• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

海参多糖的结构、健康功效及作用机制的研究进展

董新玉, 米锐, 王馥仪, 李海漫, 李莹, 陈碧漪, 赵前程

董新玉,米锐,王馥仪,等. 海参多糖的结构、健康功效及作用机制的研究进展[J]. 食品工业科技,2025,46(8):1−10. doi: 10.13386/j.issn1002-0306.2024070404.
引用本文: 董新玉,米锐,王馥仪,等. 海参多糖的结构、健康功效及作用机制的研究进展[J]. 食品工业科技,2025,46(8):1−10. doi: 10.13386/j.issn1002-0306.2024070404.
DONG Xinyu, MI Rui, WANG Fuyi, et al. Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism[J]. Science and Technology of Food Industry, 2025, 46(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070404.
Citation: DONG Xinyu, MI Rui, WANG Fuyi, et al. Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism[J]. Science and Technology of Food Industry, 2025, 46(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070404.

海参多糖的结构、健康功效及作用机制的研究进展

基金项目: 辽宁省教育厅高等学校基本科研项目重点攻关项目(LJKZZ20220090);辽宁省自然科学基金计划项目(2022-BS-275);辽宁省教育厅青年项目(LJKQZ20222401);大连海洋大学博士启动项目(HDYJ202201)。
详细信息
    作者简介:

    董新玉(1999−),女,硕士研究生,研究方向:食品营养与安全,E-mail:2240231097@qq.com

    通讯作者:

    赵前程(1966−),男,博士,教授,研究方向:食品营养与安全,E-mail:qczhao@dlou.edu.cn

  • 中图分类号: TS254.1

Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism

  • 摘要: 海参多糖具有独特的结构和广泛的生物活性,进入机体后可以作为调节剂或与微生物群相互作用来发挥健康功效。本文总结了海参多糖的分类及结构,对比分析了不同种类的海参糖胺聚糖和海参岩藻聚糖硫酸酯的分子量、化学组成、单糖组成的比例以及硫酸根含量。梳理了海参多糖通过抗凝血作用控制血栓、通过免疫调节作用抑制肿瘤细胞的功效机制,并综述了海参多糖作为益生元调节肠道菌群、改善代谢类疾病的相关进展。阐明海参多糖作为功效活性物质改善血栓、肿瘤、肥胖、糖尿病等多种健康问题的可行性,展望了海参多糖在药品和食品研究及开发的发展方向,为海参多糖的功能性应用提供理论依据。
    Abstract: Sea cucumber polysaccharide is a kind of active substance with unique structure and wide biological activity. Sea cucumber polysaccharide can be used as an immunomodulator or improve the health of the body by regulating the intestinal flora after entering the body. This paper summarized the classification and structure of sea cucumber polysaccharide, and comparatively analyzed the molecular weight, chemical composition, proportion of monosaccharide composition and sulfate content of different types of glycosaminoglycans and fucan sulfate. It also sorted out the effective mechanism of sea cucumber polysaccharide in controlling thrombosis through anti-thrombotic and anti-tumor cells by immunomodulation. Moreover, it reviewed the relevant progress of sea cucumber polysaccharides as prebiotics in regulating intestinal flora and improving metabolic diseases. It is important to elucidate the feasibility of sea cucumber polysaccharide as an effective active substance to improve blood clots, tumors, obesity, prospects for the development of sea cucumber polysaccharides in pharmaceutical and food research and development. diabetes and other health problems, providing a theoretical basis for the functional application of sea cucumber polysaccharide.
  • 海参属棘皮动物门(Echinodermata),是一种具有食用和药用价值的海珍品,种类繁多,资源丰富。全球海参品种约有1700种,其中可食用品种约58种[1],具有较高营养和经济价值的海参品种大约有20种。随着我国海参产业的迅速发展,对其需求日益增长,人们对海参的研究也不断深入,开发的产品常被用于健康食品、传统药物和膳食补充剂[2]

    海参富含蛋白质、维生素、矿物质等营养成分及多糖、皂苷、酚类等[3]生物活性成分。海参多糖是海参体壁最重要的活性成分,因其独特结构和广泛的生物活性而引起研究者极大的关注。研究表明,海参多糖是一种硫酸化多糖,通过膳食能在肠道[4]作为调节剂或与微生物群相互作用来发挥健康功效,具有降血脂[5]、调节免疫[6]、抗肿瘤[7]、抗病毒[8]、抗凝血[9]、抗血栓[10]、抗衰老、促进伤口愈合[11]等作用。海参多糖可以通过结构的特殊性直接发挥功效,也可以通过免疫调节缓解机体的病理状态,也可以通过调节肠道菌群结构影响微生物代谢物的产生,进而改善人体健康。

    近年来,关于海参多糖的结构、组成、活性、提取、纯化、加工技术以及测定方法等相关文献综述已有很多报道,但是对于海参多糖健康功效、作用机制、肠道菌群互作调节健康相关的综述性文章相对较少。本文总结了海参多糖的分类及结构,综述了海参多糖对机体的健康功效及作用机制,并对海参多糖未来的研究和发展方向进行了展望,旨在为海参多糖在健康领域的开发和应用提供参考。

    海参多糖的含量仅次于蛋白质,主要存在于海参体壁、性腺及内脏中。海参多糖主要分为两种类型:一类为海参糖胺聚糖,也称海参岩藻糖基化硫酸软骨素(sea cucumber fucosyl chondroitin sulfate, SC-FCS),是有多种分支的杂多糖;另一类为海参岩藻聚糖硫酸酯(sea cucumber fucoidan, SC-FUC),通常称为岩藻聚糖[12],是由L-岩藻糖和硫酸盐组成的直链多糖。海参多糖属于不均一的杂多糖,结构比较复杂,而结构又是活性的基础。在不同种类的海参中,SC-FCS和SC-FUC两种类型的海参多糖的糖苷键、分子量、单糖组成、硫酸基含量等结构方面的差异较大,活性也随着结构的不同而变化。

    硫酸软骨素来源于动物的软骨及结缔组织当中,在海参体内形成了特殊的岩藻糖基化结构。海参岩藻糖基化硫酸软骨素是一种带有岩藻糖支链的酸性粘多糖,具有硫酸软骨素(CS)的基本骨架,由N-乙酰-D-半乳糖胺(N-acetyl-β-Dgalactosamine, GalNAc)和D-葡萄糖醛酸(glucuronic acid, GlcUA)、岩藻糖(fucose, Fuc)和硫酸盐组成[13],分子量大多在20~100 kDa之间[14]。如图1所示,SC-FCS的主链结构为[4-β-D-GlcUA-1→3-β-D-GalNAC-1]n[12],并由β-D-GlcUA和β-D-GalNAc构成了二糖重复单元。SC-FCS的支链结构通常以不同聚合度的硫酸化L-岩藻糖构成,主要连接在β-D-GlcUA的C-3位上和β-D-GalNAc的C-4和C-6位上。不仅如此,岩藻糖支链也会以1-2,1-3,1-4等键连接方式与主链连接。

    图  1  海参岩藻糖基化硫酸软骨素的结构
    Figure  1.  Structure of fucosylated chondroitin sulfate of sea cucumber

    研究表明,不同的SC-FCS的结构因种类而异,主要体现在硫酸化模式、硫酸基岩藻糖分支的大小和连接位置[15]。如表1所示,不同种类的SC-FCS的分子量、化学组成、单糖组成的比例以及硫酸根含量存在差异。如Pearsonothuria graeffeiIsostichopus badionotus海参的FCS分支上的硫酸化模式不同,分别为3,4-O硫酸化(FCS-3,4S)和2,4-O-硫酸化(FCS-2,4S)[16]。Ustyuzhanina等[17]从巴塔哥尼亚海参(Hededema spectabilis)的FCS发现,连接在GlcA O-3的岩藻糖基支链含有不同的硫酸化模式,Fucp2S4S、Fucp4S和Fucp3S4S比率为3.8:1.5:1,GlcA:GalNAc:Fuc:SO3的摩尔比为1.15:1:1.1:3.9,分子量为44.1 kDa。尹利昂等[18]在研究四种海参中含岩藻糖支链的硫酸软骨素时,发现不同的SC-FCS之间的单糖组成即葡萄糖醛酸、乙酰氨基半乳糖和岩藻糖的摩尔比存在显著差异。基于核磁共振波谱分析,不同海参品种的FCS基本符合图1所示的三糖结构,主要的差异体现在岩藻糖的支链上[19]。显然,不同SC-FCS的精确结构的阐明将有助于更好的理解SC-FCS结构的多样性。

