Effect and Mechanism of Galacto-oligosaccharides on Constipation in Mice
-
摘要: 目的:研究低聚半乳糖(galacto-oligosaccharides,GOS)对洛派丁胺(loperamide,Lop)诱导的小鼠便秘的缓解作用及其机制,为便秘治疗提供新依据。方法:将36只雄性BALB/C小鼠随机分为3组,分别为空白组、造模组、GOS组。检测各组小鼠生长状态、排便情况和小肠推进率。利用HE染色观察结肠组织形态变化;实时荧光定量聚合酶链式反应测定小鼠结肠中水通道蛋白、粘蛋白和紧密连接蛋白的mRNA表达;16S rRNA测序分析粪便肠道菌群;气相色谱法测定短链脂肪酸含量。结果:与造模组相比,GOS组小鼠体重增加量显著提高(P<0.05),首颗黑便排出时间显著缩短(P<0.05),5 h粪便颗粒数和含水量显著增加(P<0.05);结肠组织损伤缓解;结肠组织中AQP4和AQP8的mRNA表达降低69.30%和56.38%,Muc2、Muc3和Zo-1的mRNA表达提高74.94%、61.61%和73.49%,均出现显著差异(P<0.05);粪便中有益菌Lactobacillus和norank_f_Muribaculaceae的丰度增加,丙酸和丁酸含量显著增加(P<0.05)。结论:GOS具有显著的缓解便秘作用,其机制可能与修复肠道屏障损伤、调节肠道水代谢和肠道菌群组成有关。Abstract: Objective: To investigate the laxative effect and mechanism of galacto-oligosaccharides (GOS) on loperamide (Lop)-induced constipation in mice, which provides novel insights into the treatment of constipation. Methods: Thirty-six male BALB/C mice were randomly divided into three groups, including the blank group, the model group, and the GOS group. The growth status, defecation situation and small intestine transit rate of each group were measured. Subsequently, the morphological changes of the colon tissue were observed using HE staining. The RNA expression levels of aquaporins, mucins, and tight junction proteins in the colon were quantified by real-time fluorescent quantitative polymerase chain reaction. The fecal intestinal microbiota composition was characterized via 16S rRNA gene sequencing, while the concentration of short-chain fatty acids was determined through gas chromatography. Results: Compared to the model group, the GOS group showed a great increase in body weight gain (P<0.05), a notable reduction in the time of the first black stool (P<0.05), and a highly significant elevation in the number of fecal pellets and their moisture content within 5 hours (P<0.05). At the same time, the damage of the colonic tissue was alleviated. The mRNA expressions of AQP-4 and AQP-8 in the colon tissue were reduced by 69.30% and 56.38%, while the mRNA expressions of Muc-2, Muc-3, and ZO-1 were increased by 74.94%, 61.61% and 73.49%, respectively. All these variations were statistically significant (P<0.05). Meanwhile, there was a remarkable increase in the abundance of beneficial bacteria such as Lactobacillus and norank_f_Muribaculaceae in fecal samples. In the end, an obvious rise in the levels of propionic and butyric acids was observed additionally (P<0.05). Conclusion: GOS exhibits a significant effect on alleviating constipation by repairing intestinal barrier dysfunction, regulating intestinal water metabolism, and modulating the composition of gut microbiota potentially.
