植专业合作社(113°3'3" E,28°27'1" N);1-MCP、2,6-二氯酚靛酚钠盐、愈创木酚、曲拉通X-100、二硫苏糖醇 分析纯,上海麦克林生化科技股份有限公司;戊二醛固定液(2.5%,电镜专用) 分析纯,北京雷根生物技术有限公司;锇酸、醋酸双氧铀 分析纯,SPI-CHEN公司;柠檬酸铅、抗坏血酸、30%过氧化氢溶液、磷酸氢二钠、磷酸二氢钠、磷酸氢二钾、磷酸二氢钾、乙二胺四乙酸、交联聚乙烯吡咯烷酮、聚乙烯吡咯烷酮 分析纯,国药集团化学试剂有限公司;丙二醛试剂盒 北京索莱宝科技有限公司。

    Color Quest XE型全自动色度分析仪 美国Hunter ab公司;SHYP型电子天平 北京中西远大科技有限公司;ATAGO PAL-1型迷你数显折射仪 广州市爱测智能科技有限公司;YSZD-YTF型四度空间振动试验台 上海毅硕实验仪器厂;JEM-1200EX型透射电子显微镜 日本电子株式会社;UV-1800型紫外可见分光光度计 岛津仪器(苏州)有限公司;Avanti J-26 XP 型高效离心机 美国贝克曼库尔特有限公司。

    猕猴桃采摘后1 h内于泡沫箱中用冷藏货车(温度4±0.5 ℃、相对湿度90%~95%)平稳运输至实验室。选取成熟度一致(硬度37~43 N,可溶性固形物含量7.9%~8.9%)、颜色均匀、大小相近、无机械损伤和病虫害的果实作为试验材料。将上述选取的560个猕猴桃果实随机均分为四组,每组140个果实。对照组:将果实平铺于泡沫箱中,在培养皿中加入10 mL去离子水置于箱底中央,室温(25 ℃)下密封熏蒸24 h;1-MCP组:用1 μL/L 1-MCP溶液代替去离子水在室温下密封熏蒸24 h;1-MCP+振动组:经1 μL/L 1-MCP溶液在室温下密封熏蒸24 h后,分别给每个果实套上泡沫网兜,装箱后置于振动试验台上并用绑带固定,在仪表盘上设置5 Hz的频率和5 mm的振幅在上下、左右和前后三个方向的三维振动方式对果实进行振动胁迫处理12 h;振动组:将经去离子水在室温下密封熏蒸24 h后的果实以上述同种方式振动12 h。上述四组果实于冷库中(4±0.5 ℃,相对湿度90%~95%)贮藏,分别于第0(处理结束当天)、10、20、30和40 d 取样,立即拍照观察并测定呼吸强度、失重率、可溶性固形物含量和色泽。随后,将果实去皮后迅速切成小块,液氮速冻后置于-80 ℃用于MDA和抗坏血酸含量、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)及过氧化氢酶(catalase,CAT)活性测定。每个处理组重复3次,每次重复采用3个猕猴桃。

    参考曹建康等[19]的方法,采用静置法测定。将每组果实分别置于3个密封玻璃罐中,底部培养皿中加入10 mL 0.4 mol/L的NaOH标准溶液,于30 min后取出培养皿中的溶液,移入三角瓶时冲洗3~4次,加入5 mL饱和BaCl2和2滴酚酞指示剂,用0.2 mol/L草酸溶液滴定,结果以mg/(kg·h)表示。

    采用全自动色度分析仪测定中间部位果肉的L*(亮度)、a*(红绿值)和b*(黄蓝值)。色差∆E值表示样品总的色泽变化,按公式(1)计算。

    ΔE=(aa0)2+(bb0)2+(LL0)2
    (1)

    式中,a*b*L*值为贮藏后样品的测定值;a0b0L0为白板的测定值。

    失重率采用称重法测定[20],按公式(2)计算。

    L(%)=m0mtm0×100
    (2)

    式中,L为失重率,%;m0为贮藏前重量,g;mt为贮藏后重量,g。

    将果肉样品在液氮中研磨均匀,用MDA含量试剂盒进行检测,提取和测定方法参考试剂盒(微量法)说明书进行操作,结果以nmol/L表示。

    采用数显折射仪进行测定,结果以%表示。

    参考曹建康等[19]的方法,采用2,6-二氯酚靛酚滴定法进行测定,以20 g/L草酸溶液作为空白,按公式(3)计算,结果以mg/100 g 鲜重(fresh weight,FW)表示。

    抗坏血酸含量(mg/100gFW)=V×(V1V0)×ρVS×m×100
    (3)

    式中,FW为鲜重,g;V1为样品滴定消耗的染液体积,mL;V0为空白滴定消耗的染液体积,mL;ρ为1 mL染料溶液相当于抗坏血酸质量,mg/mL;VS为滴定时所取样品溶液体积,mL;V为样品提取液总体积,mL;m为样品质量,g。

    参照曹建康等[19]方法稍加修改,称取2 g液氮研磨的果肉样品分别加入8 mL APX提取液(0.1 mol/L、pH7.5磷酸钾缓冲液含0.1 mmol/L乙二胺四乙酸,1 mmol/L抗坏血酸和2%交联聚乙烯吡咯烷酮)和CAT提取液(0.1 mol/L、pH7.5磷酸钠缓冲液含5 mmol/L二硫苏糖醇和2%聚乙烯吡咯烷酮)摇匀,提取10 min后于4 ℃ 13000×离心10 min,随后各自加入APX反应液(50 mmol/L、pH7.5磷酸钾缓冲液含0.1 mmol/L乙二胺四乙酸,0.5 mmol/L抗坏血酸和2 mmol/L过氧化氢)和CAT反应液(50 mmol/L、pH7.5磷酸钠缓冲液含20 mmol/L过氧化氢)后,分别于290和240 nm处测定吸光度值,一个酶活性单位(U)定义为每克果蔬样品(鲜重)每分钟吸光度变化值减少0.01所需要的酶量,结果以U/(min·g) FW表示。

