• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

淀粉改性对米线品质影响的研究进展

刘晓飞, 贾春艳, 李祥, 吴鸣, 张光, 张娜

刘晓飞,贾春艳,李祥,等. 淀粉改性对米线品质影响的研究进展[J]. 食品工业科技,2025,46(8):420−430. doi: 10.13386/j.issn1002-0306.2024060140.
引用本文: 刘晓飞,贾春艳,李祥,等. 淀粉改性对米线品质影响的研究进展[J]. 食品工业科技,2025,46(8):420−430. doi: 10.13386/j.issn1002-0306.2024060140.
LIU Xiaofei, JIA Chunyan, LI Xiang, et al. Research Progress on the Effect of Modified Starch on the Quality of Rice Noodles[J]. Science and Technology of Food Industry, 2025, 46(8): 420−430. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060140.
Citation: LIU Xiaofei, JIA Chunyan, LI Xiang, et al. Research Progress on the Effect of Modified Starch on the Quality of Rice Noodles[J]. Science and Technology of Food Industry, 2025, 46(8): 420−430. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060140.

淀粉改性对米线品质影响的研究进展

基金项目: 国家重点研发计划项目(2023YFD2100803);黑龙江省重点研发计划揭榜挂帅项目(2023ZXJ08B03)。
详细信息
    作者简介:

    刘晓飞(1980−)(ORCID:0000−0002−3008−5370),女,博士,教授,研究方向:稻米高值化利用,E-mail:102635@hrbcu.edu.cn

    通讯作者:

    张娜(1979−)(ORCID:0000−0002−7082−6698),女,博士,教授,研究方向:植物蛋白质,E-mail:foodzhangna@163.com

  • 中图分类号: TS213.3

Research Progress on the Effect of Modified Starch on the Quality of Rice Noodles

  • 摘要: 米线是我国传统主食之一,备受消费者青睐,但在蒸煮过程中存在易断条、糊汤、口感差等问题,因此明确米线品质影响因素对提升米线品质具有重要意义。将改性淀粉用于米线品质的改良,是一种经济有效的方式。本文以米线形成过程为基础,剖析淀粉对米线品质的影响规律,即直链淀粉、支链淀粉含量及其精细结构影响淀粉凝胶的致密程度,进而影响米线的质构特性和蒸煮品质。将淀粉改性技术对淀粉的结构及组成调控过程进行归纳,同时总结改性淀粉对米线品质的影响机理,并对米线的发展进行展望,旨从科学的角度为高品质米线的生产提供参考价值。
    Abstract: Rice noodles are one of our traditional staple foods, favored by many consumers. However, issues such as breakage, sticky soup, and poor texture during the cooking process are common. Therefore, understanding the factors affecting the quality of rice noodles is crucial for improving it. Using modified starch is an economical and effective way to enhance rice noodle quality. This paper is based on the formation process of rice noodles, analyzes how starch influences rice noodle quality, specifically the content and fine structure of amylose and amylopectin affect starch gel density, which in turn influences texture and cooking quality. The process of regulating starch structure and composition through modification technology is summarized. Additionally, the mechanisms by which modified starch affects rice noodle quality are summarized, along with future prospects on the development of rice noodles. The goal is to provide scientific references for the production of high-quality rice noodles.
  • 米线,又称榨粉、米粉、米粉丝,其食用历史可以追溯到距今2000多年的秦朝[1]。大米是一种天然无麸质、低过敏性谷物,以大米为原料生产的米线适合麸质过敏人群食用[2]。因米线独特的风味、质地和口感,目前在我国、日本、韩国以及许多东南亚国家深受欢迎[3]。米线根据成型方法分为切粉和榨粉两类:切粉是将大米粉磨浆蒸制后,将粉片切割成呈扁平状;榨粉是将大米经浸泡、磨粉、糊化、挤压、回生、成型等一系列工序制成的(图1),挤压机制作米线的流程更加简单高效,一般呈圆柱状[4]

    图  1  米线加工工序
    Figure  1.  Processing procedure of rice noodles

    米线品质的评价指标主要包括质构特性、蒸煮品质、感官品质和消化特性[56],这些品质主要受米线中淀粉的影响。目前,米线产品普遍存在蒸煮过程易断条、易糊汤、口感差等问题,加入外源淀粉改良米线品质是操作简单、经济实惠、效果较佳的方法之一。根据米线加工需求改性淀粉可以分为物理改性淀粉、化学改性淀粉、酶法改性淀粉和复合改性淀粉四类。

    本文对米线形成原理、淀粉对米线品质的影响因素、淀粉改性技术、改性淀粉对米线品质的影响机制四个方面进行系统梳理和总结,为拓宽改性淀粉的应用、提高米线的品质提供参考,以期推动我国米线产业高质量发展。

    大米作为米线的主要原料,由75%左右的淀粉,7%~8%的蛋白质和1.3%~1.8%的脂肪组成[3],淀粉是对大米产品加工性能影响最大的成分。大米淀粉由20%~30%的直链淀粉和70%~80%的支链淀粉组成的,其中直链淀粉是由α-(1,4)-葡萄糖苷键连接的葡萄糖单元组成的线性聚合物,而支链淀粉是由α-(1,4)-葡萄糖苷键连接的葡萄糖单元和α-(1,6)-葡萄糖苷键连接的分支组成的高度支化非线性聚合物[7]。淀粉颗粒由半结晶片层和无定形片层组成,两者交替形成生长环结构。半结晶片层由无定形区和结晶区交替组装,从而以连续状态存在于淀粉颗粒中。直链淀粉和支链淀粉分子共同组成淀粉的无定形区,而由于氢键作用,支链淀粉的外链形成双螺旋结构,排列成有序的结晶区[8]

    米线是大米研磨成粉后,在一定的水分条件下加热糊化,经挤压成型后冷却制作而成,其原理是淀粉凝胶空间网络结构的形成,主要依靠淀粉的糊化和回生过程[9],因此,米线的品质主要取决于淀粉的理化性质。糊化过程中,淀粉颗粒吸水溶胀、破裂,水分子首先进入被破坏的不稳定的无定形区,其中淀粉链间距增加,短支链淀粉侧链之间相互作用被破坏,淀粉链的流动性提高,其拉伸作用导致结晶区团簇失去致密性[10],淀粉分子间的氢键缔合被破坏,紧密的有序排列状态变成散乱的无序排列状态,直链淀粉溢出并与短支链淀粉构成混合相。

    糊化的淀粉在冷却回生过程中,淀粉分子由卷曲转变为螺旋状态,分子间的氢键再度结合重新结晶,由无序变成有序排列状态,形成新结构。淀粉回生涉及短期直链淀粉的凝胶化和长期支链淀粉的重结晶:短期回生是直链淀粉分子链间氢键相互作用,形成嵌有支链淀粉的三维凝胶网络,从而构成米线的凝胶结构[11];而长期回生是由于支链淀粉外支之间双螺旋结构的形成和有序积累[12],重结晶作用可以分为晶体的成核、生长以及成熟三个阶段[13]。淀粉的短期回生不可逆,可赋予米线良好的质地品质;而长期回生可逆且持续时间较长,一般会造成米线品质劣变。米线的形成原理如图2所示。

    图  2  米线形成原理
    Figure  2.  Formation mechanism of rice noodles

    直链淀粉比支链淀粉具有更小的尺寸和空间位阻,使得直链淀粉在糊化过程中具有较高的流动性,从淀粉颗粒中渗出,冷却后通过回生相互缠绕形成致密的凝胶网络结构[14],其含量是调节凝胶形成和米线品质的重要因素。直链淀粉含量影响米线的质构特性,与米线的食用品质和感官品质显著相关[15]。直链淀粉含量与抗拉伸强度、延伸率和弹性呈显著正相关,与蒸煮损失和易断条率呈负相关,由于直链淀粉抑制淀粉凝胶的溶出,提高米线结构的完整性,使其更加耐煮[16]。Jeong等[17]从流变学角度研究发现高直链淀粉的大米粉凝胶弹性更大,制作的米线质地较硬、结构紧密,降低了蒸煮损失和消化率。李琳等[18]研究5种大米原料对米线品质的影响,结果表明直链淀粉含量越高,淀粉凝胶稳定性越强,米线的弹性、强度越高,抗剪切力越强,米线的质构特性和感官品质得到提升,但直链淀粉含量达到26.17%时,米线的综合品质反而下降。综上所述,在一定范围内,直链淀粉含量高的原料生产出的米线综合品质好,但含量过高反而会导致品质劣变。

    直链淀粉与支链淀粉的比例(直支比)影响淀粉的性质,因线性结构与多分支结构而具备不同的流动性,直链淀粉的线性结构需要相对较小的重新排列空间,比支链淀粉更容易形成双螺旋结构和结晶形态[19]。直支比影响米线凝胶形成速率及稳定性,经糊化和回生后,直链淀粉聚合形成较多氢键,提高凝胶强度[20],使米线形成的网状结构耐高温,而支链淀粉形成软凝胶,提高黏性,使米线柔软筋道[21]。史韬琦等[22]研究发现大米中直链淀粉含量较高时形成的淀粉凝胶强度大,米线口感较硬,而支链淀粉含量高时制作的米线韧性差且易断。由此可知,直支比过大,米线凝胶硬度大,蒸煮易断条;直支比过小,则大米粉黏附性较大,米线成型困难,易糊汤、并条和断条[23]