-
Keywords:
- galacto-oligosaccharides /
- loperamide /
- constipation /
- gut microbiota /
- intestinal barrier
-
便秘是一种常见的胃肠道疾病,主要症状为排便次数少、排便困难和粪便干燥[1]。流行病学调查显示,便秘在全球范围内的发病率约为15%,影响到各个年龄阶段的人群[2−3]。长期便秘会导致病原菌在结肠中积累,增加胃肠道疾病(如肠易激综合征和结直肠癌)的患病风险,严重影响便秘患者的生活质量,并且给个人和社会带来沉重的经济负担[4−6]。因此,如何有效治疗便秘已经成为人们关注的焦点。
低聚半乳糖(galacto-oligosaccharides,GOS)是一类由β-半乳糖苷酶水解乳糖产生的、不能被人体消化酶消化的碳水化合物[7]。GOS已被证实在调节肠道屏障[8]、预防肠道炎症[9]、降低癌症风险[10]以及促进钙镁吸收[11]等方面具有生物活性。尽管如此,GOS在润肠通便上的研究相对匮乏,且主要集中在人群实验。少量人群实验表明,每日摄入GOS能增加便秘患者的排便频率[12−13]。在配方奶粉中添加GOS不仅能够提高婴儿的排便频率,降低粪便稠度,还有助于降低肠道pH,增加丁酸和双歧杆菌数量[14]。这些发现为GOS在改善便秘症状方面的潜在应用提供了初步依据。然而,由于人群实验对机制的探讨程度有限,GOS如何缓解便秘的机制并未得到充分解释。此外,在已有的动物研究中,大多数旨在评估GOS对便秘症状和肠道菌群的影响,例如,GOS能增加便秘小鼠粪便含水率、提高小肠推进率、增加粪便中乳酸杆菌和双歧杆菌的水平并降低Odoribacter、Alistipes和Bacteroides的水平[15]。然而,关于GOS缓解便秘的机制研究尚未深入,需要进一步阐明其潜在的作用机理。
本研究参考已有报道,旨在评价GOS缓解便秘的功效,并且从肠道屏障的不同角度进行深入探讨[16−17]。通过研究肠道机械屏障、化学屏障和生物屏障的变化情况,揭示GOS缓解便秘的潜在机制,为便秘治疗提供新思路。
1. 材料与方法
1.1 材料与仪器
SPF级BALB/C小鼠 36只,雄性,6周龄,许可证号为SCXK(沪)2022-0004,由浙江中医药大学实验动物中心提供,伦理编号为20220425-28;洛哌丁胺(loperamide,Lop) 西安杨森制药有限公司;低聚半乳糖 上海麦克林生化科技股份有限公司;阿拉伯胶 中国医药化学试剂有限公司;活性炭 浙江旺林生物有限公司;RNA提取试剂盒 天根生化科技(北京)有限公司;逆转录试剂盒、荧光定量试剂盒 南京诺唯赞生物科技股份有限公司;AxyPrep DNA凝胶提取试剂盒 美国AXYGEN公司;DNA提取试剂盒 德国Qiagen公司。
BSA224S电子分析天平 赛多利斯科学仪器有限公司;HC-3018R高速冷冻离心机 安徽中科中佳科学仪器有限公司;Leica DM3000 & DM30 00 LED光学显微镜 上海徕卡显微系统贸易有限公司;480II荧光定量PCR仪 上海罗氏;NanoDrop 2000 赛默飞世尔;KZ-II研磨仪 武汉塞维尔生物科技有限公司;GC-2014气相色谱仪 日本岛津;DB-FFAP气相色谱柱 安捷伦。
1.2 实验方法
1.2.1 便秘缓解实验
1.2.1.1 动物分组及给药
36只小鼠饲养在温度为25±2 ℃、湿度30%~70%、光照周期12 h:12 h环境中。适应性饲养一周后随机分成3组,每组12只,自由摄食和饮水,分组信息如表1。参考已有研究[18−20],Lop灌胃剂量设定为10 mg/kg·bw,GOS灌胃剂量设定为0.5 g/kg·bw,均用生理盐水溶解配制。灌胃体积均为0.1 mL/10 g。灌胃方式为每天10:00开始灌胃,其中对照组(CON)灌胃生理盐水,其余各组灌胃Lop。灌胃30 min后,CON组和模型组(LOP)灌胃生理盐水,低聚半乳糖组(GOS)灌胃GOS。实验期间每4 d记录1次体重与采食量,根据采食量计算日均能量摄入。第13 d将每只小鼠置于独立代谢笼中收集粪便,并将粪便迅速转移至−80 ˚C保存。第14 d进行小鼠排便实验。第17 d进行小鼠小肠运动实验。小肠运动实验结束后打开小鼠腹腔剪取结肠组织,取部分固定于4%多聚甲醛中,剩余部分用液氮速冻后转移至−80 ˚C冰箱保存。