    取冷藏20 d的各组果实,去皮后将果肉切成约1 mm3块状,放入经4 ℃预冷的2.5%戊二醛固定液中过夜完成前固定,去除固定液后用0.1 mol/L、pH7.0的磷酸缓冲液漂洗三次(每次15 min),用1%锇酸溶液固定1~2 h;重复上述漂洗三次,分别用30%、50%、70%、80%、90%和100%的乙醇溶液进行梯度脱水(每种浓度15 min),再依次用丙酮、不同浓度丙酮和树脂的混合液(3:1、1:1和1:3)分别处理20 min、2 h、3 h和3 h,最后使用纯树脂处理样品过夜。随后,进行梯度加热(35 ℃-60 ℃-80 ℃)各5 h,包埋后将样品切成70~90 nm的片状,经醋酸双氧铀染液(15 min)和柠檬酸铅(5 min)染色后,晾干即可上镜观察。

    所有实验均重复三次,结果采用平均值±标准差表示。采用Origin 2024软件进行绘图和聚类分析;采用IBM. SPSS Statistics 26.0软件进行显著性分析,显著性差异水平为0.05,P<0.05表示差异显著。

    图1所示,各组猕猴桃果实冷藏期间表观品质均出现不同程度的劣变,具体表现在表皮失水皱缩形成条状纹路,果肉水渍状区域逐渐增大。其中,振动组在冷藏第30 d即可观察到果肉水渍状明显的现象,赤道切面上因皱缩导致外表皮纹路崎岖,且在冷藏第40 d时果实因表皮皱缩出现条纹形状。然而,对照组与两组1-MCP处理组果实在冷藏第30 d时表皮仍较为光滑,且赤道切面较为规则。这表明振动胁迫会加速冷藏期间果实外观品质的变化,而1-MCP+振动组由于1-MCP预处理可通过延缓果实衰老和降低新陈代谢水平[21],其表观品质接近于对照组,有效推迟表皮皱缩现象的发生,在贮藏后期仍维持较为光滑的果皮状态。

    图  1  1-MCP预处理对振动胁迫猕猴桃冷藏期间表观品质的影响
    Figure  1.  Effect of 1-MCP pre-treatment on appearance quality of kiwifruit under vibration stress during refrigeration

    猕猴桃是典型的呼吸跃变型果实,在冷藏期间会出现呼吸高峰,随后果实快速衰老[22]。如图2所示,四组果实呼吸强度在冷藏期间整体都呈先上升后下降的趋势,但其呼吸高峰到来的时间略有不同。其中,对照组、1-MCP+振动组和振动组果实呼吸高峰均在冷藏第10 d出现,而1-MCP组果实呼吸高峰则延迟到冷藏第20 d才出现;且呼吸峰值强度依次为振动组(110.01 mg/(kg·h))>对照组(77.26 mg/(kg·h))>1-MCP+振动组(68.59 mg/(kg·h))>1-MCP组(55.50 mg/(kg·h)),振动组果实呼吸峰值较对照组提高了42.4%。总体而言,整个冷藏期间振动组果实呼吸强度始终高于其他三组,在冷藏10 d后显著高于对照组(P<0.05),冷藏10~20 d时显著高于1-MCP+振动组(P<0.05);而1-MCP组果实呼吸强度基本维持在最低水平,整个冷藏期间均显著低于振动组(P<0.05)。这是由于振动会促进猕猴桃果实采后生理活动,加速新陈代谢,从而加快后熟衰老进程;而1-MCP作为乙烯竞争性抑制剂可通过抑制果实采后衰老延缓冷藏期间呼吸强度的上升。这与Chai等[23]的研究结果一致,其也发现1-MCP可抑制猕猴桃呼吸速率,降低‘海沃德’猕猴桃的呼吸峰值,且使‘脐红’猕猴桃不出现呼吸峰值。

    图  2  1-MCP预处理对振动胁迫猕猴桃冷藏期间呼吸强度的影响
    注:图中不同大写字母表示同一处理组不同冷藏时间差异显著(P<0.05),不同小写字母表示同一冷藏时间不同处理组差异显著(P<0.05),下同。
    Figure  2.  The effect of 1-MCP pre-treatment on respiratory rate of kiwifruit under vibration stress during refrigeration

    表1可知,各组猕猴桃果实L*b*值均随冷藏时间的延长逐渐降低,a*和∆E值则持续升高,即猕猴桃果实随着冷藏时间的增加亮度下降,果肉颜色变暗,黄色与绿色减弱,这与上述表观品质变化相符(图1)。其中,振动组果实L*b*值下降趋势最为明显,尤其在冷藏20~30 d下降速度最快,且此时a*∆E值迅速升高;冷藏30~40 d时,对照组及1-MCP组果实L*值迅速下降,但L*b*值始终显著高于振动组(P<0.05),且∆E值始终显著低于振动组(P<0.05),与此同时1-MCP+振动组果实∆E值显著低于振动组(P<0.05)。可见,振动胁迫会加速猕猴桃果肉色泽劣变,这可能与振动提高呼吸强度促使淀粉水解有关[23];而1-MCP预处理可能通过抑制呼吸强度上升及提高抗性酶活性水平延缓果实成熟和叶绿素降解,从而缓解冷藏期间猕猴桃果实色泽劣变[24]