    表  1  不同种类海参多糖的结构、相对分子质量及化学组成比较
    Table  1.  Comparison of structure, relative molecular weight and chemical composition of polysaccharides of different species of sea cucumber
    海参多糖 海参种类 分子量(kDa) 结构 单糖化学组成比例 硫酸基 硫酸根
    含量(%)
    硫酸根模式 参考
    文献
    FUC GlcUA GalNAc 其他
    海参硫酸
    软骨素
    小有刺参(Holothuria floridana 111.07 1.00 0.52 0.54 Man(0.29)、Gal(0.15)、Glc(0.03)、GlcN(0.08) 3.67 32.42 [27]
    硬瓜参 (Eupentacta fraudatrix →4)-β-D-GlcpA2S3S-(1→3)-β-D-GalpNAc6S-(1→with branch Fucp3S4S-(1→2)α-L-Fucp3S4S-(1→ 1.00 0.82 Glc(0.65) 25.50 [4]
    巴塔哥尼
    亚海参
    Hemioedema spectabilis
    44.10 →3)-β-D-GalNAc-(1→4)-β-D-Glc A(3-Oα-L-Fuc)-(1→ 1.00 1.04 0.91 Glc(1.05) 3.55 18.30 Fucp2S4S、Fucp4S、Fucp3S4
    (3.8:1.5:1)
    [17]
    海地瓜(Acaudina molpadioides 90.8 →4)Glc Aβ(1→3)Gal NAc4S6Sβ(1→ with branch Fuc(2S4S, 3S4S or 4S)p(1→3)Glc Aβ 1.00 0.94 0.08 GlcN(0.80) 2.64 Fuc4S、Fuc3,4S和Fuc2,4S [28]
    绿刺参(Stichopus chloronotus 63.2 →3)Gal NAc4S6Sβ(1→4) Fuc2S4Sα(1→3)Glc Aβ(1→ 1.00 0.83 0.91 2.94 [29]
    海棒槌(Paracaudina chilensis 28.90 1.00 1.04 0.80 GlcN(0.11)、Gal(0.40) 1.53 Fucp2S4S:Fucp4S (2:1) [30]
    美国肉参(Isostichopus badionotus 109.00 [→4)Glc Aβ(1→3)Gal NAc4S6Sβ(1→ with branch Fuc2S4Sp(1 →3)Glc An 1.00 1.11 0.78 3.44 Fucp2S4S(95.9%)、Fucp4S(4.1%) [31]
    大乌爪海参(Holothuria tubulosa 42.00 Fuc-(1→3)-GlcA 1.00 0.75 0.77 3.55 Fucp2S4S:Fucp3S4S:Fucp4S (2.83:2.14:1) [32]
    海参岩藻聚糖硫酸酯
    小有刺参(Holothuria floridana 658.15 1.00 0.02 Man(0.01)、Gal(0.13)、Glc(0.06)、GlcN(0.05)、GalN(0.05) 0.72 29.46 [27]
    大乌爪海参(Holothuria tubulosa 1567.6 [→3-α-L-Fucp2(OSO3)-1→3-α-L-Fucp2,4(OSO3-)-1→3-α-L-Fucp-1→3-α-L-Fucp2(OSO3-)-1→]n 1.00 1.00 31.20 [33]
    仿刺参(Apostichopus japonicus 1.00 0.11 Man(0.17)、GlcN(0.04)、GalN(0.33)、Gal(0.07) 0.42 [34]
    绿刺参(Stichopus chloronotus 778.70 [→3-α-L-Fucp2
    (OSO3-)-1→]n
    1.00 1.30 35.70 [35]
    美国肉参(Isostichopus badionotus 450.00 [→3-α-L-Fucp2,4(OSO3 )-1→3-α-L-Fucp2(OSO3
    -)-1→3-α-L-Fucp2(OSO3 -)-1→3-α-L-Fucp-1→]n
    1.00 0.92 32.90 [23]
    格皮式海参(Pearsonothuria graeffei 310.00 [→3)Fuc2S4Sα(1→3)Fucα(1→3)Fuc4Sα(1→3)Fucα(1→]n 1.00 30.4 [54]
    注:-:文献未报到或未检出注;FUC:岩藻糖;Man:甘露糖;GlcN:氨基葡萄糖;Glc:葡萄糖;Gal:半乳糖;GalN:氨基半乳糖;GlcUA:葡萄糖醛酸;GalNAc:N-乙酰半乳糖胺
    下载: 导出CSV 
    | 显示表格

    岩藻糖是动物肠道上皮细胞和肠道微生物表面糖蛋白的重要糖基组成成分,岩藻糖和岩藻聚糖硫酸酯不仅是肠道微生物的碳源和能量物质,也对微生物与宿主的共生及维持人体健康有重要作用[20]。岩藻聚糖硫酸酯是一种存在于褐藻及棘皮动物当中结构复杂的海洋杂多糖,海参岩藻聚糖硫酸酯是一种由岩藻聚糖硫酸酯和硫酸盐构成的线性多糖,主链是由α(1→3)连接的硫酸化L-岩藻糖构[21]。如图2所示,硫酸根位于L-岩藻糖的C-2、C-4或C-2,4位上。SC-FUC中岩藻糖之间的连接方式以α-1,3-糖苷键和α-1,4-糖苷键为主,硫酸化模式包括α-L-Fuc2S、α-L-Fuc3S、α-L-Fuc4S和α-L-Fuc2S4S四种,重复单元包含单岩藻糖重复单元、四岩藻糖重复单元、五岩藻糖重复单元和六岩藻糖重复单元四类。Li等[22]发现Stichopus chloronotus由单岩藻糖重复单元构成且硫酸基取代基位于C-2上;Li等[22]和Chen等[23]人分别发现Holothuria poliiIsostichopus badionotus的FUC均是由四岩藻糖重复单元构成且硫酸基取代基位于C-2和C-2,4位上;Yu等[24]发现Apostichopus japonicus的FUC由五岩藻糖重复单元构成且硫酸基取代基位于C-2上;Cai等[25]发现Holothuria albiventer的FUC由六岩藻糖重复单元构成且硫酸基取代基位于C-4和C-2,4位上。此外,与海参硫酸软骨素相比较,SC-FUC的化学组成和主链结构较为简单。从海参中提取的FUC单糖组成较为单一,基本只含有岩藻糖[26],如表1所示,部分海参仍含有少量的甘露糖、半乳糖、氨基葡萄糖、葡萄糖醛酸、葡萄糖等其他单糖。

    图  2  海参岩藻聚糖硫酸酯的结构
    Figure  2.  Structure of fucoidan sulfate of sea cucumber

    总之,海参多糖SC-FCS和SC-FUC的结构比较复杂,对不同来源的海参多糖结构还有很大的研究空间。海参多糖的分子量、硫酸化模式、硫酸基含量等结构特性与生物学活性密切相关,硫酸化的修饰是可以改变多糖的结构特征,提高生物活性。海参多糖结构和活性之间的构效关系集中于分子量和取代基方面的研究,而其分子量的大小以及结构的多样性都会对生物活性有显著的影响,因此深入研究海参结构和活性间的关系对于海参相关药物以及保健品的开发是至关重要的。