表 1 实时荧光定量聚合酶链式反应引物序列Table 1. Primer sequences for real-time quantitative polymerase chain reaction基因 引物序列(5'-3') 引物序列(5'-3') GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA AQP4 CTTTCTGGAAGGCAGTCTCAG CCACACCGAGCAAAACAAAGAT AQP8 TGTGTAGTATGGACCTACCTGAG ACCGATAGACATCCGATGAAGAT Muc2 ATGCCCACCTCCTCAAAGAC GTAGTTTCCGTTGGAACAGTGAA Muc3 GCCGTGAATTGTATGAACGGA CGCAGTTGACCACGTTGACTA Claudin-1 GGGGACAACATCGTGACCG AGGAGTCGAAGACTTTGCACT Occludin TTGAAAGTCCACCTCCTTACAGA CCGGATAAAAAGAGTACGCTGG Zo-1 ACCACCAACCCGAGAAGAC CAGGAGTCATGGACGCACA 1.2.1.2 小鼠排便实验
排便实验开始前,小鼠禁食不禁水16 h,以排空肠道。在实验第14 d,各组小鼠均灌胃Lop,CON组灌胃同等体积的生理盐水。30 min后,CON组和LOP组用墨汁灌胃,GOS组灌胃含有对应内容物的墨汁溶液,并开始计时。将小鼠放置于代谢笼中,立即恢复正常饮食。观察并记录每只小鼠首粒排黑便时间,以LOP组最后一只小鼠的首粒黑便时间为终止时间,超过LOP组首粒黑便时间的处理组则说明无效。收集5 h内粪便并分析排便粒数。将收集的粪便置于烘箱内,105 ˚C烘干至恒重,记录烘干前后的粪便质量,计算粪便含水率。
粪便含水率(%)=(粪便湿重−粪便干重)/粪便湿重×100 1.2.1.3 小肠运动实验
小肠运动实验参考文献[21],并根据预实验结果进行适当的调整。实验开始前,小鼠禁食不禁水16 h,以排空肠道。在实验第17 d,LOP组和GOS组小鼠均灌胃Lop(7.5 mg/kg·bw),CON组灌胃同等体积的生理盐水。30 min后,CON组和LOP组用墨汁灌胃,GOS组灌胃含有对应内容物的墨汁溶液,并开始计时。30 min后颈椎脱臼处死小鼠。随后打开小鼠腹腔,剪取完整的胃肠(上端自幽门,下端至回盲肠的肠管),并将小肠系膜剪断,慢慢拉直小肠,放于有生理盐水的玻璃板上,经自然回缩后,用尺子测量从幽门到墨汁前沿的距离(墨汁推进长度)和从幽门到回盲肠起始处的距离(小肠总长度),计算小肠推进率。
小肠推进率(%)=(墨汁在肠内的推进长度/小肠总长度)×100 1.2.2 结肠组织病理学观察
将结肠组织在4%多聚甲醛溶液中固定过夜,用石蜡包埋,切成切成5 μm厚的切片。随后进行苏木精-伊红染色(HE染色),在显微镜下观察。
1.2.3 实时荧光定量聚合酶链式反应检测结肠组织中相关mRNA水平
按照RNA提取试剂盒说明提取结肠组织总RNA。使用逆转录试剂盒对提取的总RNA逆转录合成cDNA。使用荧光定量试剂盒进行荧光定量PCR,在384孔板中按试剂盒说明书体系配制反应液,qPCR反应程序设置参考钟浩[22]的方法。反应程序结束后,根据2−ΔΔCt法计算基因的相对表达量,内参基因的GAPDH的Ct值。引物的设计如表1所示。
1.2.4 小鼠肠道菌群分析