    原料中直链淀粉和支链淀粉的精细结构影响米线的形成品质。研究表明,淀粉的性质不仅受直链淀粉含量的影响,还受淀粉分子大小和链长分布的影响。淀粉的分子尺寸较小、分子量较低以及直链淀粉长链比例较大的原料在烹饪后质地较硬,可以推测生成的淀粉凝胶硬度也较大[24]。直链淀粉分子越小,中短链数量越多,淀粉的短期回生越容易。Tao等[25]研究发现,聚合度在1000~20000之间的直链淀粉能显著提高大米凝胶的硬度,主要与形成米线的淀粉糊化和老化过程有关,从而影响米线的品质。支链淀粉的分子尺寸、链长分布与米线的品质相关。Chang等[10]研究发现聚合度峰值≥15.5的葡萄糖单位、较小的支链淀粉分子和较长的支链会增加支链淀粉的回生速率;Yi等[26]发现支链淀粉的链长影响米线的质构特性,短链(Degree of polymerization,DP 6~12)与黏附性正相关,中链(DP 13~24)与弹性负相关,而长链(DP 37~60)与黏附性负相关;Geng等[27]研究发现,分支度较低的短枝支链促进了淀粉分子间的相互作用,表现出更高的硬度和弹性,米线品质较好;Zhang等[28]研究表明长链直链淀粉和单元链比例较小的支链淀粉协同提高米线的品质,因为较长的直链淀粉更易穿过支链淀粉的晶层与其相互作用;同时,单元链比例相对较小的支链淀粉分子排列更整齐,更易产生相互作用,促进了相对稳定结构的形成,从而改善米线的机械性能,降低其黏度。因此,可以通过改变原料中直链淀粉和支链淀粉的精细结构,从而改善米线的品质特性。

    大米中的蛋白质含量约为7%~8%,主要分为谷蛋白、球蛋白、清蛋白和醇溶蛋白4种,分布在米粒的不同部位[29]。在米线加工过程中,大米中部分蛋白质会与直链淀粉结合,以蛋白质-直链淀粉复合物的形式存在[30],由于蛋白-淀粉复合物之间的静电吸引和疏水相互作用,进而强化凝胶的网络结构(图3),对淀粉的糊化特性和米线的品质有一定影响[31]。肖满凤等[32]研究蛋白质对大米淀粉糊化特性及鲜湿米线品质的影响,结果表明脱蛋白处理降低大米淀粉的糊化温度,使其更易糊化;蛋白质含量越高,与淀粉结合位点越多,分子间相互作用力增加,制作的米线断条率越低。此外,蛋白质会阻碍淀粉的长期回生,在米线储藏过程中具有重要作用[33]

    图  3  淀粉与蛋白质相互作用机制
    Figure  3.  Mechanism of interaction between starch and protein

    大米中的脂肪含量很低(1%~2%),但与米线的品质密切相关,主要通过与淀粉相互作用改变其糊化特性和流变特性,从而影响米线的凝胶稳定性。淀粉-脂肪复合体由插入直链淀粉螺旋中的极性脂类组成,它们通过疏水和氢键等非共价相互作用结合在一起,脂类的烷基链部分位于直链螺旋空腔内,而极性基团位于空腔外。这种V型络合作用可降低酶解的易感性,改善米线的消化性。通常情况下,脂肪降低淀粉的糊化热焓,促进凝胶体系的形成,降低淀粉的水合特性,维持凝胶结构的稳定,从而延长米线的货架期[34]。米线原料中脂肪含量越高,米线的硬度和拉伸强度越大,消化率越低[35]。综上所述,适当的脂肪含量有利于米线形成较好的消化特性。

    改性淀粉已被证实是良好的米线品质改良剂,改性淀粉包括物理改性淀粉、化学改性淀粉、酶法改性淀粉与复合改性淀粉。不同改性淀粉对米线品质改良的机理各不相同,淀粉改性可以按照需求定向对淀粉性质进行改变,以此来满足对米线品质的改良,淀粉改性技术分类如图4所示。

    图  4  淀粉改性技术
    Figure  4.  Starch modification technology

    物理改性技术是利用热、力、电等手段对淀粉颗粒进行处理,在不使用化学试剂的情况下诱导淀粉产生变化,破坏或重新排列淀粉颗粒中分子的堆积结构,改变其原有的形态结构和理化特性[36],从而满足特定的应用需求,分为传统热技术和新型非热技术两大类(表1)。

    表  1  物理改性技术对淀粉的影响
    Table  1.  Effect of physical modification process on starches
    物理改性技术 淀粉类型 改性条件 影响 文献
    干热处理 玉米淀粉、马铃薯淀粉、木薯淀粉 130 ℃,2 h 最终黏度↑、质构特性↑、抗剪切能力↑、凝胶硬度↑ [38]
    甘薯淀粉 糊化黏度↓、糊化温度↓、消化率↓ [46]
    湿热处理 香蕉淀粉 100 ℃,24 h 凝胶强度↑、淀粉晶体B型变为C型 [47]
    鳄梨淀粉 120 ℃,1 h 糊化温度↑、糊化黏度↓、相对结晶度↓ [48]
    马铃薯淀粉、玉米淀粉 120 ℃,5 h 快速消化淀粉↑、慢消化淀粉↓、抗性淀粉↑ [49]
    退火改性 大米淀粉 55 ℃,48 h 相对结晶度↑、熔化温度↑ [50]
    高压改性 玉米淀粉 120 ℃高压,1 h 抗性淀粉↑ [51]
    豇豆淀粉 100~1000 MPa,25 ℃ 相对结晶度↑、糊化温度↓、GI↓ [52]
    微波改性 木薯淀粉 900 W,30 min 抗性淀粉↑ [53]
    冷等离子体 马铃薯淀粉 300 MHz~300 GHz 相对结晶度↓ [54]
    小麦淀粉 30~50 Pa,1 kW,3~7 min,50 V,1 A [55]
    注:↑表示上升,↓表示下降,表2~表3同。
    下载: 导出CSV 
    | 显示表格

    热改性技术包括干热处理(Dry heat treatment, DHT)、湿热处理(Heat moisture treatment, HMT)、退火改性和高压灭菌,在热改性过程中,淀粉在高温下进行较长时间处理。经过HMT的淀粉由于淀粉分子解聚而表现出更高的热稳定性,更低的膨胀力和溶解度[37]。经过DHT的淀粉由于支链淀粉的分解导致其直链淀粉含量增加,糊化特性改变[38]。高压灭菌会破坏淀粉颗粒结构,从而增加直链淀粉和支链淀粉聚合物形成分子内或分子间键的可能性,有助于抗性淀粉的产生[39]。经过热改性的淀粉表现出更高的分子间作用力和稳定性,赋予米线更好的质构特性和蒸煮品质。Liu等[40]将HMT(110 ℃,2 h)直接应用于米线干燥过程中,改变了干米线中淀粉的结构特征,促进淀粉分子重排与内源性脂质形成V型螺旋结构,增强分子间结合力,提高米线的硬度、弹性、咀嚼性和抗拉伸特性,降低蒸煮损失。

    非热改性技术包括球磨、微波、冷等离子体、超声波和电子束辐照等处理方法[41]。微波处理降低淀粉的短程有序结构和支化程度,促进了淀粉链之间的缠结,以及均匀的淀粉-蛋白质双网络凝胶形成[42],从而延缓淀粉消化,提高米线的慢消化特性。此外,球磨和超声波处理利用机械力影响淀粉功能,Gonzalez等[43]报道球磨处理使大米淀粉的糊化温度、糊化时间、结晶度和热焓降低;球磨增加了淀粉颗粒在蛋白质-淀粉网络中的填充度,增强其流变特性,提高米线的弹性、咀嚼性、内聚性等质构特性,降低蒸煮损失及断条率[44]。超声波处理增强淀粉的水合能力、短程有序结构和双螺旋结构,改善凝胶结构,提高米线的弹性、粘性等质构特性,延缓其老化回生[45]。冷等离子体和电子束辐照均为利用电子束产生自由基,进而改变淀粉的功能特性的技术。物理改性技术具有性价比高、无毒、安全、绿色制造、对消费者的健康无危害等优点。

    化学改性技术是使用不同的化学试剂对淀粉进行改性,根据所使用的化学物质与淀粉分子羟基之间的化学键,分为酯化、酸解、醚化、交联化和氧化等不同类型[56],不仅能改善淀粉的理化特性和形态,还能提高淀粉的流变特性和机械强度(表2[57]

    表  2  化学改性技术对淀粉的影响
    Table  2.  Effect of chemical modification process on starches
    化学改性技术 化学试剂 作用机制 影响 文献
    臭氧氧化改性 酸性介质、碱性介质、中性介质氧化剂 氧化剂 峰值黏度↓、糊化温度↑、凝胶硬度↑ [60]
    酸水解改性 低浓度无机酸、有机酸 α-1-4)糖苷键、(α-1-6)糖苷键 支链淀粉含量↓、相对结晶度↑ [63]
    酯化改性 磷酸盐、乙酰剂、二硫化碳、烯基琥珀酸酐、
    脂肪酸及衍生物等
    羟基→疏水酯基 溶胀度和溶解度↑、黏度↑ [64]
    醚化改性 环氧烷化合物、一氯乙酸及其钠盐、胺类化合物 氢键 透明度和膨胀力↑、凝胶强度↓ [65]
    交联改性 环氧氯丙烷 羟基→强化氢键 溶胀系数和透光率↓、黏度↓、凝胶弹性↑ [62]
    三氯氧磷、三聚磷酸钠 抗剪切性↑、冻融稳定性↑ [66]
    柠檬酸 溶胀度和溶解度↓、热稳定性↑ [67]
    下载: 导出CSV 
    | 显示表格