    表  1  1-MCP预处理对振动胁迫猕猴桃冷藏期间色泽的影响
    Table  1.  Effect of 1-MCP pre-treatment on color of kiwifruit under vibration stress during refrigeration
    色泽 冷藏时间
    (d)
    对照组 1-MCP组 1-MCP+振动组 振动组
    L* 0 64.55±1.37Aa 64.82±1.97Aa 61.30±0.83Ab 60.24±1.26Ab
    10 63.27±1.19Aa 63.77±0.86Aa 58.85±1.56Bb 55.94±1.21Bc
    20 57.98±1.27Ba 58.51±1.01Ba 53.98±2.00Cb 50.91±1.78Cc
    30 54.37±1.95Ca 55.10±0.62Ca 46.84±1.63Db 43.40±1.50Dc
    40 47.54±1.72Da 48.75±1.89Da 43.91±1.77Eb 40.72±2.04Ec
    a* 0 −3.32±0.13Ca −3.34±0.20Ca −3.14±0.51Ca −2.98±0.28Ca
    10 −2.99±0.46Ca −2.90±0.07Ba −2.69±0.18BCa −2.64±0.50BCa
    20 −2.79±0.16BCb −2.81±0.47Bb −2.23±0.19ABa −2.15±0.40ABa
    30 −2.28±0.19ABb −2.20±0.16Ab −1.75±0.25Aa −1.73±0.12Aa
    40 −1.80±0.15Aa −1.80±0.10Aa −1.71±0.07Aa −1.61±0.19Aa
    b* 0 21.26±0.72Aa 21.31±0.81Aa 21.20±0.61Aa 20.59±1.27Aa
    10 20.44±1.00Aa 20.27±0.51Aa 19.75±1.71Ba 19.50±1.13Aa
    20 19.94±0.74Aa 19.99±0.88Aa 19.42±0.97Ba 19.18±0.86Aa
    30 16.94±1.48Ba 16.79±1.47Bab 14.43±1.31Cbc 12.80±1.90Bc
    40 16.11±0.58Ba 15.89±1.29Bab 14.02±0.80Cb 12.37±1.03Bc
    ∆E 0 32.74±1.40Db 32.23±0.92Db 35.02±0.82Ca 36.24±1.21Ea
    10 33.24±1.47Dc 32.96±1.18Dc 37.14±1.01Cb 38.96±1.10Da
    20 38.63±1.48Cb 38.18±1.60Cb 41.52±1.76Ba 42.23±1.79Ca
    30 41.75±1.72Bc 40.78±1.09Bc 46.59±1.10Ab 48.93±1.88Ba
    40 46.53±1.42Abc 45.15±1.20Ac 49.53±1.21Ab 51.24±1.71Aa
    注:表中同列不同大写字母表示同一处理组不同冷藏时间差异显著(P<0.05),同行不同小写字母表示同一冷藏时间不同处理组差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    猕猴桃果实冷藏期间由于呼吸作用及蒸腾作用仍然进行,其重量会不断损失[7]。由图3A可知,各组猕猴桃果实失重率均随冷藏时间的延长而不断上升,导致其失水皱缩,这与上述表观品质变化相符(图1)。其中,振动组果实在冷藏期间失重率均高于其他三组,而1-MCP组果实失重率则始终低于其他三组;在冷藏第40 d时,振动组和1-MCP+振动组猕猴桃失重率显著高于对照组和1-MCP组(P<0.05),分别为9.03%和8.77%。这可能是由于振动通过加速呼吸代谢促进内部水分流失及营养物质消耗从而一定程度上引起失重率上升,而1-MCP预处理则可通过抑制呼吸强度减少呼吸消耗导致的干物质损失[2526]

    图  3  1-MCP预处理对振动胁迫猕猴桃冷藏期间失重率(A)及MDA含量(B)的影响
    Figure  3.  Effect of 1-MCP pre-treatment on weight loss rate (A) and MDA content (B) of kiwifruit under vibration stress during refrigeration

    MDA作为膜脂过氧化的产物可反映猕猴桃果实的膜损伤状况,其含量越高表示膜损伤程度越高[26]。如图3B所示,随着冷藏时间的延长,各组猕猴桃果实MDA含量均持续上升。对于振动组而言,第0 d时果实MDA含量即显著高于其他三组(P<0.05),为1-MCP+振动组的1.20倍;贮藏40 d时,其MDA含量仍保持最高,为21.68 nmol/L;在冷藏期间,振动组果实MDA含量较1-MCP+振动组提高了6.34%~34.48%。由此推测,振动可能通过破坏膜结构加速猕猴桃果实膜脂的过氧化[27]。然而,1-MCP预处理则能一定程度上抑制猕猴桃果实冷藏期间MDA的积累,这与曹森等[17]用不同浓度1-MCP对模拟运输后‘贵长’猕猴桃品质研究中MDA含量变化趋势相似。

    图4A所示,各组猕猴桃果实可溶性固形物含量均随冷藏时间的延长呈现上升趋势,且于冷藏0~20 d上升迅速,20 d后上升速度有所减缓。这是由于冷藏前期果实成熟度增加,淀粉分解转化为可溶性固形物,导致可溶性固形物含量迅速上升;而冷藏后期果实呼吸代谢平缓,可溶性固形物含量也相对平稳[27]。在整个冷藏期间,振动组果实可溶性固形物含量始终高于其他三组,较1-MCP+振动组提高了1.79%~11.00%;且在冷藏10 d后显著高于对照组及1-MCP组(P<0.05),并于冷藏40 d时达到最高为15.20%。这是由于振动会加速猕猴桃果实成熟衰老,促进淀粉向可溶性固形物的转化,使可溶性固形物含量增加[8]。然而,在整个冷藏过程中,1-MCP组果实可溶性固形物含量始终维持在最低水平,为9.54%~13.68%;1-MCP+振动组果实可溶性固形物含量则高于1-MCP组但始终低于振动组。这与洪伟荣等[4]的研究结果一致,即1-MCP预处理可通过抑制乙烯释放,延缓果实成熟衰老,一定程度上抑制受损伤的猕猴桃果实中可溶性固形物含量的上升。