    凝血是人体不可或缺的生理功能,但是其引发的血栓类疾病逐渐引发社会的关注。抗血栓药物能够控制血栓性疾病的发展,临床使用的抗血栓药物有抗凝血类药,其作用机理是抑制或扰乱凝血因子,使血液无法凝固。以肝素(unfractionatedheparin, UFH)为代表的抗凝药物在预防和治疗血栓性疾病方面有着广泛应用,但会产生一系列副作用如出血、血小板减少等情况,而且不能口服,这给临床带来诸多不便。因此,研发更安全的抗血栓药物尤为重要。近些年研究发现,SC-FCS具有一些特殊结构能产生与肝素类似的抗凝血活性,由于其抗凝血酶的依赖性,出血风险更低[28],有望成为潜在的抗凝血药物,在控制血栓性疾病方面具有应用潜力。

    SC-FCS因独特结构及高度的硫酸化修饰而表现出抗凝血活性。SC-FCS独特的结构特征包括链长、不同硫酸化岩藻聚糖侧链的比例以及特殊的二糖分支都可能显著影响其活性[23]。Li等[15]和Mao等[36]在研究黑海参(Holothuria nobilis)和海地瓜(Acaudina molpadioides)的FCS结构与抗凝血活性的关系时,分别鉴定到新的二糖分支结构D-GalNAcS-α1,2-L-Fuc3S(~33%)和(GalNAc-α1,2-Fuc3S4S(15%),对抗凝血活性影响显著。天然或解聚后的黑海参FCS能够延长活化部分凝血时间(APTT)和抑制内源性凝血因子Xase(iXase),天然的海地瓜FCS通过链长发挥抗凝血活性和iXase抑制活性。并且,研究发现FCS支链的硫酸化方式和分子量对抗凝血活性也有一定的影响。Yuan等[37]在研究刺参(S. monotuberculatus)抗凝血活性的研究中发现,解聚的岩藻糖基化糖胺聚糖通过选择性抑制内在tense复合物显示出较强的抗凝血活性,抗凝血活性也随着分子量的降低而降低,异常分支和新的还原端会增强抗凝血活性。吕律[38]在研究不同分子量的仿刺参(Apostichopus japonicas)的FCS的抗凝血实验中发现,其抗凝血活性和抗血栓活性都会随着分子量的增大而增强,安全性随分子量的降低而提高。综上所述,海参多糖虽然来源不同,种类有异,但其分子量与抗凝血活性呈正相关性,此外,其二糖分支可能会增强抗凝血活性,表明结构和活性及其种类三者也是密切相关,抗凝血活性和构效关系的进一步研究可以为开发抗凝血剂提供更多的信息。

    抗凝血活性的机制是多样化的。如图3所示,海参多糖通过肝素辅因子II(HCII)加速对凝血酶的抑制,能够抑制内源性和外源性凝血途径中的凝血因子,并通过激活凝血酶原抑制因子VIII活化和X活化,抑制纤维蛋白单体的聚集,从而通过抗凝血作用控制血栓疾病。研究表明,SC-FCS的抗凝血活性通常取决于增强凝血酶的抑制能力和抗凝血酶III(ATIII)存在时的因子Xa。Ustyuzhanina等[39]研究发现Paracaudina chilensisHolothuria hilla两种海参的FCS均具有抗凝血活性,并且在抗凝血酶III的存在下,增强凝血酶和Xa因子抑制作用是相关的。与此同时,也有学者研究海参Massinium magnum时发现,其FCS有效加强ATIII对凝血酶和Xa因子的控制[40]。SC-FCS也能表现出由丝氨酸蛋白酶抑制剂依赖性和非依赖性机制介导的高抗凝血活性,其作用机制包括凝血酶对因子VIIIa激活的抑制和内在的tense复合物对Xa激活的抑制[41]。综上所述,表明SC-FCS中存在着HCII的结合位点,主要通过抑制凝血因子来发挥作用。

    图  3  海参多糖通过抗凝血作用控制血栓疾病的作用机制
    Figure  3.  The mechanism of sea cucumber polysaccharide controlling thrombotic disease through anticoagulation

    恶性肿瘤是威胁人类健康最严重的疾病之一,发病率和死亡率都很高。医学治疗方式主要为手术、放疗和化疗相结合的综合治疗。近年来,随着对海洋多糖资源的开发,许多结构新颖、活性独特的海洋多糖被逐步挖掘,有望成为潜在的新型抗肿瘤药物资源。其中海参多糖已被证实有着良好的抗肿瘤活性,对多种肿瘤的生长有着明显的抑制作用。海参多糖抗肿瘤机制大致分为抑制肿瘤转移和新生血管、阻滞细胞周期和促进细胞凋亡、阻碍细胞核酸的生成、抑制细胞增殖、促进细胞分化及调节免疫活性等多个方面(图4)。

    图  4  海参多糖通过免疫调节抑制肿瘤细胞的作用机制
    Figure  4.  The mechanism of sea cucumber polysaccharide on inhibiting tumor cells through immunomodulatory

    研究表明,SC-FCS对肿瘤转移非常有效,能够抑制B16F10细胞转移[42]。肿瘤转移的关键步骤是P-选择素介导的肿瘤细胞与血小板黏附,SC-FCS通过干扰P-选择素与细胞表面受体的结合,激活肿瘤细胞迁移的下游调节器,从而阻断P-选择素介导的肿瘤转移[43]。此外,肿瘤的转移和生长依赖于新生血管,如果能抑制新生血管的形成,就能够有效地阻止肿瘤的转移和生长。Ustyuzhanina等[17]研究发现巴塔哥尼亚海参(Hemioedema spectabilis)的SC-FCS能有效地阻断癌细胞粘附到血小板包被的表面,并抑制小管的生成,验证其具有潜在的抗肿瘤活性。张珣等[44]研究了美国肉参(Isostichopus badionotus)的SC-FUC,发现其能够抑制肿瘤细胞在荷瘤小鼠体内的生长和转移,下调小鼠肿瘤组织中乙酰肝素酶(HPA)的表达和抑制血管新生。综上所述,SC-FCS和SC-FUC能够抑制肿瘤细胞的转移和新生血管的形成。

    肿瘤的发生与细胞周期调控机制、机体的免疫情况等都息息相关。细胞凋亡是指机体细胞在生理或病理状态下,通过调控内源性核酸内切酶活化的内在机制而发生的细胞死亡过程[45]。其中,凋亡的抑制基因通过调节肿瘤细胞的分裂来促进增殖或者抑制凋亡,相关研究发现,与化疗药物5-Fu相比,刺参粘多糖(SJAMP)能够更好的通过调节相关凋亡基因的表达和清除机体受损的细胞来发挥抗肿瘤活性。薛魁金[46]和Song[47]分别发现,SJAMP能够促进胰腺癌细胞SWl990和肝癌HepG2细胞的凋亡,并将SWl990细胞阻滞在G0/G1期,将HepG2细胞阻滞在G1期,抑制细胞增殖,表现出抗肿瘤活性。彭玲等[48]发现,SJAMP通过抑制细胞周期因子CyclinD1和CDK4的表达来抑制细胞增殖,并通过抑制癌基因C-myc的表达来诱导Hela细胞分化。牛娟娟等[49]在研究SJAMP对人宫颈癌HeLa细胞周期影响中发现,SJAMP能减少细胞增殖细胞核抗原(PCNA)和细胞周期抑制蛋白Mdm2的异常表达来阻滞细胞周期的G1期,抑制细胞增殖。综上所述,SJAMP能够通过诱导肿瘤细胞凋亡来抑制恶性肿瘤细胞的增殖及其分化。

    此外,Song等[47]在肝癌大鼠的实验模型中发现,SJAMP改善脾和胸腺的功能指标,提高巨噬细胞吞噬作用和NK细胞介导的肿瘤杀伤活性,显著恢复CD3+、CD4+、T淋巴细胞水平,刺激免疫器官和组织增殖,增强大鼠细胞免疫通路,从而有效的抑制肝癌细胞的增长。李甜甜[50]在研究海参多糖抗肺癌活性及对T细胞免疫功能调节作用中得出结论,海参多糖能促进T细胞的免疫功能的调节,提高机体的细胞免疫功能,提示肿瘤患者T细胞活化功能低下可能导致肿瘤的逃逸,证实了SJAMP主要通过提高巨噬细胞的吞噬活性和NK细胞的杀伤活力,促进了T、B淋巴细胞的增殖,调节细胞因子的分泌,从而增强机体的免疫功能,发挥抗肿瘤的作用。