    酯化改性通过酸及其衍生物取代淀粉分子中葡萄糖单元结构上的醇羟基,从而将其转化为疏水酯基[58]。酸水解改性是淀粉在低于糊化温度条件下,使用较低浓度的酸进行水解,作用于淀粉颗粒的无定形区,导致支链淀粉分子的支链断裂,并转化为更小的直链淀粉分子。醚化改性是利用脂肪族和芳香族醇(酚)形成醚的化学过程,破坏分子的氢键,导致淀粉聚合物在无定形区域自由迁移。交联改性技术是通过在淀粉分子之间形成共价或物理交联结构来改善聚合物的结构和特性的方法,引入多个能与羟基反应的基团形成交联键,从而强化淀粉颗粒中的氢键。

    Castanha等[60]使用臭氧改性技术对马铃薯淀粉进行改性,发现淀粉的糊化特性发生改变,峰值黏度降低、糊化温度升高,淀粉凝胶的硬度有所提高,可降低米线的黏度,提高其硬度。Estrada等[61]发现浓度为3%的辛烯基琥珀酸酐合成的马铃薯酯化淀粉具有较好的两亲性,改性后淀粉中慢消化淀粉、抗性淀粉含量增加,可提高米线持水性和慢消化特性,其改性机制如图5所示。环氧氯丙烷改性高粱淀粉的理化、形态和流变性改变,直链淀粉含量、峰值黏度、膨胀势和溶解度均升高,由于改性过程中淀粉分子的聚合,淀粉凝胶拉伸强度得到提高[62],促进淀粉的短期回生,增强米线的拉伸特性。由于化学改性淀粉结构的改变,赋予其良好的机械强度,在改善凝胶质地中得到广泛的应用,可显著提高米线的质构特性,具有稳定性好、回生性低等特点。

    图  5  辛烯基琥珀酸酐酯化改性淀粉机制[59]
    Figure  5.  Mechanism of octenyl succinic anhydride esterification modified starch[59]

    酶法改性是通过酶的作用改变淀粉的结构,使其具有不同的分子尺寸、链长分布、直链淀粉和支链淀粉的比例和相对分子质量,在改性过程中,酶与淀粉在一定温度下反应,改变了各种食品应用的物理化学属性、结构属性和形态属性[68]。在改性过程中发生三种主要反应:a.(α-1,4或α-1,6)糖苷键的水解;b.淀粉分子的脱支;c.新的(α-1,6)糖苷键的形成(图6[69]。根据需要可采用不同的酶对淀粉进行改性,包括α-淀粉酶、β-淀粉酶、淀粉酶、环糊精、糖基转移酶、普鲁兰酶和异淀粉酶等。

    图  6  酶法改性技术作用机制
    Figure  6.  Mechanism of action of enzyme modification technology

    Li等[70]采用麦芽α-淀粉酶对不同玉米淀粉进行改性,结果表明改性淀粉中支链数量较少,有利于抑制贮藏过程中的长期回生,所有改性淀粉中的抗性淀粉含量均较高,可提高米线贮藏过程的稳定性,降低其消化速率。Li等[71]利用α-1,4-葡聚糖支链酶对木薯淀粉进行改性,增加了淀粉的聚合态结构,提高了热稳定性、流变特性,从而提高了直链淀粉的凝胶性能,促进米线的短期回生过程,提高其质构特性。普鲁兰酶改性淀粉具有V型结晶结构,直链淀粉含量提高,淀粉的持水性提高、黏度降低,凝胶的稳定性提高[72],改性淀粉与脂肪形成复合物,提高米线慢消化特性,凝胶结构稳定,保持米线贮藏过程稳定性。酶法改性通过改变淀粉的精细结构,增强分子内和分子间的作用力,提高抗性淀粉含量,可显著改善米线的品质特性。酶法改性淀粉具有对人体无害、环保、副产物少等优点,可以通过处理时间和温度等基本条件调节改性过程。

    复合改性技术是采用两种或者两种以上处理方法对淀粉进行改性的过程。物理复合改性因产生较短的直链淀粉而增强其糊化特性和凝胶能力。微波-冷等离子体复合处理显著降低了大米淀粉的相对结晶度、膨胀度、溶解度和直链淀粉含量,增加了抗性淀粉含量[73],可提高米线的抗消化特性。化学复合改性主要通过氧化反应、酯化反应、交联反应等组合而实现,可以延缓贮存过程的回生,多位点改变淀粉分子的结构。醚化和乙酰化复合改性淀粉表现出较高的持水能力、溶解率和凝胶强度[74],可抑制米线长期回生,提高其硬度。酶法复合改性产生的协同作用提高酶的催化效率,增强淀粉的改性效果。Li等[75]利用分支酶和葡萄糖基转移酶改性玉米淀粉,通过改变直支比,增加了慢消化淀粉和抗性淀粉含量;肖瑀等[76]使用α-淀粉酶、β-淀粉酶和葡萄糖苷转移酶复合修饰红薯淀粉,形成分支密度较高的短枝线性链,具有更紧密的结构。通过调节米线形成的重要因素:直支比与淀粉精细结构,赋予米线更好的质构特性和消化特性。

    不同类型的改性方法相结合,可以提高速率,同时改变淀粉的理化特性和结构。使用α-淀粉酶、等离子体复合处理后淀粉的分子量、相对结晶度、膨胀力和糊化黏度均降低,而抗性淀粉含量(RS)、热焓和糊化温度则有所增加[77],淀粉分子间的结合更加牢固,赋予米线更高的弹性和慢消化特性。丙酸酐和普鲁兰酶对大米淀粉双重改性后表现出更高的直链淀粉含量和相对结晶度,并从A型转变为B型晶体[78],可能是由于脱支处理提高了淀粉的取代度,可延缓米线的长期回生,提高贮藏过程稳定性,降低米线消化速率。复合改性淀粉具有多种改性淀粉的共同优点,克服了一些单一改性不能兼具多种性质的缺点,提高了淀粉改性的效率。

    质构特性是评价米线品质的重要指标,包括硬度、弹性、内聚性、咀嚼性、黏附性、回复性和拉伸特性(表3),与淀粉的结构具有显著相关性,淀粉的粒径、短程有序结构、直链淀粉含量等微观结构显著影响淀粉的糊化、回生和稳态流变性质,进而影响米线的质构特性[90]。改性技术从本质上改变淀粉的结构及理化特性,影响淀粉的糊化和回生过程,加强凝胶网络结构,从而提升米线的质构特性。

    表  3  改性淀粉对米线品质的影响
    Table  3.  Effect of modified starch on the quality of rice noodles
    改性淀粉种类 添加量 硬度 弹性 咀嚼性 拉伸性 黏附性 蒸煮损失率 断条率 感官评分 参考文献
    退火大米淀粉 40 ↑11.5 ↑2.1 ↑5.7 ↓51.3 ↓62.8 ↑14.3 [79]
    过热蒸汽大米淀粉 ↑45.1 ↑29.4 ↓17.8 ↓5.1 ↓11.7 [80]
    湿热处理淀粉 ↑69.8 ↑2.2 ↑68.39 ↑11.3 ↓65.7 [40]
    球磨小米淀粉 ↓14.6 ↑360.7 ↑127.2 ↑72.0 ↑64.5 ↓14.1 ↓50.0 ↑13.2 [44]
    交联美人蕉淀粉 20 ↑5.5 ↑39.5 ↑15.4 ↓5.3 [81]
    木薯羟丙基淀粉 5 ↑4.5 ↑4.3 ↓12.9 ↓17.6 [82]
    羟丙基淀粉 3 ↓7.0 ↑8.0 ↑85.1 ↓57.7 ↓31.7 ↓83.9 [83]
    马铃薯酯化淀粉 4 ↑23.5 ↑4.1 ↓48.5 ↑3.6 [84]
    普鲁兰酶改性大米淀粉 2 ↓9.8 ↓22.5 [85]
    麦芽糖淀粉酶处理大米淀粉 ↓50.0 ↑25.5 ↓85.8 [86]
    1,4-α-葡聚糖分支酶处理大米淀粉 ↑13.6 ↑15.6 [87]
    α-淀粉酶、纤维素酶处理荞麦淀粉 25 ↓11.7 ↑9.7 ↑33.3 ↑66.3 ↑25.1 ↓21.7 ↑3.1 [88]
    普鲁兰酶、转葡萄糖苷酶两步处理淀粉 ↑15.4 ↑3.2 [27]
    双酶联合退火处理大米淀粉 ↓54.8 ↑21.8 ↓58.4 ↑2.7 ↑38.0 [89]
    下载: 导出CSV 
    | 显示表格