参考文献[17,23]的方法并进行适当修改。每组随机选用6个样本进行肠道菌群分析,按照粪便DNA提取试剂盒提取说明提取小鼠粪便DNA。使用NanoDrop 2000和琼脂糖凝胶电泳进行总DNA质检,使用通用引物341F和806R对16S rDNA的V3-V4区进行PCR扩增,扩增程序为:预变性,95 ˚C 3 min,循环1次;循环反应,95 ℃ 30 s,55 ℃ 30 s,72 ℃ 45 s,循环27次;最终延伸,72 ℃ 10 min,循环1次。使用2%琼脂糖凝胶电泳检测PCR产物,并用AxyPrep DNA凝胶提取试剂盒纯化PCR产物,之后用NanoDrop 2000和2%琼脂糖凝胶电泳进行文库质检。文库质检合格后,使用Qubit进行文库定量,并根据每个样品的数据量要求,进行相应比例的混合。使用Illumina HiSeq PE250进行上机测序。在美吉生物的云分析平台(https://cloud.majorbio.com/)进行分析。
1.2.5 短链脂肪酸测定
参考Zhang等[24]方法,采用气相色谱法测定粪便中的短链脂肪酸含量。称取50 mg粪便于1.5 mL离心管中,加入250 μL超纯水和干净钢珠,放入研磨仪研磨。研磨结束后加入10 μL HCl,涡旋均匀后静置5 min。随后将粪便悬液在12000 r/min下离心10 min,取200 μL上清液,加入0.5 μL 2-乙基丁酸,涡旋均匀,再次离心后取上清液过膜上机。仪器设定条件:火焰离子化检测器温度为240 ℃,进样口温度为200 ℃,升温程序:100 ℃持续30 s,随后以8 ℃/min速度升温至180 ℃,持续1 min,然后以20 ℃/min速度升温至200 ℃,持续15 min。氮气、氢气和空气的流速分别为:20、30和300 mL/min。
1.3 数据处理
采用GraphPad Prism 9.0软件对数据进行统计学分析及绘图,结果以平均值±标准差表示。组间比较采用单因素方差分析(One-Way ANOVA),事后比较采用Tukey检验。P<0.05被认为有统计学意义,不同字母代表组间有显著性差异。每组重复三次实验。
2. 结果与分析
2.1 小鼠生长与排便能力
2.1.1 GOS对便秘小鼠生长情况的影响
体重和能量摄入是评价小鼠生长情况的重要指标。由图2可见,在0~12 d饲养期间,各组小鼠日平均摄食量和能量摄入量无显著差异(P>0.05)。LOP组小鼠体重逐渐低于CON组。到实验结束时(17 d),由于排便实验和小肠运动实验前禁食,小鼠体重均有所下降。最终LOP组小鼠体重增加量显著低于CON组(P<0.05)。Zhao等[25]用Lop造模10 d后出现相同情况,推测是由于便秘影响营养物质的消化吸收,造成体重降低[26]。与LOP组相比,GOS组小鼠体重有所增加,体重增加量显著提高(P<0.05),与CON组无显著性差异(P>0.05),说明GOS的干预使小鼠体重恢复至正常水平。
2.1.2 GOS对便秘小鼠排便表观指标的影响
Lop是一种µ-阿片受体激动剂,已广泛用于构建便秘模型[27]。其主要通过抑制肠道蠕动、降低肠道运输能力、刺激肠道过度吸收水分、降低粪便重量和水分含量等方式减少肠道内粪便颗粒数量,延长排便时间,从而诱发便秘症状[28−29]。
各组小鼠排便指标如图2所示,与CON组相比,LOP组小鼠的首颗黑便时间显著增加(P<0.05),5 h粪便颗粒数显著减少(P<0.05),粪便水分含量显著减少(P<0.05),小肠推进率显著降低(P<0.05),表明Lop成功构建小鼠便秘模型。与LOP组比较,GOS组未有因超过LOP组而被记为无效的小鼠。该组小鼠首颗黑便排出时间显著缩短(P<0.05),5 h粪便颗粒数和粪便含水量均出现显著增加(P<0.05),小肠推进率提高36.51%。此外,与CON组相比,GOS组小鼠5 h粪便颗粒数、粪便含水量和小肠推进率无明显差异(P>0.05)。综上所述,GOS对Lop诱导的便秘小鼠具有显著的缓解便秘作用。这与之前的结果一致,表明GOS能够增强肠蠕动,促进粪便的排出[15,30]。