    综上所述,海参多糖对肿瘤细胞的转移、增殖表现出一定的抑制作用。同时,海参多糖对肿瘤细胞也具有杀伤能力,从整体上增强了机体的免疫调节能力,有望成为新型的抗肿瘤药物及免疫调节剂。但是,目前海参多糖的抗肿瘤活性研究处于初级探索阶段,抗肿瘤活性作用机制尚待进一步研究,为未来海参多糖应用于抗肿瘤药物的开发与利用提供科学依据。

    人类肠道菌群复杂多样,在维护人体健康和体内微生态平衡方面发挥着重要的作用[51]。肠道微生物群被认为是一种影响宿主新陈代谢并导致相关病理状况的内环境因素,研究发现肠道微生物群与很多疾病存在着密切联系。如图5所示,海参多糖与肠道菌群的相互作用体现在调节肠道微生物群落及其组成[52]。另外,海参多糖可以作为肠道中特定微生物的碳源,被肠道微生物群发酵产生短链脂肪酸(short chain fatty acids, SCFAs)等产物[53],与此同时,肠道中的微生物还会对代谢过程产生不同的影响。此外,海参多糖不能被人体直接消化吸收,通过肠道菌群的降解作用,可以分解成单糖或寡糖发挥作用[54]。海参多糖作为益生元能够调节肠道菌群来改善肥胖、糖尿病等机体健康疾病,可以通过调节能量代谢,缓解营养过剩带来的代谢疾病隐患[26],通过促进代谢物生成和细菌分解来实现宿主健康,因此,可以利用海参多糖调节肠道菌群进而改善机体健康。

    图  5  海参多糖通过调节肠道菌群改善代谢疾病的作用机制
    Figure  5.  The mechanism of sea cucumber polysaccharide to improve metabolic diseases by regulating intestinal flora

    肥胖是一种常见的慢性代谢疾病,是现代社会中威胁健康的一个全球性问题[55]。世界卫生组织将肥胖定义为身体质量指数(BMI)≥30 kg/m2,但在不同的国家定义肥胖的BMI值是有差异的,我国将BMI≥28 kg/m2认定为肥胖[56]。目前,我国的肥胖人数居于世界首位且罹患肥胖的人群逐渐趋于年轻化的方向发展[57]。近年来的研究表明,肠道微生物群与肥胖之间是密切联系的,肠道微生物多样性的缺乏会导致肥胖等疾病的产生。肥胖也引起机体的代谢紊乱和许多的并发症,进而导致高甘油三酯血症、心血管疾病、脂肪肝、高血压、糖尿病以及癌症等慢性疾病的发生[58]

    研究证实,肠道微生物群在肥胖症及其能量代谢的过程中起着重要作用,由影响宿主的营养消化和能量代谢的数万亿细菌组成[59]。肥胖与拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)两个优势的细菌门有关系,肥胖小鼠的肠道微生物群显示拟杆菌门的数量减少,而厚壁菌门的数量成比例增加[55]。在研究人和动物的肥胖模型中发现,Firmicutes/Bacteroidetes(F/B)的比率与肥胖呈正相关,Li等[60]在研究美国肉参的FCS时,证实了F/B的比率与肥胖是呈正相关的。一方面,海参多糖的肥胖抑制作用与降低F/B有着很大的关系,从海地瓜中提取的FCS[61]和从格皮式海参中提取的FUC[62]都能够降低肥胖小鼠的F/B的数值。另一方面,海参多糖可以通过增加相关的SCFAs产生菌来抑制肥胖,其中,通过口服分离自菲律宾刺参的FUC[39]、美国肉参的FCS[31]以及刺参的SCSP[37]均可使SCFA产生菌的丰度增加,减肥效果明显。不仅如此,海参多糖通过肠道菌群修复肠道屏障,从而发挥缓解肥胖的作用[63]。Li等[64]发现从Pearsonothuria graeffeiIsostichopus badionotus海参中提取的FUC可以降低细菌脂多糖(LPS)水平,通过调节肠道菌群修复肠道屏障和减少炎症进而缓解肥胖。

    综上所述,调节肠道菌群是预防肥胖症的最佳策略,难消化的多糖可以积极的调节肠道微生物群,从而达到减肥的效果。因此,海参多糖通过调节肠道微生物群、改善微生物代谢产物和肠道组织来预防饮食诱导的肥胖等相关疾病,可作为一种膳食补充剂应用于减肥降脂等领域。

    糖尿病是一种糖脂代谢异常的慢性疾病,由于胰岛β细胞功能障碍或者胰岛素抵抗导致的血糖过高,严重时可以引起各类并发症,如心血管疾病、肾病、眼底病变以及癌症等。糖尿病分为1型糖尿病、2型糖尿病、妊娠糖尿病和其他类型。其中,90%左右都属于2型糖尿病(T2DM)[65],T2DM被认为是遗传和环境相互作用的结果,包括肥胖、吸烟及不健康的饮食等[66],其发病率逐年呈大幅度上升的趋势。根据国际糖尿病联盟的统计,预计到2045年,全球糖尿病人数将达到6.29亿,对人类健康造成很大的危害[67]。近年来,研究表明肠道菌群紊乱是T2DM胰岛素抵抗发展的诱因,而且肠道菌群代谢产物与T2DM的发生存在紧密关联,其中,SCFAs水平的异常是引起T2DM的因素之一。

    海参多糖能够作为膳食补充剂预防和治疗T2DM。已有研究证实,膳食多糖作为一种低热量的生物活性物质,影响糖尿病个体的葡萄糖代谢以及肠道生物群[68]。肠道菌群失衡在各种类型的糖尿病中广泛存在的,一旦失衡直接导致糖、脂、氨基酸代谢异常,肠道微生物在影响胰岛素抵抗、血脂异常和糖耐量等各个方面发挥着重要作用。肠道内的拟杆菌门和厚壁菌门是糖尿病研究中最常见的有益菌属,这两种菌在糖尿病患者体内的比例显著减少[53,69]。海参多糖对肠道菌群的调节,通过增加拟杆菌的丰度来调控糖尿病大鼠的症状。Hu[52]等在研究Acaudina molpadioides的FUC对高脂饮食(HFD)小鼠肠道微生物群的调节和胰岛素抵抗的改善,FUC在门水平上阻止了HFD诱导的微生物群的改变,降低了厚壁菌门的丰度,提高了拟杆菌门的丰度,进而调节LPS和SCFAs的生成,这些肠道菌群的变化伴随着胰岛素抵抗的缓解,表现为血清胰岛素的降低。微生物的组成变化也会影响宿主的代谢,海参多糖能促进肠道菌群产生有益的代谢物。Zhao等[70]使用大鼠2型糖尿病模型,发现玉足海参(Holothuria leucospilota)的多糖通过增加有益菌的数量,减少条件致病菌,优化了糖尿病大鼠的肠道菌群组成,而且菌群代谢产生的代谢物乙酸、丁酸和戊酸以及总短链脂肪酸也都呈增加的趋势,说明海参多糖可以通过增加有益细菌和抑制有害细菌来改变肠道微生物群落及其组成,对代谢物如乙酸盐和总短链脂肪酸具有显著的促进作用,进而对T2DM起到缓解作用。

    海参多糖也可以作为降血糖的功能因子,研究证实从海参中提取的SC-FCS[71]和SC-FUC[72]能够改善胰岛素的抵抗,并能有效的减轻T2DM及其相关并发症。Zhu等[73]研究发现,来自梅花参(Thelenota ananas)的FUC和来自北极海参(Cucumaria frondosa)的FCS通过促进胰岛素分泌或者增强胰岛素的敏感性来降低血糖水平和改善葡萄糖耐量,改善血脂异常。Hu等[74]研究发现海地瓜FUC通过细胞因子和葡萄糖代谢相关酶活性的正常化以及PKB/GLUT4途径的上调,降低血糖水平,改善胰岛素抵抗,有效改善T2DM及其并发症。