    改性淀粉的无定形区减少,加速部分直链淀粉的短期老化回生,强化淀粉-蛋白质分子间的相互作用,提高淀粉凝胶的强度。孙晓晓等[44]研究表明球磨改性提高了小米米线弹性、咀嚼性、内聚性,可能是由于机械损伤使淀粉颗粒减小,增加了淀粉颗粒在淀粉-蛋白质基质中的填充度,其相互作用增强;淀粉内部结构松散,提高糊化程度,促进其短期回生,淀粉分子增强淀粉的凝胶性能,从而显著改善米线的质构特性。

    改性淀粉的大分子之间形成半互穿网络,填充米线凝胶网络结构的孔隙,加强分子间相互作用。Zhang等[91]研究发现退火改性后大米淀粉的崩解值降低,表明水分子和淀粉分子之间形成了氢键,加强了分子链之间的相互作用,从而提高了淀粉的热稳定性和剪切稳定性;制作的米线弹性、内聚性、咀嚼性、黏附性、拉伸特性均增加,显著提升其质构特性。徐霞红[92]探究醋酸酯淀粉添加量对米线品质的影响,发现当添加量为10%~20%时,鲜湿米线的硬度和咀嚼性增加,可能是醋酸酯淀粉糊化温度低,加热后糊化程度高,凝胶强度大,形成与内源性淀粉交互的网络结构,提高米线的质构特性,增强贮藏过程的稳定性。

    改性淀粉分子结构发生改变,增加直链淀粉和短支链淀粉含量,增强淀粉凝胶结构弹性和强度,提升米线的质构特性。Geng等[27]使用普鲁兰酶和转葡萄糖苷酶两步改性处理大米淀粉,产生了具有较少分支的短枝线性链结构,从而促进淀粉分子之间的相互作用,形成更致密的三维凝胶网络结构,表现出更高的硬度和弹性,从而提升米线的质构特性(图7)。Zhang等[87]研究1,4-葡聚糖分支酶改性大米淀粉对米线品质的影响,发现淀粉长链裂解后通过α-1,6-糖苷键重新结合形成高分支度、短分支链的结构,其中内链的比例增加,改善淀粉的亲水性,赋予米线更优良的弹性和拉伸特性。

    图  7  普鲁兰酶和转葡萄糖苷酶修饰大米淀粉对多尺度结构和凝胶强度影响示意图[27]
    Figure  7.  Effects of pullulanase and transglucosidase modified rice starch on multi-scale structure and gel strength[27]

    米线的蒸煮品质主要包括断条率和蒸煮损失,断条率高则米线完整性低、口感差,蒸煮损失高则蒸煮后易糊汤,蒸煮品质与凝胶网络稳定性有显著相关性[93],添加改性淀粉可以调控米线的蒸煮品质,提高食用口感。

    改性淀粉引入持水性良好的亲水基团,提升米线持水能力,抑制储藏过程中水分流失,延缓米线中淀粉长期回生,降低米线的断条率。卢斌等[82]将木薯淀粉改性的羟丙基淀粉添加到米线中,发现其断条率、蒸煮损失均降低,可能是改性木薯淀粉具有良好的持水性,提升淀粉、蛋白质等表面极性基团紧密结合的水分子含量,抑制支链淀粉重结晶,从而延缓米线的长期回生,抑制其贮藏过程的品质劣变,改善蒸煮品质。Jia等[83]研究表明添加羟丙基淀粉的米线水合能力、抗拉伸强度增加,复水时间、断条率均下降,可能是羟丙基淀粉分子形成优异拉伸性和保水能力的凝胶,显著提高米线的蒸煮品质。

    改性淀粉糊化时黏性大,糊丝长,黏结力好,或分子有序度增加,提高层状结构致密性,抑制蒸煮时淀粉分子的溶出,降低米线的蒸煮损失。木薯醋酸酯化淀粉可以显著降低干米线的蒸煮损失,添加量为20%时蒸煮损失达到最低3.26%,可能是由于改性淀粉吸水后的黏结力提升,进一步加强由淀粉形成的网状结构[94]。Liu等[40]研究发现HMT处理提高了米线的微观结构均匀性、抗拉强度和延展性,碘蓝值显著降低,表明直链淀粉的溶出量降低,蒸煮损失由17.75%降至6.19%,可能是有序的结晶域有利于米线蒸煮过程中形成更致密、更均匀的凝胶网络结构,抑制淀粉溶出。

    改性淀粉提高淀粉凝胶的稳定性,强化空间网络结构,提升其蒸煮品质。Wandee等[81]通过在大米粉中添加20%的交联美人蕉淀粉改善米线的品质,发现米线的弹性和抗拉伸性提升,降低米线的断条率,可能是形成了由交联共价键稳定的破碎淀粉颗粒组成的均匀混合物,提高淀粉分子间氢键稳定性。王志兴等[85]报道了普鲁兰酶改性淀粉对米线品质的影响,发现由于普鲁兰酶切开支链淀粉分支点中的α-1,6-糖苷键,使支链淀粉脱支,延缓米线的长期回生,凝胶稳定性增强,米线的断条率及蒸煮损失降低。

    米线中淀粉的结构与消化特性密切相关,淀粉根据其体外消化率可分为三类:快消化淀粉(Readily digestible starch, RDS)、慢消化淀粉(Slowly digestible starch, SDS)和抗性淀粉(Resistant starch, RS),含有高比例SDS和RS的食物有助于降低升糖血糖指数和胰岛素反应[95]。淀粉有序的多尺度结构和晶体结构提供了对酶攻击的抵抗力,抑制了淀粉的消化,淀粉分子的链长和结晶度越大,抗性淀粉含量也随之提高[96]。添加改性淀粉可以调节米线中各类消化淀粉的含量,从而影响米线的消化性质(图8)。

    图  8  改性淀粉降低消化特性机制
    Figure  8.  Mechanism of modified starch reducing digestion characteristics

    改性淀粉分子晶体构型含有V型晶体,淀粉脂肪结合为复合物,分子结晶度增加,而V型晶体被归类为第五类抗性淀粉,改善米线的消化特性。程佳钰[97]研究表明超声-蒸谷联合处理降低糙米米线的RDS含量,提高RS的比例,降低米线的消化速率、水解指数以及预测血糖指数。蒸谷导致米线中淀粉-脂类复合物增加,改善其消化特性;超声处理促进淀粉的糊化与回生,增强淀粉分子链间的相互作用,减少酶的攻击位点,进而提高了淀粉消化的抗性。

    改性淀粉由于分子结构的改变或官能团的引入抵抗酶的消化,增加慢消化淀粉和抗性淀粉含量,促进淀粉颗粒的聚集,阻碍消化酶的作用,降低米线的消化率。Yan等[98]探究双重高温回生处理对大米淀粉结构及米线品质的影响,发现处理后大米淀粉的短程有序性提高,形成A型和V型晶体,蒸煮后残留的耐热V型晶体促进分子重排,加强米线凝胶结构,降低其消化率;Gong等[99]研究发现α-淀粉酶与普鲁兰酶复合双酶法、普鲁兰酶与退火复合法、退火双酶复合法处理大米粉,处理后的淀粉颗粒聚集更明显,增加了米线中RS含量,降低了米线的体外消化率。

    综上所述,米线品质主要受直链淀粉、支链淀粉的含量和结构影响,添加适量的改性淀粉是改良米线品质可行而有效的途径。良好的改性淀粉可以强化米线中淀粉分子间的相互作用,协同形成结构更致密的凝胶网络结构。虽然学者在改性淀粉对米线的品质影响方面有所研究,但大多集中在改良效果,且加工生产中的实践应用较少,其开发与应用还有许多理论和实际问题需要进一步探究。直链淀粉与支链淀粉对米线品质影响的协同作用、原料中其他成分的作用机制仍需进一步深入研究、揭示,感官品质如何精准调控亟待解决。

    在选择适宜种类的改性淀粉的同时,应严格按照相关标准限量添加,但行业内并无关于米线改良剂添加的系统性标准,建立相关标准仍为米线生产产业发展的困境。未来研究应更加面向工业生产实际与实践的有机结合,聚焦于口感多元化和品质营养的提升。如何复配使用各类改性淀粉,发挥协同改良效果,为米线产品设计专用型配料,实现米线改良剂个性化、产业化值得关注。本文详细剖析了淀粉改性及其对米线品质的影响机制与效果,旨在扩大改性淀粉应用领域,为我国米线产业高质量发展提供科学基础,升级米线产业链布局,从而推动米线向高品质、营养健康的食品代表发展。

  • 图  1   米线加工工序

    Figure  1.   Processing procedure of rice noodles

    图  2   米线形成原理

    Figure  2.   Formation mechanism of rice noodles

    图  3   淀粉与蛋白质相互作用机制

    Figure  3.   Mechanism of interaction between starch and protein

    图  4   淀粉改性技术

    Figure  4.   Starch modification technology

    图  5   辛烯基琥珀酸酐酯化改性淀粉机制[59]

    Figure  5.   Mechanism of octenyl succinic anhydride esterification modified starch[59]

    图  6   酶法改性技术作用机制

    Figure  6.   Mechanism of action of enzyme modification technology

    图  7   普鲁兰酶和转葡萄糖苷酶修饰大米淀粉对多尺度结构和凝胶强度影响示意图[27]