    图  4  1-MCP预处理对振动胁迫猕猴桃冷藏期间可溶性固形物(A)及抗坏血酸含量(B)的影响
    Figure  4.  Effect of 1-MCP pre-treatment on soluble solid (A) and ascorbic acid content (B) of kiwifruit under vibration stress during refrigeration

    图4B所示,猕猴桃果实中抗坏血酸含量丰富,高达100 mg/100 g FW,但随着冷藏时间的延长,各组猕猴桃果实抗坏血酸含量均呈下降趋势,尤其在冷藏0~20 d期间下降最为明显,这与冷藏期间营养物质被不断消耗有关[17]。其中,冷藏40 d时,振动组抗坏血酸含量最低,为64.24 mg/100 g FW,显著低于对照组及1-MCP组(P<0.05);而此时1-MCP组抗坏血酸含量最高,为振动组的1.13倍。冷藏期间,振动组果实抗坏血酸含量较1-MCP+振动组下降了3.14%~6.72%。这可能是由于振动胁迫在冷藏前期通过提高呼吸强度加速抗坏血酸的分解,而1-MCP则通过抑制呼吸强度上升延缓此过程的发生。彭梦云等[28]在脆李的保鲜中也发现货架期内其抗坏血酸含量持续下降,而1-MCP处理的电商速递组下降速度较对照组缓慢。总体而言,振动组果实抗坏血酸含量在冷藏期间始终保持在最低水平,而1-MCP+振动组果实抗坏血酸含量高于振动组,1-MCP组则维持在最高水平。

    APX与CAT是猕猴桃果实中重要的防御性酶,其皆为抗氧化酶,具有抗逆性[29]。如图5所示,各组猕猴桃果实APX与CAT活性在冷藏期间均呈现先上升后下降的趋势。这是因为果实冷藏过程中伴随着后熟过程,APX与CAT作为保护性酶,其活性上升可一定程度上延缓衰老;之后随着果实体内活性氧自由基的持续产生,酶活性受到抑制从而逐渐下降[30]。其中,振动组果实APX与CAT活性在贮藏前期均呈上升趋势并显著高于对照组(P<0.05),表明振动胁迫会加速猕猴桃果实活性氧自由基的产生,引起酶活性迅速上升,从而加速抗坏血酸降解[31],这与上述抗坏血酸含量下降趋势相符(图4B)。冷藏第10 d时,振动组果实CAT活性分别为对照组、1-MCP组和1-MCP+振动组的2.03、1.55和1.44倍,并达到峰值26.00 U/(min·g) FW,而其他三组则在冷藏第20 d时才达到峰值;冷藏后期酶活性受抑制,振动组果实APX及CAT活性显著低于1-MCP+振动组(P<0.05),1-MCP组则高于其他三组。由此推测,冷藏前期猕猴桃果实中APX及CAT活性在振动胁迫下加速上升,且CAT活性峰值提前出现;而1-MCP处理使果实在冷藏后期保持较高的酶活性,维持抗逆性,延缓活性氧对叶绿素的降解,这与上述色泽变化相符(表1)。Chai等[23]也表明1-MCP可通过提高猕猴桃抗氧化酶活性从而延长其保质期。

    图  5  1-MCP预处理对振动胁迫猕猴桃冷藏期间APX(A)和CAT活性(B)的影响
    Figure  5.  Effect of 1MCP pre-treatment on APX (A) and CAT activity (B) of kiwifruit under vibration stress during refrigeration

    细胞壁降解会导致果实软化,降低冷藏品质[32]。基于上述各品质变化,发现振动组猕猴桃果实多数冷藏品质变化拐点均出现在冷藏第20 d,因此取其果肉观察细胞壁微观结构差异。如图6所示,对照组与1-MCP组细胞壁均保持着良好的状态,结构完整,紧贴细胞质及内容物,明暗交替界限清晰,中胶层清晰可见,呈现为均匀的连续暗层,且1-MCP组较对照组保留了更多细胞质内容物。然而,振动组与1-MCP+振动组均出现质壁分离现象,同时细胞质及内容物大量消失,这与谢丹丹等[13]的研究一致,其采用不同模拟运输振动频率对猕猴桃果实细胞壁微观结构进行观察也发现振动会加速果实细胞壁降解,且振动频率越高破坏效果愈发明显。但1-MCP+振动组细胞质内容物保留程度更高,且其细胞壁中胶层依旧清晰可见,细胞壁虽出现形变但未发生降解。总之,振动处理会破坏细胞壁结构,加速其形变及降解[33];而1-MCP处理则能一定程度上保持猕猴桃果肉细胞壁原有结构,缓解振动胁迫对细胞壁结构的破坏。

    图  6  1-MCP预处理对振动胁迫猕猴桃冷藏期间细胞壁微观结构的影响
    注:A:对照组;B:振动组;C:1-MCP组;D:1-MCP+振动组;CW:细胞壁。
    Figure  6.  Effect of 1-MCP pre-treatment on cell wall microstructure of kiwifruit under vibration stress during refrigeration

    对各组猕猴桃果实冷藏品质原始数据经标准化处理后进行聚类分析,如图7所示。从各品质特性聚类结果来看,所有指标大致可分为3类:第一类包含b*值、抗坏血酸含量和L*值,在冷藏期间均呈下降趋势;第二类包含∆E值、a*值、可溶性固形物含量、MDA含量和失重率,均随冷藏时间延长呈上升趋势;第三类包含CAT活性、APX活性和呼吸强度,其在冷藏前期迅速上升随后逐渐下降。从样品聚类结果来看,所有样品大致可分为3类:第一类包含各组冷藏0 d及对照组、1-MCP组和1-MCP+振动组冷藏10 d;第二类包括各组冷藏20 d,对照组和1-MCP组冷藏30 d、振动组冷藏10 d;第三类包括各组冷藏40 d及1-MCP+振动组和振动组冷藏30 d。冷藏前期,振动组与同期其他组欧氏距离长,相关程度低,果实品质相差较大,即振动胁迫会加速果实冷藏期间的品质劣变;而1-MCP+振动组与对照组欧式距离短,相关程度高,果实品质接近,表明1-MCP可一定程度上缓解振动胁迫造成的影响,延缓其品质劣变过程。