    综上所述,海参多糖可以调节肠道菌群增加益生菌含量,增加SCFAs的产生,进而增强肠道屏障的完整性,改善血清脂质水平,维持肠道免疫稳态;海参多糖也可以直接作为功能因子调节胰岛素的功能。膳食海参多糖能够作为一种新型安全的海洋功能食品用于糖尿病的辅助治疗。

    海参多糖对机体具有多种健康功效,除了研究比较深入的几个方面,还具有其他功效。Li等[75]研究发现,线性构象的海参多糖比球形构象的海参多糖具有更高的降血脂活性。同时,Xu等[76]研究发现海参多糖可以保护胃组织免受乙醇胃溃疡损伤的影响,线性构象的海参多糖与球形构象的海参多糖之间的活性是相互的,线性构象的海参多糖随分子量的降低而下降,当链构象改变为球形构象时损伤作用缓慢恢复。此外,Shida等[77]研究发现从刺参中分离出来的FCS的分支(Fucp2S4S)能够促进神经元的生长活性;日本刺参硫酸化多糖对神经干细胞具有增殖的作用,能够促进神经球的形成,有助于神经修复及改善神经病变。

    海参多糖是一种无毒性、结构独特的活性物质,近年来,关于海参多糖结构和活性功效等方面的研究取得一定进展,其中抗凝血、抗肿瘤、预防肥胖、降血糖等多种生物学活性的研究比较深入。随着科技的发展,海参多糖对其他健康问题的活性功效也逐渐被挖掘,但是仍需要对新研究方向的探索和对健康功效作用机制的深入解析。研究应关注相关健康功效的药物开发和临床应用,完善高纯度海参多糖的制备工艺及结构的解析,对应的药效靶点分析及多糖类药物的精准施用。目前,海参多糖通过肠道菌群改善人体健康的研究热度持续升高,可作为肠道菌群的益生元来调节肠道菌群,起到改善治疗代谢类疾病,促进机体健康的作用,而海参多糖通过肠道菌群对其他非代谢类疾病的改善所发挥的功效也值得关注。此外,海参多糖的调节作用来自其在肠道中的消化产物,肠道微生物群也能通过海参多糖发酵产生的代谢物影响其生物活性。尽管现有的研究能够说明海参多糖对肠道菌群有积极的健康调节作用,也说明肠道菌群可以降解海参多糖,但是,目前肠道菌群对于海参多糖降解方面的研究甚少,降解机制仍然不够明确,仍需进一步确定降解作用的分子机制。最后,在海参多糖类产品开发及产业化应用方面有待创新,应积极探索海参多糖作为药物、化妆品及新型营养素应用的最佳方式,使海参多糖能够在大健康领域更好的发挥作用,产生更大的应用价值和社会效益。

  • 图  1   海参岩藻糖基化硫酸软骨素的结构

    Figure  1.   Structure of fucosylated chondroitin sulfate of sea cucumber

    图  2   海参岩藻聚糖硫酸酯的结构

    Figure  2.   Structure of fucoidan sulfate of sea cucumber

    图  3   海参多糖通过抗凝血作用控制血栓疾病的作用机制

    Figure  3.   The mechanism of sea cucumber polysaccharide controlling thrombotic disease through anticoagulation

    图  4   海参多糖通过免疫调节抑制肿瘤细胞的作用机制

    Figure  4.   The mechanism of sea cucumber polysaccharide on inhibiting tumor cells through immunomodulatory

    图  5   海参多糖通过调节肠道菌群改善代谢疾病的作用机制

    Figure  5.   The mechanism of sea cucumber polysaccharide to improve metabolic diseases by regulating intestinal flora

    表  1   不同种类海参多糖的结构、相对分子质量及化学组成比较

    Table  1   Comparison of structure, relative molecular weight and chemical composition of polysaccharides of different species of sea cucumber

    海参多糖 海参种类 分子量(kDa) 结构 单糖化学组成比例 硫酸基 硫酸根
    含量(%)
    硫酸根模式 参考
    文献
    FUC GlcUA GalNAc 其他
    海参硫酸
    软骨素
    小有刺参(Holothuria floridana 111.07 1.00 0.52 0.54 Man(0.29)、Gal(0.15)、Glc(0.03)、GlcN(0.08) 3.67 32.42 [27]
    硬瓜参 (Eupentacta fraudatrix →4)-β-D-GlcpA2S3S-(1→3)-β-D-GalpNAc6S-(1→with branch Fucp3S4S-(1→2)α-L-Fucp3S4S-(1→ 1.00 0.82 Glc(0.65) 25.50 [4]
    巴塔哥尼
    亚海参
    Hemioedema spectabilis
    44.10 →3)-β-D-GalNAc-(1→4)-β-D-Glc A(3-Oα-L-Fuc)-(1→ 1.00 1.04 0.91 Glc(1.05) 3.55 18.30 Fucp2S4S、Fucp4S、Fucp3S4
    (3.8:1.5:1)
    [17]
    海地瓜(Acaudina molpadioides 90.8 →4)Glc Aβ(1→3)Gal NAc4S6Sβ(1→ with branch Fuc(2S4S, 3S4S or 4S)p(1→3)Glc Aβ 1.00 0.94 0.08 GlcN(0.80) 2.64 Fuc4S、Fuc3,4S和Fuc2,4S [28]
    绿刺参(Stichopus chloronotus 63.2 →3)Gal NAc4S6Sβ(1→4) Fuc2S4Sα(1→3)Glc Aβ(1→ 1.00 0.83 0.91 2.94 [29]
    海棒槌(Paracaudina chilensis 28.90 1.00 1.04 0.80 GlcN(0.11)、Gal(0.40) 1.53 Fucp2S4S:Fucp4S (2:1) [30]
    美国肉参(Isostichopus badionotus 109.00 [→4)Glc Aβ(1→3)Gal NAc4S6Sβ(1→ with branch Fuc2S4Sp(1 →3)Glc An 1.00 1.11 0.78 3.44 Fucp2S4S(95.9%)、Fucp4S(4.1%) [31]
    大乌爪海参(Holothuria tubulosa 42.00 Fuc-(1→3)-GlcA 1.00 0.75 0.77 3.55 Fucp2S4S:Fucp3S4S:Fucp4S (2.83:2.14:1) [32]
    海参岩藻聚糖硫酸酯
    小有刺参(Holothuria floridana 658.15 1.00 0.02 Man(0.01)、Gal(0.13)、Glc(0.06)、GlcN(0.05)、GalN(0.05) 0.72 29.46 [27]
    大乌爪海参(Holothuria tubulosa 1567.6 [→3-α-L-Fucp2(OSO3)-1→3-α-L-Fucp2,4(OSO3-)-1→3-α-L-Fucp-1→3-α-L-Fucp2(OSO3-)-1→]n 1.00 1.00 31.20 [33]
    仿刺参(Apostichopus japonicus 1.00 0.11 Man(0.17)、GlcN(0.04)、GalN(0.33)、Gal(0.07) 0.42 [34]
    绿刺参(Stichopus chloronotus 778.70 [→3-α-L-Fucp2
    (OSO3-)-1→]n
    1.00 1.30 35.70 [35]
    美国肉参(Isostichopus badionotus 450.00 [→3-α-L-Fucp2,4(OSO3 )-1→3-α-L-Fucp2(OSO3
    -)-1→3-α-L-Fucp2(OSO3 -)-1→3-α-L-Fucp-1→]n
    1.00 0.92 32.90 [23]
    格皮式海参(Pearsonothuria graeffei 310.00 [→3)Fuc2S4Sα(1→3)Fucα(1→3)Fuc4Sα(1→3)Fucα(1→]n 1.00 30.4 [54]
    注:-:文献未报到或未检出注;FUC:岩藻糖;Man:甘露糖;GlcN:氨基葡萄糖;Glc:葡萄糖;Gal:半乳糖;GalN:氨基半乳糖;GlcUA:葡萄糖醛酸;GalNAc:N-乙酰半乳糖胺
    下载: 导出CSV
  • [1]

    FAN X R, MA Y S, LI M, et al. Thermal treatments and their influence on physicochemical properties of sea cucumbers:A comprehensive review[J]. International Journal of Food Science & Technology,2022,57(9):5790−5800.