    Figure  7.   Effects of pullulanase and transglucosidase modified rice starch on multi-scale structure and gel strength[27]

    图  8   改性淀粉降低消化特性机制

    Figure  8.   Mechanism of modified starch reducing digestion characteristics

    表  1   物理改性技术对淀粉的影响

    Table  1   Effect of physical modification process on starches

    物理改性技术 淀粉类型 改性条件 影响 文献
    干热处理 玉米淀粉、马铃薯淀粉、木薯淀粉 130 ℃,2 h 最终黏度↑、质构特性↑、抗剪切能力↑、凝胶硬度↑ [38]
    甘薯淀粉 糊化黏度↓、糊化温度↓、消化率↓ [46]
    湿热处理 香蕉淀粉 100 ℃,24 h 凝胶强度↑、淀粉晶体B型变为C型 [47]
    鳄梨淀粉 120 ℃,1 h 糊化温度↑、糊化黏度↓、相对结晶度↓ [48]
    马铃薯淀粉、玉米淀粉 120 ℃,5 h 快速消化淀粉↑、慢消化淀粉↓、抗性淀粉↑ [49]
    退火改性 大米淀粉 55 ℃,48 h 相对结晶度↑、熔化温度↑ [50]
    高压改性 玉米淀粉 120 ℃高压,1 h 抗性淀粉↑ [51]
    豇豆淀粉 100~1000 MPa,25 ℃ 相对结晶度↑、糊化温度↓、GI↓ [52]
    微波改性 木薯淀粉 900 W,30 min 抗性淀粉↑ [53]
    冷等离子体 马铃薯淀粉 300 MHz~300 GHz 相对结晶度↓ [54]
    小麦淀粉 30~50 Pa,1 kW,3~7 min,50 V,1 A [55]
    注:↑表示上升,↓表示下降,表2~表3同。
    下载: 导出CSV

    表  2   化学改性技术对淀粉的影响

    Table  2   Effect of chemical modification process on starches

    化学改性技术 化学试剂 作用机制 影响 文献
    臭氧氧化改性 酸性介质、碱性介质、中性介质氧化剂 氧化剂 峰值黏度↓、糊化温度↑、凝胶硬度↑ [60]
    酸水解改性 低浓度无机酸、有机酸 α-1-4)糖苷键、(α-1-6)糖苷键 支链淀粉含量↓、相对结晶度↑ [63]
    酯化改性 磷酸盐、乙酰剂、二硫化碳、烯基琥珀酸酐、
    脂肪酸及衍生物等
    羟基→疏水酯基 溶胀度和溶解度↑、黏度↑ [64]
    醚化改性 环氧烷化合物、一氯乙酸及其钠盐、胺类化合物 氢键 透明度和膨胀力↑、凝胶强度↓ [65]
    交联改性 环氧氯丙烷 羟基→强化氢键 溶胀系数和透光率↓、黏度↓、凝胶弹性↑ [62]
    三氯氧磷、三聚磷酸钠 抗剪切性↑、冻融稳定性↑ [66]
    柠檬酸 溶胀度和溶解度↓、热稳定性↑ [67]
    下载: 导出CSV

    表  3   改性淀粉对米线品质的影响

    Table  3   Effect of modified starch on the quality of rice noodles

    改性淀粉种类 添加量 硬度 弹性 咀嚼性 拉伸性 黏附性 蒸煮损失率 断条率 感官评分 参考文献
    退火大米淀粉 40 ↑11.5 ↑2.1 ↑5.7 ↓51.3 ↓62.8 ↑14.3 [79]
    过热蒸汽大米淀粉 ↑45.1 ↑29.4 ↓17.8 ↓5.1 ↓11.7 [80]
    湿热处理淀粉 ↑69.8 ↑2.2 ↑68.39 ↑11.3 ↓65.7 [40]
    球磨小米淀粉 ↓14.6 ↑360.7 ↑127.2 ↑72.0 ↑64.5 ↓14.1 ↓50.0 ↑13.2 [44]
    交联美人蕉淀粉 20 ↑5.5 ↑39.5 ↑15.4 ↓5.3 [81]
    木薯羟丙基淀粉 5 ↑4.5 ↑4.3 ↓12.9 ↓17.6 [82]
    羟丙基淀粉 3 ↓7.0 ↑8.0 ↑85.1 ↓57.7 ↓31.7 ↓83.9 [83]
    马铃薯酯化淀粉 4 ↑23.5 ↑4.1 ↓48.5 ↑3.6 [84]
    普鲁兰酶改性大米淀粉 2 ↓9.8 ↓22.5 [85]
    麦芽糖淀粉酶处理大米淀粉 ↓50.0 ↑25.5 ↓85.8 [86]
    1,4-α-葡聚糖分支酶处理大米淀粉 ↑13.6 ↑15.6 [87]
    α-淀粉酶、纤维素酶处理荞麦淀粉 25 ↓11.7 ↑9.7 ↑33.3 ↑66.3 ↑25.1 ↓21.7 ↑3.1 [88]
    普鲁兰酶、转葡萄糖苷酶两步处理淀粉 ↑15.4 ↑3.2 [27]
    双酶联合退火处理大米淀粉 ↓54.8 ↑21.8 ↓58.4 ↑2.7 ↑38.0 [89]
    下载: 导出CSV
  • [1]

    LI C M, YOU Y X, CHEN D G, et al. A systematic review of rice noodles:Raw material, processing method and quality improvement[J]. Trends in Food Science & Technology,2021,107(1):389−400.

    [2]

    SEN S, CHAKRABORTY R, KALITA P. Rice-not just a staple food:A comprehensive review on its phytochemicals and therapeutic potential[J]. Trends in Food Science & Technology,2020,97:265−285.

    [3]

    ZHANG J Y, ZHAO F F, LI C M, et al. Acceleration mechanism of the rehydration process of dried rice noodles by the porous structure[J]. Food Chemistry,2024,431:137050. doi: 10.1016/j.foodchem.2023.137050

    [4]

    KASUNMALA I G G, NAVARATNE S B, WICKRAMASINGHE I. Effect of process modifications and binding materials on textural properties of rice noodles[J]. International Journal of Gastronomy and Food Science,2020,21:100217. doi: 10.1016/j.ijgfs.2020.100217

    [5] 刘心爱, 李莎艳, 侬章梅, 等. 云南蒙自过桥米线的品质测定[J]. 食品安全导刊,2023(34):104−109. [LIU X A, LI S Y, NONG Z M, et al. Quality determination of Yunnan mengzi cross-bridge rice noodles[J]. China Food Safety Magazine,2023(34):104−109.] doi: 10.3969/j.issn.1674-0270.spaqdk202334035

    LIU X A, LI S Y, NONG Z M, et al. Quality determination of Yunnan mengzi cross-bridge rice noodles[J]. China Food Safety Magazine, 2023(34): 104−109. doi: 10.3969/j.issn.1674-0270.spaqdk202334035

    [6] 董志雄, 郑恺, 丁文平, 等. RS2型抗性淀粉对米线品质及消化特性的影响[J]. 食品科技,2023,48(6):131−138. [DONG Z X, ZHENG K, DING W P, et al. Effects of RS2 resistant starch on the quality and digestive characteristics of rice noodles[J]. Food Science and Technology,2023,48(6):131−138.]

    DONG Z X, ZHENG K, DING W P, et al. Effects of RS2 resistant starch on the quality and digestive characteristics of rice noodles[J]. Food Science and Technology, 2023, 48(6): 131−138.

    [7]

    SEUNG D. Amylose in starch:Towards an understanding of biosynthesis, structure and function[J]. New Phytol,2020,228(5):1490−1504. doi: 10.1111/nph.16858

    [8]

    ASMEDA R, NOORLAILA A, NORZIAH M H. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour[J]. Food Chemistry,2016,191:45−51. doi: 10.1016/j.foodchem.2015.05.095

    [9]

    CHEN L, REN F, YU X P, et al. Pasting investigation, SEM observation and the possible interaction study on rice starch–pullulan combination[J]. International Journal of Biological Macromolecules,2015,73:45−48. doi: 10.1016/j.ijbiomac.2014.11.010

    [10]

    CHANG Q, ZHENG B D, ZHANG Y, et al. A comprehensive review of the factors influencing the formation of retrograded starch[J]. Int J Biol Macromol,2021,186:163−173. doi: 10.1016/j.ijbiomac.2021.07.050

    [11] 胡海鹏, 张聪男, 薛薇, 等. 不同抗老化剂对鲜湿米线品质及储藏稳定性的影响[J]. 中国粮油学报,2023,38(12):30−37. [HU H P, ZHANG C N, XUE W, et al. Effects of different antiaging agents on the quality and storage stability of fresh and wet rice noodles[J]. Journal of the Chinese Cereals and Oils Association,2023,38(12):30−37.] doi: 10.3969/j.issn.1003-0174.2023.12.006

    HU H P, ZHANG C N, XUE W, et al. Effects of different antiaging agents on the quality and storage stability of fresh and wet rice noodles[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(12): 30−37. doi: 10.3969/j.issn.1003-0174.2023.12.006

    [12]

    YI C P, ZHU H, ZHANG Y, et al. The role of indica starch in the mechanism of formation of fresh rice noodles[J]. Journal of Cereal Science,2021,99:103212. doi: 10.1016/j.jcs.2021.103212