    图  7  猕猴桃果实冷藏品质聚类分析
    注:A:对照组; B:1-MCP组;C:1-MCP+振动组;D:振动组。
    Figure  7.  The cluster analysis of refrigeration qualities of kiwifruit

    振动胁迫会加速猕猴桃果实冷藏期间品质劣变,具体表现在表皮皱缩、果肉水渍状区域增大,呼吸强度、失重率、MDA含量、可溶性固形物含量上升,抗坏血酸含量下降,细胞壁结构发生降解;而1-MCP预处理可通过一定程度上抑制果实呼吸作用,降低新陈代谢水平,延缓成熟衰老,从而缓解由于振动胁迫引起的品质劣变。聚类分析进一步验证在冷藏前期,1-MCP+振动组与对照组果实品质接近,明显优于同时期振动组。1-MCP已广泛应用于果蔬保鲜并证实具有较好的效果,但较少探究其对振动胁迫果实品质劣变的缓解效果。因此,本研究为后期有效调控由机械损伤引发的猕猴桃采后品质劣变提供了理论依据。今后可进一步利用基因组学技术,深入挖掘与细胞壁组成相关的基因及其表达情况,从分子水平上明确其调控机制,促进猕猴桃产业的长效发展。

  • 图  1   1-MCP预处理对振动胁迫猕猴桃冷藏期间表观品质的影响

    Figure  1.   Effect of 1-MCP pre-treatment on appearance quality of kiwifruit under vibration stress during refrigeration

    图  2   1-MCP预处理对振动胁迫猕猴桃冷藏期间呼吸强度的影响

    注:图中不同大写字母表示同一处理组不同冷藏时间差异显著(P<0.05),不同小写字母表示同一冷藏时间不同处理组差异显著(P<0.05),下同。

    Figure  2.   The effect of 1-MCP pre-treatment on respiratory rate of kiwifruit under vibration stress during refrigeration

    图  3   1-MCP预处理对振动胁迫猕猴桃冷藏期间失重率(A)及MDA含量(B)的影响

    Figure  3.   Effect of 1-MCP pre-treatment on weight loss rate (A) and MDA content (B) of kiwifruit under vibration stress during refrigeration

    图  4   1-MCP预处理对振动胁迫猕猴桃冷藏期间可溶性固形物(A)及抗坏血酸含量(B)的影响

    Figure  4.   Effect of 1-MCP pre-treatment on soluble solid (A) and ascorbic acid content (B) of kiwifruit under vibration stress during refrigeration

    图  5   1-MCP预处理对振动胁迫猕猴桃冷藏期间APX(A)和CAT活性(B)的影响

    Figure  5.   Effect of 1MCP pre-treatment on APX (A) and CAT activity (B) of kiwifruit under vibration stress during refrigeration

    图  6   1-MCP预处理对振动胁迫猕猴桃冷藏期间细胞壁微观结构的影响

    注:A:对照组;B:振动组;C:1-MCP组;D:1-MCP+振动组;CW:细胞壁。

    Figure  6.   Effect of 1-MCP pre-treatment on cell wall microstructure of kiwifruit under vibration stress during refrigeration

    图  7   猕猴桃果实冷藏品质聚类分析

    注:A:对照组; B:1-MCP组;C:1-MCP+振动组;D:振动组。

    Figure  7.   The cluster analysis of refrigeration qualities of kiwifruit

    表  1   1-MCP预处理对振动胁迫猕猴桃冷藏期间色泽的影响

    Table  1   Effect of 1-MCP pre-treatment on color of kiwifruit under vibration stress during refrigeration

    色泽 冷藏时间
    (d)
    对照组 1-MCP组 1-MCP+振动组 振动组
    L* 0 64.55±1.37Aa 64.82±1.97Aa 61.30±0.83Ab 60.24±1.26Ab
    10 63.27±1.19Aa 63.77±0.86Aa 58.85±1.56Bb 55.94±1.21Bc
    20 57.98±1.27Ba 58.51±1.01Ba 53.98±2.00Cb 50.91±1.78Cc
    30 54.37±1.95Ca 55.10±0.62Ca 46.84±1.63Db 43.40±1.50Dc
    40 47.54±1.72Da 48.75±1.89Da 43.91±1.77Eb 40.72±2.04Ec
    a* 0 −3.32±0.13Ca −3.34±0.20Ca −3.14±0.51Ca −2.98±0.28Ca
    10 −2.99±0.46Ca −2.90±0.07Ba −2.69±0.18BCa −2.64±0.50BCa
    20 −2.79±0.16BCb −2.81±0.47Bb −2.23±0.19ABa −2.15±0.40ABa
    30 −2.28±0.19ABb −2.20±0.16Ab −1.75±0.25Aa −1.73±0.12Aa
    40 −1.80±0.15Aa −1.80±0.10Aa −1.71±0.07Aa −1.61±0.19Aa
    b* 0 21.26±0.72Aa 21.31±0.81Aa 21.20±0.61Aa 20.59±1.27Aa
    10 20.44±1.00Aa 20.27±0.51Aa 19.75±1.71Ba 19.50±1.13Aa
    20 19.94±0.74Aa 19.99±0.88Aa 19.42±0.97Ba 19.18±0.86Aa
    30 16.94±1.48Ba 16.79±1.47Bab 14.43±1.31Cbc 12.80±1.90Bc
    40 16.11±0.58Ba 15.89±1.29Bab 14.02±0.80Cb 12.37±1.03Bc
    ∆E 0 32.74±1.40Db 32.23±0.92Db 35.02±0.82Ca 36.24±1.21Ea
    10 33.24±1.47Dc 32.96±1.18Dc 37.14±1.01Cb 38.96±1.10Da
    20 38.63±1.48Cb 38.18±1.60Cb 41.52±1.76Ba 42.23±1.79Ca
    30 41.75±1.72Bc 40.78±1.09Bc 46.59±1.10Ab 48.93±1.88Ba
    40 46.53±1.42Abc 45.15±1.20Ac 49.53±1.21Ab 51.24±1.71Aa
    注:表中同列不同大写字母表示同一处理组不同冷藏时间差异显著(P<0.05),同行不同小写字母表示同一冷藏时间不同处理组差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 靳政时, 牛犇, 刘瑞玲, 等. 干燥方式对猕猴桃果干品质的影响[J]. 食品工业科技,2022,43(24):62−71. [JIN Z, NIU B, LIU R, et al. Effects of drying methods on the quality of dried kiwifruit[J]. Science and Technology of Food Industry,2022,43(24):62−71.]