    [2]

    VARSHA K, JONA F, PAULSN B S, et al. Sulphated polysaccharide from the sea cucumber frondosa affect maturation of human dendritic cells and their activation of allogeneic CD4(+) T cells in vitro[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(2):108−117. doi: 10.1016/j.bcdf.2013.09.009

    [3]

    ZHAO Y C, XUE C H, ZHANG T T, et al. Saponins from sea cucumber and their biological activities[J]. Journal of Agricultural and Food Chemistry,2018,66(28):7222−7237. doi: 10.1021/acs.jafc.8b01770

    [4]

    ZHU Z J, HAN Y H, DING Y, et al. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(3):2882−2913. doi: 10.1111/1541-4337.12754

    [5]

    GUO W L, DENG J C, PAN Y Y, et al. Hypoglycemic and hypolipidemic activities of gifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin[J]. International Journal of Biological Macromolecules,2020,153:1231−1240. doi: 10.1016/j.ijbiomac.2019.10.253

    [6]

    YANG D D, LIN F D, HUANG Y Y, et al. Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera[J]. International Journal of Biological Macromolecules,2020,155:1003−1018. doi: 10.1016/j.ijbiomac.2019.11.064

    [7]

    LI J H, LI S, WU L M, et al. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J]. Carbohydrate Polymers,2019,209:82−91. doi: 10.1016/j.carbpol.2018.12.061

    [8]

    SONG S, PENG H R, WNAG Q L, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2[J]. Food & Function,2020,11(9):7415−7420.

    [9]

    CHAHED L, BALTI R, ELHISS S, et al. Anticoagulant activity of fucosylated chondroitin sulfate isolated from cucumaria syracusana[J]. Process Biochemistry,2020,91:149−157. doi: 10.1016/j.procbio.2019.12.006

    [10]

    MOURAO P A S. Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs[J]. Marine Drugs,2015,13(5):2770−2784. doi: 10.3390/md13052770

    [11]

    PANGESTUTI R, ARIFIN Z. Medicinal and health benefit effects of functional sea cucumbers[J]. Journal of Traditional and Complementary Medicine,2018,8(3):341−351. doi: 10.1016/j.jtcme.2017.06.007

    [12]

    LI Y, LI M, XU B J, et al. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers:a comprehensive review[J]. Journal of Functional Foods,2021,87:104744. doi: 10.1016/j.jff.2021.104744

    [13]

    XU H, ZHOU Q, LIU B, et al. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health:structures and biological activities[J]. Carbohydrate Polymers,2022,275:118691. doi: 10.1016/j.carbpol.2021.118691

    [14]

    BISHNOI M, JAIN A, HURKAT P, et al. Chondroitin sulphate:A focus on osteoarthritis[J]. Glycoconjugate Journal,2016,33(5):693−705. doi: 10.1007/s10719-016-9665-3

    [15]

    LI S N, ZHONG W, PAN Y, et al. Structural characterization and anticoagulant analysis of the novel branched fucosylated glycosaminoglycan from sea cucumber Holothuria nobilis[J]. Carbohydrate Polymers,2021,269:118290. doi: 10.1016/j.carbpol.2021.118290

    [16]

    CHEN S G, LI G Y, WU N, et al. Sulfation pattern of the fucose branch is important for the anticoagulant and antithrombotic activities of fucosylated chondroitin sulfates[J]. Biochimica Et Biophysica Acta,2013,1830(4):3054−3066. doi: 10.1016/j.bbagen.2013.01.001

    [17]

    USTYUZHANINA N E, BILAN M I, DMITRENOKE A S, et al. Fucosylated chondroitin sulfate from the sea cucumber Hemioedema spectabilis:structure and influence on cell adhesion and tubulogenesis[J]. Carbohydrate Polymers,2020,234:115895. doi: 10.1016/j.carbpol.2020.115895

    [18] 尹利昂, 陈士国, 薛长湖, 等. 4种海参中含岩藻糖支链的硫酸软骨素化学组成差异的分析[J]. 中国海洋大学学报(自然科学版),2009,39(S1):63−68. [YIN L A, CHEN S G, XUE C H, et al. Analysis of chemical composition differences of chondroitin sulfate containing fucosaccharide branched chain in four sea cucumbers[J]. Journal of Ocean University of China (Natural Science Edition),2009,39(S1):63−68.]

    YIN L A, CHEN S G, XUE C H, et al. Analysis of chemical composition differences of chondroitin sulfate containing fucosaccharide branched chain in four sea cucumbers[J]. Journal of Ocean University of China (Natural Science Edition), 2009, 39(S1): 63−68.

    [19] 严鲁峰. 海参岩藻糖基化硫酸软骨素寡糖抗凝血机制研究[D]. 宁波:浙江大学, 2020:52. [YAN L F. Study on anticoagulation mechanism of chondroitin sulfate oligosaccharides by fucosylated sea cucumber[D]. Ningbo:Zhejiang University, 2020:52.]

    YAN L F. Study on anticoagulation mechanism of chondroitin sulfate oligosaccharides by fucosylated sea cucumber[D]. Ningbo: Zhejiang University, 2020: 52.

    [20]

    ZHANG Y J, SONG S L, SONG D, et al. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus[J]. Journal of Bioscience and Bioengineering,2010,109(1):67−72. doi: 10.1016/j.jbiosc.2009.07.010

    [21] 王亚囡, 仇文峰, 杨毅, 等. 分子量对海参岩藻聚糖硫酸酯在体内吸收的影响[J]. 中国海洋药物, 2020, 39(2):42−49. [WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabloism of sea cucumber fucoidan[J] Chinese Journal of Marine Medicine, 2020, 39(2):42−49.]

    WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabloism of sea cucumber fucoidan[J] Chinese Journal of Marine Medicine, 2020, 39(2): 42−49.

    [22]

    LI C, LI S J, ZHANG X, et al. Fucoidan from sea cucumber Holothuria polii:structural elucidation and stimulation of ematopoietic activity[J]. Journal of Biological Macromolecules,2020,150:1123−1121.

    [23]

    CHEN S G, HU Y Q, YE X Q, et al. Sequence determination and anticoagulant and antithrombotic activities of a novel sulfated fucan isolated from the sea cucumber Isostichopus badionotus[J]. Biochimica et Biophysica Acta,2012,1820(7):989−1000. doi: 10.1016/j.bbagen.2012.03.002

    [24]

    YU L, CHANG Y G, HU Y F, et al. Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus[J]. Food Chemistry,2015,180:71−76. doi: 10.1016/j.foodchem.2015.02.034

    [25]

    CAI Y, YIN R H, ZHOU L T, et al. An anticoagulant fucan sulfate with hexasaccharide repeating units from the sea cucumber Holothuria albiventer[J]. Carbohydrate Research,2018,464:12−18. doi: 10.1016/j.carres.2018.05.007

    [26] 李珊. 海参硫酸多糖对营养过剩诱发的代谢疾病调控机制研究[D]. 宁波:浙江大学, 2018:15. [LI S. Study on the regulatory mechanism of sea cucumber sulfated polysaccharide on metabolic diseases induced by overnutrition[D]. Ningbo:Zhejiang University, 2018:15.]

    LI S. Study on the regulatory mechanism of sea cucumber sulfated polysaccharide on metabolic diseases induced by overnutrition[D]. Ningbo: Zhejiang University, 2018: 15.

    [27] 齐俊华, 王展, 石德玲, 等. 小有刺参硫酸软骨素和岩藻聚糖硫酸酯抗血小板聚集活性的比较[J]. 中国海洋药物,2019,38(1):42−48. [QI J H, WANG Z, SHI D L, et al. Comparison of antiplatelet aggregation activity between chondroitin sulfate and fucosan sulfate of Stichopus japonicus[J]. Chinese Journal of Marine Medicine,2019,38(1):42−48.]

    QI J H, WANG Z, SHI D L, et al. Comparison of antiplatelet aggregation activity between chondroitin sulfate and fucosan sulfate of Stichopus japonicus[J]. Chinese Journal of Marine Medicine, 2019, 38(1): 42−48.