    [13]

    LIU X, CHAO C, YU J L, et al. Mechanistic studies of starch retrogradation and its effects on starch gel properties[J]. Food Hydrocolloids,2021,120:106914. doi: 10.1016/j.foodhyd.2021.106914

    [14]

    LI C, HU Y M. Combination of parallel and sequential digestion kinetics reveals the nature of digestive characteristics of short-term retrograded rice starches[J]. Food Hydrocolloids,2020,108:106071. doi: 10.1016/j.foodhyd.2020.106071

    [15] 周显青, 彭超, 张玉荣, 等. 压榨型鲜湿米粉条凝胶质构特性及食用品质影响因素[J]. 食品科学,2017,38(21):93−99. [ZHOU X Q, PENG C, ZHANG Y R, et al. Factors influencing gel texture and eating quality of pressed type fresh rice noodles[J]. Food Science,2017,38(21):93−99.] doi: 10.7506/spkx1002-6630-201721015

    ZHOU X Q, PENG C, ZHANG Y R, et al. Factors influencing gel texture and eating quality of pressed type fresh rice noodles[J]. Food Science, 2017, 38(21): 93−99. doi: 10.7506/spkx1002-6630-201721015

    [16]

    FARI M J M, RAJAPAKSA D, RANAWEERA K K D S. Quality characteristics of noodles made from selected varieties of Sri Lankan rice with different physicochemical characteristics[J]. Journal of the National Science Foundation of Sri Lanka,2011,39(1):53−60. doi: 10.4038/jnsfsr.v39i1.2923

    [17]

    JEONG S, KIM Y, KO S, et al. Physicochemical characterization and in vitro digestibility of extruded rice noodles with different amylose contents based on rheological approaches[J]. Journal of Cereal Science,2016,71:258−263. doi: 10.1016/j.jcs.2016.09.004

    [18] 李琳, 陈洁, 王远辉, 等. 大米原料对鲜湿米粉品质影响[J]. 食品工业,2019,40(6):177−182. [LI L, CHEN J, WANG Y H, et al. The raw material selection of instant fresh rice noodle[J]. The Food Industry,2019,40(6):177−182.]

    LI L, CHEN J, WANG Y H, et al. The raw material selection of instant fresh rice noodle[J]. The Food Industry, 2019, 40(6): 177−182.

    [19] 李永富, 黄思雨, 史锋, 等. 配米技术提升自热米饭淀粉抗回生效果[J]. 中国粮油学报,2020,35(3):1−7. [LI Y F, HUANG S Y, SHI F, et al. Rice blending technology improves the anti-retrogradation effect of self-heating rice starch[J]. Journal of the Chinese Cereals and Oils Association,2020,35(3):1−7.] doi: 10.3969/j.issn.1003-0174.2020.03.002

    LI Y F, HUANG S Y, SHI F, et al. Rice blending technology improves the anti-retrogradation effect of self-heating rice starch[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(3): 1−7. doi: 10.3969/j.issn.1003-0174.2020.03.002

    [20]

    SUDHEESH C, VALIYAPEEDIYEKKAL SUNOOJ K, AALIYA B, et al. Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films[J]. Food Chemistry,2023,398:133881. doi: 10.1016/j.foodchem.2022.133881

    [21]

    CHEN J, ZHAO X L, LI S Q, et al. Ordered structural changes of retrograded instant rice noodles during the long-term storage[J]. Food Research International,2024,175:113727. doi: 10.1016/j.foodres.2023.113727

    [22] 史韬琦, 张晨, 丁文平, 等. 不同品种籼米直链淀粉含量对米线加工特性和品质的影响[J]. 食品工业科技,2020,41(19):33−38,44. [SHI T Q, ZHANG C, DING W P, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry,2020,41(19):33−38,44.]

    SHI T Q, ZHANG C, DING W P, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry, 2020, 41(19): 33−38,44.

    [23] 刘小青, 叶发银, 雷琳, 等. 大米的米线加工适性评价及改良方法研究进展[J]. 食品与发酵工业,2024,50(6):307−315. [LIU X Q, YE F Y, LEI L, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry,2024,50(6):307−315.]

    LIU X Q, YE F Y, LEI L, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry, 2024, 50(6): 307−315.

    [24]

    QIAO J W, JIA M, NIU J H, et al. Amylopectin chain length distributions and amylose content are determinants of viscoelasticity and digestibility differences in mung bean starch and proso millet starch[J]. International Journal of Biological Macromolecules,2024,267:131488. doi: 10.1016/j.ijbiomac.2024.131488

    [25]

    TAO K Y, LI C, YU W W, et al. How amylose molecular fine structure of rice starch affects functional properties[J]. Carbohydrate Polymers,2019,204:24−31. doi: 10.1016/j.carbpol.2018.09.078

    [26]

    YI C P, ZHU H, BAO J S, et al. The texture of fresh rice noodles as affected by the physicochemical properties and starch fine structure of aged paddy[J]. LWT,2020,130:109610. doi: 10.1016/j.lwt.2020.109610

    [27]

    GENG D H, TANG N, GAN J, et al. Two-step modification of pullulanase and transglucosidase:A novel way to improve the gel strength and reduce the digestibility of rice starch[J]. International Journal of Biological Macromolecules,2024,266:130992. doi: 10.1016/j.ijbiomac.2024.130992

    [28]

    ZHANG J, KONG H, BAN X, et al. Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio[J]. Carbohydrate Polymers,2022,295:119834. doi: 10.1016/j.carbpol.2022.119834

    [29]

    KHATUN A, WATERS D L E, LIU L. The impact of rice protein onin vitro rice starch digestibility[J]. Food Hydrocolloids,2020,109:106072. doi: 10.1016/j.foodhyd.2020.106072

    [30]

    WU C S, GONG X, ZHANG J, et al. Effect of rice protein on the gelatinization and retrogradation properties of rice starch[J]. International Journal of Biological Macromolecules,2023,242:125061. doi: 10.1016/j.ijbiomac.2023.125061

    [31]

    PARK J W, SUNG J M, CHOI Y S, et al. pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis[J]. Food Hydrocolloids,2021,117:106754. doi: 10.1016/j.foodhyd.2021.106754

    [32] 肖满凤, 徐晓辉, 李宏升, 等. 大米蛋白对大米淀粉糊化特性及鲜湿米粉品质影响的研究[J]. 食品科技,2016,41(4):168−172. [XIAO M F, XU X H, LI H S, et al. Effect of rice protein content on rice starch gelatinization property and wet rice noodle quality[J]. Food Science and Technology,2016,41(4):168−172.]

    XIAO M F, XU X H, LI H S, et al. Effect of rice protein content on rice starch gelatinization property and wet rice noodle quality[J]. Food Science and Technology, 2016, 41(4): 168−172.

    [33]

    ZHANG Y F, CHEN C, CHEN Y, et al. Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation[J]. Food Hydrocolloids,2019,91:136−142. doi: 10.1016/j.foodhyd.2019.01.015

    [34]

    WEI P, FANG F, LIU G M, et al. Effects of composition, thermal, and theological properties of rice raw material on rice noodle quality[J]. Front Nutr,2022,9:1003657. doi: 10.3389/fnut.2022.1003657

    [35]

    CHEN J, CAI H L, YANG S, et al. The formation of starch-lipid complexes in instant rice noodles incorporated with different fatty acids:Effect on the structure, in vitro enzymatic digestibility and retrogradation properties during storage[J]. Food Research International,2022,162:111933. doi: 10.1016/j.foodres.2022.111933

    [36]

    PUNIA S. Barley starch modifications:Physical, chemical and enzymatic - A review[J]. International Journal of Biological Macromolecules,2020,144:578−585. doi: 10.1016/j.ijbiomac.2019.12.088

    [37]

    PIECYK M, DOMIAN K. Effects of heat–moisture treatment conditions on the physicochemical properties and digestibility of field bean starch (Vicia faba var. minor)[J]. International Journal of Biological Macromolecules,2021(Suppl.1):425−433.

    [38]

    LEE S J, ZHANG C, LIM S T, et al. Effect of combination of dry heating and glucose addition on pasting and gelling behavior of starches[J]. International Journal of Biological Macromolecules,2021,183(4):1302−1308.

    [39]

    LI H, GUI Y F, LI J H, et al. Modification of rice starch using a combination of autoclaving and triple enzyme treatment:Structural, physicochemical and digestibility properties[J]. International Journal of Biological Macromolecules,2019,144:500−508.

    [40]

    LIU Y, LUO Q L, CHEN J, et al. Physicochemical quality improvement of dried rice noodles by direct heat-moisture treatment during the drying process[J]. Journal of Cereal Science,2024,118:103986. doi: 10.1016/j.jcs.2024.103986

    [41]

    NAWAZ H, WAHEED R, NAWAZ M, et al. Physical and chemical modifications in starch structure and reactivity[J]. Medicinal Plants of South Asia, 2020.

    [42]

    GU Y, XU R, LIU T X, et al. Enhancing the nonlinear rheological property and digestibility of mung bean flour gels using controlled microwave treatments:Effect of starch debranching and protein denaturation[J]. International Journal of Biological Macromolecules,2024,270:132049. doi: 10.1016/j.ijbiomac.2024.132049

    [43]

    GONZALEZ L C, LOUBES M A, TOLABA M P et al. Incidence of milling energy on dry-milling attributes of rice starch modified by planetary ball milling[J]. Food Hydrocolloids,2018,82(SEP.):155−163.