    JIN Z, NIU B, LIU R, et al. Effects of drying methods on the quality of dried kiwifruit[J]. Science and Technology of Food Industry, 2022, 43(24): 62−71.

    [2] 费承鑫, 武海霞, 陈胤男, 等. 猕猴桃软腐病采后处理研究进展[J]. 食品安全导刊,2022(29):153−155. [FEI C X, WU H X, CHEN Y N, et al. Progress in the postharvest treatment of kiwi soft rot disease[J]. China Food Safety Magazine,2022(29):153−155.]

    FEI C X, WU H X, CHEN Y N, et al. Progress in the postharvest treatment of kiwi soft rot disease[J]. China Food Safety Magazine, 2022(29): 153−155.

    [3] 钟彩虹, 黄文俊, 李大卫, 等. 世界猕猴桃产业发展及鲜果贸易动态分析[J]. 中国果树,2021(7):101−108. [ZHONG C H, HUANG W J, LI D W, et al. Dynamics analysis of the global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101−108.]

    ZHONG C H, HUANG W J, LI D W, et al. Dynamics analysis of the global kiwifruit industry development and fresh fruit trade[J]. China Fruits, 2021(7): 101−108.

    [4] 洪伟荣, 王璇, 刘馨岚, 等. 1-MCP预处理对采后猕猴桃机械损伤导致品质变化的影响[J]. 保鲜与加工,2021,21(2):7−12. [HONG W R, WANG X, LIU X L, et al. Effect of 1-MCP pretreatment on kiwifruit quality changes caused by mechanical damage after harvest[J]. Storage and Process,2021,21(2):7−12.]

    HONG W R, WANG X, LIU X L, et al. Effect of 1-MCP pretreatment on kiwifruit quality changes caused by mechanical damage after harvest[J]. Storage and Process, 2021, 21(2): 7−12.

    [5] 黄诚, 周长春, 李伟. 猕猴桃的营养保健功能与开发利用研究[J]. 食品科技,2007(4):51−55. [HUANG C, ZHOU C C, LI W. Nutrition and health care function of kiwi fruit and its processing technique[J]. Food Science and Technology,2007(4):51−55.]

    HUANG C, ZHOU C C, LI W. Nutrition and health care function of kiwi fruit and its processing technique[J]. Food Science and Technology, 2007(4): 51−55.

    [6]

    SIVAKUMARAN S, HUFFMAN L, SIVAKUMARAN S, et al. The nutritional composition of Zespri® SunGold kiwifruit and Zespri® sweet green kiwifruit[J]. Food Chemistry,2018,238:195−202. doi: 10.1016/j.foodchem.2016.08.118

    [7] 彭丽, 孙兴盛, 梁惜雯, 等. 不同浓度1-MCP熏蒸处理对“龙成2号”软枣猕猴桃品质的影响[J]. 包装工程,2022,43(5):68−75. [PENG L, SUN X S, LIANG X W, et al. Effect of different concentrations of 1-methylcyclopropene vapor treatment on quality of postharvest “Long Cheng 2” Actinidia arguta[J]. Packaging Engineering,2022,43(5):68−75.]

    PENG L, SUN X S, LIANG X W, et al. Effect of different concentrations of 1-methylcyclopropene vapor treatment on quality of postharvest “Long Cheng 2” Actinidia arguta[J]. Packaging Engineering, 2022, 43(5): 68−75.

    [8] 王敏, 关博洋, 殷菲胧, 等. 果蔬机械损伤的生理及分子机制研究进展[J]. 食品研究与开发,2022,43(9):205−211. [WANG M, GUAN B Y, YIN F D, et al. Advances in research on physiological and molecular mechanisms of mechanical damage of fruits and vegetables[J]. Food Research and Development,2022,43(9):205−211.]

    WANG M, GUAN B Y, YIN F D, et al. Advances in research on physiological and molecular mechanisms of mechanical damage of fruits and vegetables[J]. Food Research and Development, 2022, 43(9): 205−211.

    [9] 卢立新, 周德志. 基于疲劳损伤理论的果品振动损伤模型表征[J]. 农业工程学报,2009,25(11):341−344. [LU L X, ZHOU D Z. Model for vibration-cumulative bruising of fruit based on fatigue damage theory[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(11):341−344.]

    LU L X, ZHOU D Z. Model for vibration-cumulative bruising of fruit based on fatigue damage theory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(11): 341−344.