    [28]

    DONG X , PAN R, DENG X, et al. Separation, purification, anticoagulant activity and preliminary structural characterization of two sulfated polysaccharides from sea cucumber Acaudina molpadioidea and Holothuria nobilis[J]. Process Biochemistry, 2014, 49(8):1352−1361.

    [29]

    MOU J J, LI Q, QI X H, et al. Structural comparison, antioxidant and anti-inflammatory properties of fucosylated chondroitin sulfate of three edible sea cucumbers[J]. Carbohydrate Polymers,2018,185:41−47. doi: 10.1016/j.carbpol.2018.01.017

    [30]

    MOU J J, WANG C, LI W J, et al. Purification, structural characterization and anticoagulant properties of fucosylated chondroitin sulfate isolated from Holothuria mexicana[J]. International Journal of Biological Macromolecules,2017,98:208−215. doi: 10.1016/j.ijbiomac.2017.01.123

    [31]

    SHI D L, QI J H, ZHANG H W, et al. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers[J]. Carbohydrate Polymers,2011,83(2):688−696. doi: 10.1016/j.carbpol.2010.08.040

    [32]

    USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. Two fucosylated chondroitin sulfates from the sea cucumber Eupentacta fraudatrix[J]. Carbohydrate Polymers,2017,164:8−12. doi: 10.1016/j.carbpol.2017.01.034

    [33]

    CHANG Y G, HU Y F, YU L, et al. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa[J]. Carbohydrate Polymers,2016,136:1091−1097. doi: 10.1016/j.carbpol.2015.10.016

    [34]

    YIN J Y, YANG X Q, XIA B, et al. The fucoidan from sea cucumber Apostichopus japonicus attenuates lipopolysaccharide-challenged liver injury in C57BL/6J mice[J]. Journal of Functional Foods,2019,61:103493. doi: 10.1016/j.jff.2019.103493

    [35]

    LI Q, JIANG S X, SHI W W, et al. Structure characterization, antioxidant and immunoregulatory properties of a novel fucoidan from the sea cucumber Stichopus chloronotus[J]. Carbohydrate Polymers,2020,231:115767. doi: 10.1016/j.carbpol.2019.115767

    [36]

    MAO H, CAI Y, LI S N, et al. A new fucosylated glycosaminoglycan containing disaccharide branches from Acaudina molpadioides:Unusual structure and anti-intrinsic tenase activity[J]. Carbohydrate Polymers,2020,245:116503. doi: 10.1016/j.carbpol.2020.116503

    [37]

    YUAN Q, LI H, WANG Q, et al. Deaminative-cleaved S. monotuberculatus fucosylated glycosaminoglycan:Structural elucidation and anticoagulant activity[J]. Carbohydr Polym,2022,298:120072. doi: 10.1016/j.carbpol.2022.120072

    [38] 吕律. 不同分子量仿刺参糖胺聚糖抗凝血、抗血栓活性研究[D]. 青岛:中国海洋大学, 2015:61. [LÜ L. Study on anticoagulant and antithrombotic activity of glycosaminoglycan of Apostichopus japonicas with different molecular weight[D]. Qingdao:Ocean University of China, 2015:61.]

    LÜ L. Study on anticoagulant and antithrombotic activity of glycosaminoglycan of Apostichopus japonicas with different molecular weight[D]. Qingdao: Ocean University of China, 2015: 61.

    [39]

    USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. Fucosylated chondroitin sulfates from the sea cucumbers paracaudina chilensis and holothuria hilla:structures and anticoagulant activity[J]. Marine Drugs,2020,18(11):540. doi: 10.3390/md18110540

    [40]

    USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. A highly regular fucosylated chondroitin sulfate from the sea cucumber Massinium magnum:structure and effects on coagulation[J]. Carbohydrate Polymers,2017,167:20−26. doi: 10.1016/j.carbpol.2017.02.101

    [41]

    SHNAG F N, GAO N, YIN R H, et al. Precise structures of fucosylated glycosaminoglycan and its oligosaccharides as novel intrinsic factor Xase inhibitors[J]. European Journal of Medicinal Chemistry,2018,148:423−435. doi: 10.1016/j.ejmech.2018.02.047

    [42]

    ZHAO Y, ZHANG D H, WANG S, et al. Holothurian glycosaminoglycan inhibits metastasis and thrombosis via targeting of nuclear factor-kappab/tissue factor/Factor Xa pathway in melanoma B16F10 cells[J]. International Journal of Biological Macromolecules,2013,8(2):56557.

    [43]

    YUE Z Q, WANG A Y, ZHU Z J, et al. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells[J]. Molecular and Cellular Biochemistry,2015,410(1-2):143−154. doi: 10.1007/s11010-015-2546-4

    [44] 张珣, 王静凤, 杨玉红, 等. 海参岩藻聚糖硫酸酯抑制小鼠肿瘤生长和转移及其作用机制的研究[J]. 中国药理学通报,2011,27(8):1098−1103. [ZHANG X. WANG J F, YANG Y H, et al. Inhibition of tumor growth and metastasis by sea cucumber fucosan sulfate and its mechanism in mice[J]. Chinese Pharmacology Bulletin,2011,27(8):1098−1103.] doi: 10.3969/j.issn.1001-1978.2011.08.016

    ZHANG X. WANG J F, YANG Y H, et al. Inhibition of tumor growth and metastasis by sea cucumber fucosan sulfate and its mechanism in mice[J]. Chinese Pharmacology Bulletin, 2011, 27(8): 1098−1103. doi: 10.3969/j.issn.1001-1978.2011.08.016

    [45] 邢淑雁, 于钦辉, 杨菁华, 等. 海洋生物多糖抗肿瘤作用研究进展[J]. 中华中医药学刊, 2021, 39(11):158−161. [XING S Y, YU Q H, YANG J H, et al. Research progress on antitumor effects of marine biological polysaccharides[J]. Chinese Journal of Traditional Chinese Medicine, 21, 39(11):158−161.]

    XING S Y, YU Q H, YANG J H, et al. Research progress on antitumor effects of marine biological polysaccharides[J]. Chinese Journal of Traditional Chinese Medicine, 21, 39(11): 158−161.

    [46] 薛魁金. 刺参粘多糖对人胰腺癌细胞株SW1990增殖的抑制作用[D]. 青岛:青岛大学, 2012:135-136. [XUE K J. Inhibitory effect of mucopolysaccharide of Stipidus Japonicus on proliferation of human pancreatic cancer cell line SW1990[D]. Qingdao:Qingdao University, 2012:135-136.]

    XUE K J. Inhibitory effect of mucopolysaccharide of Stipidus Japonicus on proliferation of human pancreatic cancer cell line SW1990[D]. Qingdao: Qingdao University, 2012: 135-136.

    [47]

    SONG Y, JIN S J, CUI L H, et al. Immunomodulatory effect of Stichopus japonicus acid mucopolysaccharide on experimental hepatocellular carcinoma in rats[J]. Molecules,2013,18(6):7179−7193. doi: 10.3390/molecules18067179

    [48] 彭玲, 于壮, 宋扬. 刺参黏多糖对Hela细胞增殖分化的影响[J]. 青岛大学医学院学报,2008(3):212−215,219. [PENG L, YU Z, SONG Y. Effect of mucopolysaccharide on proliferation and differentiation of Hela cells[J]. Journal of Medical College of Qingdao University,2008(3):212−215,219.]

    PENG L, YU Z, SONG Y. Effect of mucopolysaccharide on proliferation and differentiation of Hela cells[J]. Journal of Medical College of Qingdao University, 2008(3): 212−215,219.