    [44] 孙晓晓, 刘敬科, 赵巍, 等. 球磨改性对小米全粉理化特性及其面条品质特性的影响[J]. 食品科学,2023,44(9):39−46. [SUN X X, LIU J K, ZHAO W, et al. Effect of ball milling modification on physicochemical properties of foxtail millet flour and noodle quality[J]. Food Science,2023,44(9):39−46.] doi: 10.7506/spkx1002-6630-20220526-324

    SUN X X, LIU J K, ZHAO W, et al. Effect of ball milling modification on physicochemical properties of foxtail millet flour and noodle quality[J]. Food Science, 2023, 44(9): 39−46. doi: 10.7506/spkx1002-6630-20220526-324

    [45]

    GUO Y B, SONG R, ZHU S M, et al. Effects of ultrasonic treatment on the texture quality of aged rice flour[J]. Journal of Cereal Science,2024,117:103918. doi: 10.1016/j.jcs.2024.103918

    [46]

    GOU M, WU H, SALEH A S M, et al. Effects of repeated and continuous dry heat treatments on properties of sweet potato starch[J]. International Journal of Biological Macromolecules,2019,129:869−877. doi: 10.1016/j.ijbiomac.2019.01.225

    [47]

    ALIMI B A, WORKNEH T S, OKE M O. Effect of hydrothermal modifications on the functional, pasting and morphological properties of South African cooking banana and plantain[J]. Cyta:Journal of Food,2016,14(3):489−495.

    [48]

    ANDRADE P, MORENA M, COLMAN D, et al. The effects of heat-moisture treatment on avocado starch granules[J]. Journal of Thermal Analysis and Calorimetry,2015,120(1):387−393. doi: 10.1007/s10973-014-3987-9

    [49]

    SCHAFRANSKI K, ITO V C, LACERDA L G. Impacts and potential applications:A review of the modification of starches by heat-moisture treatment (HMT)[J]. Food Hydrocolloids,2021,117:106690. doi: 10.1016/j.foodhyd.2021.106690

    [50]

    JI N, GE S J, LI M, et al. Effect of annealing on the structural and physicochemical properties of waxy rice starch nanoparticles:Effect of annealing on the properties of starch nanoparticles[J]. Food Chemistry,2019,286:17−21. doi: 10.1016/j.foodchem.2019.01.205

    [51]

    SOLER A, VELAZQUEZ G, VELAZQUEZ-CASTILLO R, et al. Retrogradation of autoclaved corn starches:Effect of water content on the resistant starch formation and structure[J]. Carbohydrate Research,2020,497:108137. doi: 10.1016/j.carres.2020.108137

    [52]

    RATNANINGSIH N, SUPARMO, HARMAYANI E, et al. Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles[J]. International Journal of Biological Macromolecules,2019,142(6):191−200.

    [53]

    KHURSHIDA S, DEKA S C. Application of microwave and hydrothermal treatments for modification of cassava starch of Manipur region, India and development of cookies[J]. Journal of Food Science and Technology,2022,59(1):344−354. doi: 10.1007/s13197-021-05020-9

    [54]

    PARK S H, NA Y, KIM J, et al. Properties and applications of starch modifying enzymes for use in the baking industry[J]. Food Science & Biotechnology,2018,27(2):299−312.

    [55]

    CHANG R R, LU H, TIAN Y Q, et al. Structural modification and functional improvement of starch nanoparticles using vacuum cold plasmat[J]. International Journal of Biological Macromolecules,2020,145:197−206. doi: 10.1016/j.ijbiomac.2019.12.167

    [56]

    MASINA N, CHOONARA Y E, KUMAR P, et al. A review of the chemical modification techniques of starch[J]. Carbohydr Polym,2017,157:1226−1236. doi: 10.1016/j.carbpol.2016.09.094

    [57]

    CRUZ-BENÍTEZ M M, GÓMEZ-ALDAPA C A, CASTRO-ROSAS J, et al. Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus[J]. Lebensmittel Wissenschaft Und Technologie,2019,105:110−117. doi: 10.1016/j.lwt.2019.01.069

    [58]

    OTACHE M A, DURU U R, ACHUGASIM O, et al. Advances in the modification of starch via esterification for enhanced properties[J]. Journal of Polymers and the Environment,2021,29(5):1365−1379. doi: 10.1007/s10924-020-02006-0

    [59]

    WANG J,ZHANG R, HUANG Z Y, et al. Preparation and characterization of octenyl succinic anhydride nano starch from tiger nut meals[J]. Study on Food Quality and Safety,2024,7(3):503−515.

    [60]

    CASTANHA N, DIVINO D M J M, DUARTE AUGUSTO P E. Potato starch modification using the ozone technology[J]. Food Hydrocolloids,2017,66(MAY):343−356.

    [61]

    ESTRADA-FERNÁNDEZ A G, DORANTES-BAUTISTA G, ROMÁN-GUERRERO A, et al. Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions[J]. Journal of Food Science and Technology,2021,58(8):2896−2905. doi: 10.1007/s13197-020-04790-y

    [62]

    SANDHU K S, SIROHA A K, PUNIA S, et al. Effect of degree of cross linking on physicochemical, rheological and morphological properties of Sorghum starch[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100073. doi: 10.1016/j.carpta.2021.100073

    [63]

    VELASQUEZ-CASTILLO L E M A. Quinoa starch nanocrystals production by acid hydrolysis:Kinetics and properties[J]. International Journal of Biological Macromolecules,2020,143:93−101. doi: 10.1016/j.ijbiomac.2019.12.011

    [64]

    ZHANG J S, RAN C, JIANG X F, et al. Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch[J]. LWT- Food Science and Technology,2021(8):112320.

    [65]

    LEE Y K, CHANG Y H. Structural and in vitro digestibility properties of esterified maca starch with citric acid and its application as an oil-in-water (O/W) pickering emulsion stabilizer[J]. International Journal of Biological Macromolecules,2019,134:798−806. doi: 10.1016/j.ijbiomac.2019.05.081

    [66] 徐坤, 马嫄, 谷绒. 交联改性多孔淀粉方法的比较研究[J]. 中国粮油学报,2009,24(9):40−44. [XU K, MA Y, GU R, et al. Comparative study on methods of cross-linking modified porous starch[J]. Journal of the Chinese Cereals and Oils Association,2009,24(9):40−44.]

    XU K, MA Y, GU R, et al. Comparative study on methods of cross-linking modified porous starch[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(9): 40−44.

    [67]

    TANG J, TAO H T, TAN C P, et al. Adsorption properties of corn starch modified by malt amylases and crosslinking agents:A comparison between sodium trimetaphosphate and organic acids[J]. International Journal of Biological Macromolecules,2023,253:127140. doi: 10.1016/j.ijbiomac.2023.127140

    [68]

    MOHAMED A A, ALQAH H, ALAMRI M S, et al. Physicochemical properties of enzymatically modified starches[J]. Processes,2021,9(12):2251. doi: 10.3390/pr9122251

    [69]

    SHIN H J, CHOI S J, PARK C S, et al. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties[J]. Carbohydrate Polymers,2010,82(2):489−497. doi: 10.1016/j.carbpol.2010.05.017

    [70]

    LI J Y, KONG X J, AI Y F. Modification of granular waxy, normal and high-amylose maize starches by maltogenic α-amylase to improve functionality[J]. Carbohydrate Polymers,2022,290:119503. doi: 10.1016/j.carbpol.2022.119503

    [71]

    LI Y D, LI C M, GU Z B, et al. Effect of modification with 1, 4-α-glucan branching enzyme on the rheological properties of cassava starch[J]. International Journal of Biological Macromolecules,2017,103:630. doi: 10.1016/j.ijbiomac.2017.05.045

    [72]

    LIU G D, HONG Y, GU Z B, et al. Pullulanase hydrolysis behaviors and hydrogel properties of debranched starches from different sources[J]. Food Hydrocolloids,2015,45:351−360. doi: 10.1016/j.foodhyd.2014.12.006

    [73]

    SUN XX, B A S M S,SUN Z Z, et al. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments[J]. LWT,2022,153:112483. doi: 10.1016/j.lwt.2021.112483

    [74]

    DAS A B, SINGH G, SINGH S, et al. Effect of acetylation and dual modification on physico-chemical, rheological and morphological characteristics of sweet potato (Ipomoea batatas) starch[J]. Carbohydrate Polymers,2010,80(3):725−732. doi: 10.1016/j.carbpol.2009.12.018

    [75]

    LI Y, LI C M, GU Z B, et al. Digestion properties of corn starch modified by α-D-glucan branching enzyme and cyclodextrin glycosyltransferase[J]. Food Hydrocolloids,2019,89:534−541. doi: 10.1016/j.foodhyd.2018.11.025

    [76] 肖瑀, 郭丽, 邓银凤, 等. 复合酶修饰对红薯淀粉分支结构和物化特性的影响[J]. 食品科学,2020,41(3):18−23. [XIAO Y, GUO L, DENG Y F, et al. Effect of multi-enzyme modification on branch structure and physicochemical properties of sweet potato starch[J]. Food Science,2020,41(3):18−23.] doi: 10.7506/spkx1002-6630-20190207-032

    XIAO Y, GUO L, DENG Y F, et al. Effect of multi-enzyme modification on branch structure and physicochemical properties of sweet potato starch[J]. Food Science, 2020, 41(3): 18−23. doi: 10.7506/spkx1002-6630-20190207-032

    [77]

    SHEN H S, GE X Z, ZHANG Q, et al. Dielectric barrier discharge plasma improved the fine structure, physicochemical properties and digestibility of α-amylase enzymatic wheat starch[J]. Innovative Food Science & Emerging Technologies,2022,78:102991.