    [10] 伍景琼, 郑露, 巴雪琴, 等. 果蔬农产品冷链物流技术研究进展[J]. 北京交通大学学报(社会科学版),2023,22(3):119−135. [WU J Q, ZHENG L, BA X Q, et al. Progress of research on cold chain logistics technology for fruit and vegetable agricultural products[J]. Journal of Beijing Jiaotong University (Social Science Edition),2023,22(3):119−135.]

    WU J Q, ZHENG L, BA X Q, et al. Progress of research on cold chain logistics technology for fruit and vegetable agricultural products[J]. Journal of Beijing Jiaotong University (Social Science Edition), 2023, 22(3): 119−135.

    [11]

    MIR H, SHAHBAZI F. Simulated transit vibration effects on the postharvest quality of persimmon during storage[J]. Postharvest Biology and Technology,2022,189:111918.

    [12]

    WEI X, XIE D, MAO L, et al. Excess water loss induced by simulated transport vibration in postharvest kiwifruit[J]. Scientia Horticulturae,2019,250:113−120.

    [13] 谢丹丹, 茅林春, 卢文静, 等. 猕猴桃果实对模拟运输振动的生理和品质响应[J]. 食品研究与开发,2018,39(11):168−174. [XIE D D, MAO L C, LU W J, et al. Physiological and qualitative responses to simulated transport vibration in kiwifruit[J]. Food Research and Development,2018,39(11):168−174.]

    XIE D D, MAO L C, LU W J, et al. Physiological and qualitative responses to simulated transport vibration in kiwifruit[J]. Food Research and Development, 2018, 39(11): 168−174.

    [14] 杜美军, 阎一鸣, 刘震远, 等. 采前外源植物激素与采后1-MCP处理对糖心苹果贮藏品质的影响[J]. 食品科学技术学报,2021,39(3):151−159. [DU M J, YAN Y M, LIU Z Y, et al. Effects of pre-harvest exogenous phytohormone and post-harvest 1-MCP treatment on storage quality of sugar-core apple[J]. Journal of Food Science and Technology,2021,39(3):151−159.]

    DU M J, YAN Y M, LIU Z Y, et al. Effects of pre-harvest exogenous phytohormone and post-harvest 1-MCP treatment on storage quality of sugar-core apple[J]. Journal of Food Science and Technology, 2021, 39(3): 151−159.

    [15] 邓红军, 陈小红, 李萍, 等. 1-MCP处理对采后机械损伤黄瓜生理生化特性的影响[J]. 食品工业科技,2013,34(9):332−335, 347. [DENG H J, CHEN X H, LI P, et al. Effect of 1-methylcyclopropene treatments on physiological and chemical characteristics of cucumber fruits suffered mechanical damage during post-harvest[J]. Science and Technology of Food Industry,2013,34(9):332−335, 347.]

    DENG H J, CHEN X H, LI P, et al. Effect of 1-methylcyclopropene treatments on physiological and chemical characteristics of cucumber fruits suffered mechanical damage during post-harvest[J]. Science and Technology of Food Industry, 2013, 34(9): 332−335, 347.

    [16] 王金燕, 徐嘉, 王庆萱, 等. 1-MCP结合开孔包装对软枣猕猴桃果实软化的研究[J]. 包装工程,2024,45(9):10−16. [WANG J Y, XU J, WANG Q X, et al. Softening of Actinidia arguta fruits by 1-MCP combined with open-pore packaging[J]. Packaging Engineering,2024,45(9):10−16.]

    WANG J Y, XU J, WANG Q X, et al. Softening of Actinidia arguta fruits by 1-MCP combined with open-pore packaging[J]. Packaging Engineering, 2024, 45(9): 10−16.

    [17] 曹森, 王瑞, 钱波, 等. 1-MCP对“贵长”猕猴桃模拟运输后货架品质影响研究[J]. 食品工业科技,2016,37(6):335−340,350. [CAO S, WANG R, QIAN B, et al. Effect of 1-MCP on the ‘Guichang’ kiwi shelf quality after postharvest simulate transport[J]. Science and Technology of Food Industry,2016,37(6):335−340,350.]

    CAO S, WANG R, QIAN B, et al. Effect of 1-MCP on the ‘Guichang’ kiwi shelf quality after postharvest simulate transport[J]. Science and Technology of Food Industry, 2016, 37(6): 335−340,350.

    [18] 何靖柳, 刘继, 秦文, 等. 贮藏处理后红阳猕猴桃的品质变化[J]. 食品工业科技,2014,35(8):318−322. [HE J L, LIU J, QIN W, et al. Research of qualities of ‘Red Sun’ kiwifruit during postharvest period[J]. Science and Technology of Food Industry,2014,35(8):318−322.]

    HE J L, LIU J, QIN W, et al. Research of qualities of ‘Red Sun’ kiwifruit during postharvest period[J]. Science and Technology of Food Industry, 2014, 35(8): 318−322.

    [19] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社, 2007. [CAO J K, JIANG W B, ZHAO Y M. Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press, 2007.]

    CAO J K, JIANG W B, ZHAO Y M. Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007.

    [20] 张悦, 李安, 潘立刚, 等. 1-甲基环丙烯结合植酸处理对菠菜保鲜效果的影响[J]. 食品科学,2023,44(1):231−238. [ZHANG Y, LI A, PAN L G, et al. Effects of combined treatment with 1-methylcyclopropene and phytic acid on quality preservation of spinach[J]. Food Science,2023,44(1):231−238.]

    ZHANG Y, LI A, PAN L G, et al. Effects of combined treatment with 1-methylcyclopropene and phytic acid on quality preservation of spinach[J]. Food Science, 2023, 44(1): 231−238.