    [49] 牛娟娟, 宋扬. 海洋刺参多糖对宫颈癌细胞周期的影响及其机制[J]. 齐鲁医学杂志,2010,25(5):386−388. [NIU J J, SONG Y. Effects of Stichopus japonicus acidic mucopolysaccharide on cell cycle of Hela cells and its mechanism[J]. Qilu Medical Journal,2010,25(5):386−388.] doi: 10.3969/j.issn.1008-0341.2010.05.004

    NIU J J, SONG Y. Effects of Stichopus japonicus acidic mucopolysaccharide on cell cycle of Hela cells and its mechanism[J]. Qilu Medical Journal, 2010, 25(5): 386−388. doi: 10.3969/j.issn.1008-0341.2010.05.004

    [50] 李甜甜. 海参多糖抗肺癌活性及对T细胞免疫功能调节研究[D]. 青岛:青岛大学, 2015:50. [LI T T. Study on the anti-lung cancer activity of sea cucumber polysaccharide and its regulation on T cell immune function[D]. Qingdao:Qingdao University, 2015:50.]

    LI T T. Study on the anti-lung cancer activity of sea cucumber polysaccharide and its regulation on T cell immune function[D]. Qingdao: Qingdao University, 2015: 50.

    [51] 张晓波, 孙辉. 肠道菌群对人体健康的作用及其应用[J]. 生物医学转化,2021,2(2):39−45. [ZHANG X B, SUN H. Effects of intestinal flora on human health and its application[J]. Biomedical Translational Medicine,2021,2(2):39−45.]

    ZHANG X B, SUN H. Effects of intestinal flora on human health and its application[J]. Biomedical Translational Medicine, 2021, 2(2): 39−45.

    [52]

    HU S W, WANG J H, WANG J F, et al. Fucoidan from Acaudina molpadioides improves insulin resistance by altering gut microbiota dysfunction[J]. Journal of Functional Foods,2019,57:59−67. doi: 10.1016/j.jff.2019.03.033

    [53] 刘昕, 齐延民, 张健, 等. 海藻多糖与肠道菌群相互作用研究进展[J]. 食品安全质量检测学报, 2022, 13(17):5723−5729. [LIU X, QI Y M, ZHANG J, et al. Research progress on the interaction between seaweed polysaccharides and intestinal flora[J]. Journal of Food Safety and Quality Inspection, 2019, 13(17):5723−5729.]

    LIU X, QI Y M, ZHANG J, et al. Research progress on the interaction between seaweed polysaccharides and intestinal flora[J]. Journal of Food Safety and Quality Inspection, 2019, 13(17): 5723−5729.

    [54]

    KAOUTARI A E, ARMOUGOM F, GORDON J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J]. Nature Reviews Microbiology,2013,11(7):497−504. doi: 10.1038/nrmicro3050

    [55] 吴小松. 肠道菌群对肥胖和相关代谢疾病的影响[J]. 农产品加工,2022(11):89−93,98. [WU X S. Effects of intestinal flora on obesity and related metabolic diseases[J]. Agricultural Processing,2022(11):89−93,98.]

    WU X S. Effects of intestinal flora on obesity and related metabolic diseases[J]. Agricultural Processing, 2022(11): 89−93,98.

    [56]

    LIU B N, LIU X D, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi: 10.3748/wjg.v27.i25.3837

    [57]

    ZENG Q, LI N S, PAN X F, et al. Clinical management and treatment of obesity in China[J]. The Lancet Diabetes & Endocrinology,2021,9(6):393−405.

    [58]

    BENDOR C D, BARDUGO A, HAMIEL O P, et al. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity[J]. Cardiovascular Diabetology,2020,19(1):79. doi: 10.1186/s12933-020-01052-1

    [59]

    FREDRIK B, DING H, WNAG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(44):15718−15723.

    [60]

    LI S, LI J H, MAO G Z, et al. Fucosylated chondroitin sulfate from Isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet[J]. International Journal of Biological Macromolecules,2019,124:377−388. doi: 10.1016/j.ijbiomac.2018.11.167

    [61]

    HU S, WANG J, XU Y, et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food & Function, 2019, 10(3):1736−1746.

    [62]

    LI S, LI J H, MAO G Z, et al. A fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice[J]. Food & Function,2018,9(10):5371−5380.

    [63] 王馥仪, 于双, 董新玉, 等. 海洋多糖的结构、组成及其抑制肥胖作用机制的研究进展[J]. 食品科学,2024,45(17):335−347. [WANG F Y, YU S, DONG X Y, et al. Rearch progress in structure, composition an antiobesity mechanism of marine polysaccharides[J]. Food Science,2024,45(17):335−347.] doi: 10.7506/spkx1002-6630-20231208-070

    WANG F Y, YU S, DONG X Y, et al. Rearch progress in structure, composition an antiobesity mechanism of marine polysaccharides[J]. Food Science, 2024, 45(17): 335−347. doi: 10.7506/spkx1002-6630-20231208-070

    [64]

    LI S, LI J, MAO G, et al. Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice[J]. Journal of Functional Foods,2019,55:193−210. doi: 10.1016/j.jff.2019.02.001

    [65]

    LI Y M, LIU Y P, LIANG J J, et al. Gymnemic acid ameliorates hyperglycemia through PI3K/AKT- and AMPK-mediated signaling pathways in type 2 diabetes mellitus rats[J]. Journal of Agricultural and Food Chemistry,2019,67(47):13051−13060. doi: 10.1021/acs.jafc.9b04931

    [66]

    GILLANI S W, ABDUL M I, ANSARI I A, et al. Predicting relationship of eating behavior, physical activity and smoking with type II diabetes and related comorbidities among saudi citizens:cross-sectional observational study[J]. International Journal of Diabetes in Developing Countries,2019,39(1):13410.

    [67]

    SUN H, CHO, SHAW J E, KARURANGA S, et al. IDF diabetes atlas:global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018,138:271−281. doi: 10.1016/j.diabres.2018.02.023

    [68]

    LIN H T, ZHANG J W, LI S Y, et al. Polysaccharides isolated from laminaria japonica attenuates gestational diabetes mellitus by regulating the gut microbiota in mice[J]. Food Frontiers,2021,2(2):208−217. doi: 10.1002/fft2.79

    [69]

    PUSHPANATHAN P, SRIKANTH, SESHADRI K G, et al. Gut microbiota in type 2 diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a tertiary care centre in chennai, india[J]. Indian Journal of Endocrinology and Metabolism,2016,20(4):523−530. doi: 10.4103/2230-8210.183474

    [70]

    ZHAO F Q, LIU Q B, CAO J, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats[J]. Food and Chemical Toxicology,2020,135:110886. doi: 10.1016/j.fct.2019.110886

    [71]

    HU S W, WANG J F, XU H, et al. Fucosylated chondroitin sulphate from sea cucumber inhibits high-fat-sucrose diet-induced apoptosis in mouse pancreatic islets via down-regulating mitochondrial signaling pathway[J]. Journal of Functional Foods,2014,7:517−526. doi: 10.1016/j.jff.2014.01.004

    [72]

    WANG J H, HU S W, JIANG W, et al. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice[J]. International Immunopharmacology,2016,31:15−23. doi: 10.1016/j.intimp.2015.12.009

    [73]

    ZHU Q Y, LIN L Z, ZHAO M M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats:New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. International Journal of Biological Macromolecules,2020,159:34−45. doi: 10.1016/j.ijbiomac.2020.05.043

    [74]

    HU S W, XIA G H, WANG J F, et al. Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice[J]. Journal of Functional Foods,2014,10:128−138. doi: 10.1016/j.jff.2014.05.012

    [75]

    LI SHAN, LI J H, ZHI Z J, et al. Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers[J]. Carbohydrate Polymers,2017,173:330−337. doi: 10.1016/j.carbpol.2017.05.063

    [76]

    XU X Q, CHANG Y G, XUE C H, et al. Gastric protective activities of sea cucumber fucoidans with different molecular weight and chain conformations:a structure-activity relationship investigation[J]. Food Chemistry,2018(3):8615−8622.

    [77]

    SHIDA M, MIKAMI T, TAMURA J, et al. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity:Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus[J]. Biochemical and Biophysical Research Communications,2017,487(3):678−683. doi: 10.1016/j.bbrc.2017.04.114

图(5)  /  表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  6
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 网络出版日期:  2025-02-19

目录

/

返回文章
返回
x 关闭 永久关闭