    [78]

    WANG R, LI M, LIU J G, et al. Dual modification manipulates rice starch characteristics following debranching and propionate esterification[J]. Food Hydrocolloids,2021,119:106833. doi: 10.1016/j.foodhyd.2021.106833

    [79]

    WAG L, ZHANG C N, CHEN Z X, et al. Effect of annealing on the physico-chemical properties of rice starch and the quality of rice noodles[J]. Journal of Cereal Science,2018,84:125−131. doi: 10.1016/j.jcs.2018.10.004

    [80] 郑洋洋. 过热蒸汽处理对大米粉及方便米线品质的影响研究[D]. 郑州:河南工业大学, 2021. [ZHENG Y Y. Study on the effect of superheated steam treatment on the quality of rice flour and instant rice noodles[D]. Zhengzhou:Henan University of Technology, 2021.]

    ZHENG Y Y. Study on the effect of superheated steam treatment on the quality of rice flour and instant rice noodles[D]. Zhengzhou: Henan University of Technology, 2021.

    [81]

    WANDEE Y, UTTAPAP D, PUNCHA-ARNON S, et al. Quality assessment of noodles made from blends of rice flour and canna starch[J]. Food Chemistry,2015,179:85−93. doi: 10.1016/j.foodchem.2015.01.119

    [82] 卢斌, 李才明, 顾正彪, 等. 羟丙基淀粉对鲜湿米粉贮藏品质的影响及其作用机理分析[J]. 河南工业大学学报(自然科学版),2022,43(2):16−22. [LI B, LI C M, GU Z B, et al. Effect of hydroxypropyl starch on storage quality of fresh rice noodles and its mechanism analysis[J]. Journal of Henan University of Technology(Natural Science Edition),2022,43(2):16−22.]

    LI B, LI C M, GU Z B, et al. Effect of hydroxypropyl starch on storage quality of fresh rice noodles and its mechanism analysis[J]. Journal of Henan University of Technology(Natural Science Edition), 2022, 43(2): 16−22.

    [83]

    JIA Y Z, ZHANG Z, LI M, et al. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles[J]. Food Research International,2022,162:111922. doi: 10.1016/j.foodres.2022.111922

    [84] 曹世阳. 影响大米淀粉凝胶品质的因素及其对鲜湿米粉食用品质影响的研究[D]. 南宁:广西大学, 2017. [CAO S Y. Study on the factors affecting the gel quality of rice starch and its effect on the edible quality of fresh wet rice noodles[D]. Nanning:Guangxi University, 2017.]

    CAO S Y. Study on the factors affecting the gel quality of rice starch and its effect on the edible quality of fresh wet rice noodles[D]. Nanning: Guangxi University, 2017.

    [85] 王志兴, 邢文君, 张淼. 复合辅料对方便米粉品质特性的影响及降低GI值研究[J]. 食品科技,2022,47(10):183−190. [WANG Z X, XING W J, ZHANG M, et al. Effect of compound excipients on the quality characteristics of instant rice noodles and reducing glycemic index[J]. Food Science and Technology,2022,47(10):183−190.]

    WANG Z X, XING W J, ZHANG M, et al. Effect of compound excipients on the quality characteristics of instant rice noodles and reducing glycemic index[J]. Food Science and Technology, 2022, 47(10): 183−190.

    [86] 周慧星, 高雪琴, 王连生. 复合生物酶对鲜湿米粉老化的影响及体外消化特性研究[J]. 中国食品添加剂,2023,34(3):157−163. [ZHOU H X, GAO X Q, WANG L S, et al. Effect of compound enzymes on aging of fresh wet rice noodles and its digestion characteristics in vitro[J]. China Food Additives,2023,34(3):157−163.]

    ZHOU H X, GAO X Q, WANG L S, et al. Effect of compound enzymes on aging of fresh wet rice noodles and its digestion characteristics in vitro[J]. China Food Additives, 2023, 34(3): 157−163.

    [87]

    ZHANG J Y, KONG H C, LI C M, et al. Highly branched starch accelerates the restoration of edible quality of dried rice noodles during rehydration[J]. Carbohydrate Polymers,2022,292:119612. doi: 10.1016/j.carbpol.2022.119612

    [88] 胡玉芬, 汤鹏宇, 孟繁博, 等. 酶处理对杂粮-籼米粉质特性及鲜湿米粉品质的影响[J/OL]. 河南工业大学学报(自然科学版):1−12[2024-08-06]. https://doi.org/10.16433/j.1673-2383.202402220001. [HU Y F, TANG P Y, MENG F B, et al. Effects of enzyme treatment on powdery properties of coarse cereals-indica rice flour and quality of their fresh rice noodles[J/OL]. Journal of Henan University of Technology(Natural Science Edition):1−12[2024-08-06]. https://doi.org/10.16433/j.1673-2383.202402220001.]

    HU Y F, TANG P Y, MENG F B, et al. Effects of enzyme treatment on powdery properties of coarse cereals-indica rice flour and quality of their fresh rice noodles[J/OL]. Journal of Henan University of Technology(Natural Science Edition): 1−12[2024-08-06]. https://doi.org/10.16433/j.1673-2383.202402220001.

    [89]

    GONG X, LI J X, LIU Z G, et al. Developing high resistant starch content rice noodles with superior quality:A method using modified rice flour and psyllium fiber[J]. International Journal of Biological Macromolecules,2024,272:132779. doi: 10.1016/j.ijbiomac.2024.132779

    [90]

    MA C, SUN J, YUE R X, et al. Quality correlation network analysis between the multiscale microstructure, physicochemical properties of sweetpotato starch, cooking properties, and textural properties of sweetpotato starch noodles[J]. LWT,2024,206:116540. doi: 10.1016/j.lwt.2024.116540

    [91]

    ZHANG Z W, SHANG M S, CHEN X Y, et al. Different characteristics of annealed rice kernels and flour and their effects on the quality of rice noodles[J]. Foods,2023,12(9):1914. doi: 10.3390/foods12091914

    [92] 徐霞红. 鲜湿米线保鲜及品质改良技术的研究[D]. 南京:南京农业大学, 2021. [XU X H. Study on preservation treatments and quality improvement of wet rice noodles[D]. Nanjing:Nanjing Agricultural University, 2021.]

    XU X H. Study on preservation treatments and quality improvement of wet rice noodles[D]. Nanjing: Nanjing Agricultural University, 2021.

    [93]

    GAO L, GUAN M H, QIN Y, et al. Utilization of heat-induced curdlan gel to improve the cooking qualities of thermally sterilized fresh rice noodles[J]. International Journal of Biological Macromolecules,2024,262:129693. doi: 10.1016/j.ijbiomac.2024.129693

    [94] 陆雨. 干制方便米线品质改良的研究[D]. 南昌:南昌大学, 2015. [LU Y. Study on the quality improvement of dried instant rice noodles[D]. Nanchang:Nanchang University, 2015.]

    LU Y. Study on the quality improvement of dried instant rice noodles[D]. Nanchang: Nanchang University, 2015.

    [95]

    LI Y, XIAO J H, TU J, et al. Matcha-fortified rice noodles:Characteristics of in vitro starch digestibility, antioxidant and eating quality[J]. LWT,2021,149:111852. doi: 10.1016/j.lwt.2021.111852

    [96]

    LUO X R, CHANG X H, ZHUANG K, et al. Feasible methods to control starch digestibility:Strategies for reducing glycemic index of rice noodles[J]. Trends in Food Science & Technology,2024,149:104536.

    [97] 程佳钰. 糙米挤压米粉品质特性的改良研究[D]. 南京:南京财经大学, 2023. [CHENG J Y. Study on the improvement of quality characteristics of brown rice extruded rice noodles[D]. Nanjing:Nanjing University of Finances and Economics, 2023.]

    CHENG J Y. Study on the improvement of quality characteristics of brown rice extruded rice noodles[D]. Nanjing: Nanjing University of Finances and Economics, 2023.

    [98]

    YAN X Y, WU J Y, ZHAO C H, et al. Chinese rice noodles form the viscoelastic texture by dual high-temperature retrogradation:An insight into the mechanism[J]. LWT,2023,189:115496. doi: 10.1016/j.lwt.2023.115496

    [99]

    GONG X, LI J X, LIU Z G, et al. New insights into influence of green composite modification on the structure, digestive, and physicochemical properties of rice flour[J]. LWT,2023,189:115491. doi: 10.1016/j.lwt.2023.115491

  • 其他相关附件

图(8)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-10
  • 网络出版日期:  2025-02-11
  • 刊出日期:  2025-04-14

目录

/

返回文章
返回
x 关闭 永久关闭