    [21]

    CHOI D, CHOI J H, PARK K J, et al. Transcriptomic analysis of effects of 1-methylcyclopropene (1-MCP) and ethylene treatment on kiwifruit (Actinidia chinensis) ripening[J]. Frontiers in Plant Science,2023,13:1084997. doi: 10.3389/fpls.2022.1084997

    [22] 陈璐, 毛积鹏, 高柱, 等. 气调包装对采后‘金艳’猕猴桃货架期及内在品质的影响[J]. 北方园艺,2024(10):85−91. [CHEN L, MAO J P, GAO Z, et al. Effect of modified atmosphere packaging on shelf life and intrinsic quality of post-harvest ‘Jinyan’ kiwifruit[J]. Northern Horticulture,2024(10):85−91.]

    CHEN L, MAO J P, GAO Z, et al. Effect of modified atmosphere packaging on shelf life and intrinsic quality of post-harvest ‘Jinyan’ kiwifruit[J]. Northern Horticulture, 2024(10): 85−91.

    [23]

    CHAI J, WANG Y, LIU Y, et al. 1-MCP extends the shelf life of ready-to-eat ‘Hayward’ and ‘Qihong’ kiwifruit stored at room temperature[J]. Scientia Horticulturae,2021,289:110437. doi: 10.1016/j.scienta.2021.110437

    [24]

    RUIZ-ARACIL M C, GUILLEN F, ILEA M I M, et al. Comparative effect of melatonin and 1-methylcyclopropene postharvest applications for extending ‘Hayward’ kiwifruit storage life[J]. Agriculture,2023,13(4):806. doi: 10.3390/agriculture13040806

    [25] 孙一鸣, 马先润, 张立军, 等. 猕猴桃电商包装随机振动响应及果品损伤研究[J]. 包装工程,2023,44(19):67−74. [SUN Y M, MA X M, ZHANG L J, et al. Random vibration response and damage of kiwifruit e-commerce packaging[J]. Packaging Engineering,2023,44(19):67−74.]

    SUN Y M, MA X M, ZHANG L J, et al. Random vibration response and damage of kiwifruit e-commerce packaging[J]. Packaging Engineering, 2023, 44(19): 67−74.

    [26] 姚亚明, 任月月, 刘芮瑜, 等. 1-MCP处理结合纳米包装对金针菇贮藏品质的影响[J]. 食品科学,2016,37(22):295−300. [YAO Y M, REN Y Y, LIU R Y, et al. Effect of 1-MCP treatment combined with nano-packaging on the quality of Flammulina velutipes[J]. Food Science,2016,37(22):295−300.]

    YAO Y M, REN Y Y, LIU R Y, et al. Effect of 1-MCP treatment combined with nano-packaging on the quality of Flammulina velutipes[J]. Food Science, 2016, 37(22): 295−300.

    [27] 吴琼, 周然. 冷藏温度对振动胁迫下猕猴桃细胞膜脂氧化及活性氧成分的影响[J]. 食品工业科技,2019,40(8):234−240. [WU Q, ZHOU R. Effect of cold temperature on membrane lipid oxidation and active oxygen species of kiwifruit under vibratory stress[J]. Science and Technology of Food Industry,2019,40(8):234−240.]

    WU Q, ZHOU R. Effect of cold temperature on membrane lipid oxidation and active oxygen species of kiwifruit under vibratory stress[J]. Science and Technology of Food Industry, 2019, 40(8): 234−240.

    [28] 彭梦云, 黄明, 周敏, 等. 电商速递中1-MCP处理对巫山脆李货架品质的影响[J]. 食品研究与开发,2023,44(14):52−58. [PENG M Y, HUANG M, ZHOU M, et al. Effect of 1-MCP treatment in E-commerce logistics on the quality of Wushan crisp plums during shelf life[J]. Food Research and Development,2023,44(14):52−58.]

    PENG M Y, HUANG M, ZHOU M, et al. Effect of 1-MCP treatment in E-commerce logistics on the quality of Wushan crisp plums during shelf life[J]. Food Research and Development, 2023, 44(14): 52−58.

    [29]

    WANG F, YANG Q, ZHAO Q, et al. Roles of antioxidant capacity and energy metabolism in the maturity-dependent chilling tolerance of postharvest kiwifruit[J]. Postharvest Biology and Technology,2020,168:111281. doi: 10.1016/j.postharvbio.2020.111281

    [30]

    LEE S K, KADER A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops[J]. Postharvest Biology and Technology,2000,20(3):207−220. doi: 10.1016/S0925-5214(00)00133-2

    [31]

    KHODAEI M, SEIIEDLOU S, SADEGI M. The evaluation of vibration damage in fresh apricots during simulated transport[J]. Research in Agricultural Engineering,2019,65(4):112−122. doi: 10.17221/12/2019-RAE

    [32]

    WIN N M, YOO J, NAING A H, et al. 1-Methylcyclopropene (1-MCP) treatment delays modification of cell wall pectin and fruit softening in “Hwangok” and “Picnic” apples during cold storage[J]. Postharvest Biology and Technology,2021,180:111599. doi: 10.1016/j.postharvbio.2021.111599

    [33]

    HOU D, WANG C, YANG Y, et al. Effects of transport vibration on storage quality and expression of genes related to cell wall metabolism of winter jujube (Zizyphus jujuba Mill. cv. Dalidongzao)[J]. Postharvest Biology and Technology,2024,209:112729. doi: 10.1016/j.postharvbio.2023.112729

  • 期刊类型引用(1)

    1. 周晓倩,李晓贝,张艳梅,周昌艳,任佳丽,赵晓燕. 基于GC-IMS和GC×GC-To F-MS技术分析产地对羊肚菌挥发性风味成分的影响. 中国农业科学. 2024(22): 4553-4567 . 百度学术

    其他类型引用(2)

图(7)  /  表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  3
  • PDF下载量:  5
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-08-25
  • 网络出版日期:  2025-03-24

目录

/

返回文章
返回
x 关闭 永久关闭