2.2 GOS对便秘小鼠结肠组织形态的影响
HE染色结果如图4所示。与CON组相比,LOP组小鼠结肠组织黏膜层出现紊乱特征,杯状细胞数量减少,肌层明显变薄。与LOP组相比,GOS组结肠组织黏膜层结构完整,杯状细胞数量增多,肌层增厚。说明GOS能缓解由Lop诱导小鼠便秘过程中引起的结肠组织病理学损伤。
2.3 GOS对便秘小鼠肠道机械屏障相关基因转录水平的影响
肠道机械屏障是肠黏膜屏障中重要的组成部分,可有效阻止细菌、内毒素等有害物质通过肠黏膜进入血液[31]。其结构基础是肠黏膜上皮细胞以及上皮细胞之间的紧密连接,主要的紧密连接蛋白包括Claudin-1、Occludin和Zo-1[32]。便秘能够诱导紧密连接蛋白的酶促降解和粘膜屏障的破坏,导致肠道通透性增加[33]。本研究对各组别中Claudin-1、Occludin和Zo-1基因的转录水平进行测定,结果如图5所示。与CON组相比,LOP组Claudin-1和Zo-1基因转录水平显著降低(P<0.05)。GOS干预后,与LOP组比较,Zo-1的表达显著提高(P<0.05),Claudin-1和Occludin的表达无显著变化(P>0.05)。说明GOS能提高肠道中部分紧密连接蛋白的表达,恢复机械屏障损伤。这与之前的报道类似,Su等[34]用中药治疗便秘小鼠后发现小鼠肠道中Zo-1的表达增加,推测这有助于恢复洛哌丁胺引起的结肠屏障功能损伤,从而有利于粪便排出。
2.4 GOS对便秘小鼠肠道化学屏障相关基因转录水平的影响
化学屏障是一种自我保护机制,肠道及时对各种信号分子(如生物活性分子、黏蛋白)做出反应,并通过信号通路的传递维持正常的生理功能[35]。化学屏障在润滑肠粘膜、阻止有害物质进入肠腔、隔离肠道内外环境等方面起着重要作用。
水通道蛋白(Aquaporin,AQP)是一类控制水分及部分小分子物质传输的细胞膜蛋白,主要在人结肠上皮细胞中表达,在细胞中起着流通阀的作用,使得水分子能够被选择性吸收与分泌,维持肠道的水分平衡[36−37]。便秘患者粪便含水量的降低与AQP表达的异常存在相关性。当某些特定AQP(如AQP4和AQP8)表达水平过高时,肠道会过度吸收粪便中的水分,使得粪便含水量降低,导致粪便排泄困难和便秘[38−39]。由图6可知,与CON组相比,LOP组小鼠结肠中AQP4与AQP8基因的转录水平均显著提高(P<0.05),这与之前的研究结果一致[40−41]。经过GOS干预后,与LOP组相比,AQP4和AQP8基因的相对表达量下降69.30%和56.38%,出现统计学差异(P<0.05)。
肠道中的黏液层能够保护肠道上皮细胞免受病原微生物的侵袭,同时也是肠道蠕动的润滑剂。黏蛋白是一种高分子量的糖蛋白,有助于肠上皮黏膜的形成,通过防止水分流失来润滑肠道[42]。MUC2与MUC3是主要的黏蛋白。MUC2由杯状细胞分泌产生,参与粘液屏障的形成,维持结肠内容物的正常蠕动和润滑[43]。有研究显示,Muc2 mRNA表达水平与小鼠便秘严重程度呈负相关[44]。MUC3与肠上皮的成熟相关,可结合许多肠道病原体和病毒,防止其附着在肠道细胞表面[45]。与CON组相比,Lop造模后Muc2和Muc3基因表达水平显著降低(P<0.05)。GOS干预后,与LOP组相比,Muc2和Muc3的相对表达量提高74.94%和61.61%,均出现显著性差异(P<0.05)。
综合以上结果,推测GOS通过下调结肠组织中AQP4和AQP8基因的转录水平,减少肠道对粪便水分的过度吸收,增加粪便含水量。此外,结合粘蛋白的基因表达水平和结肠病理染色结果,GOS可能通过增加杯状细胞的数量和粘蛋白的分泌,逆转由Lop引起的肠道黏膜损伤,润滑肠道,从而缓解便秘。
2.5 GOS对便秘小鼠肠道菌群的影响
肠道菌群通过黏附或结合于肠粘膜,形成肠道生物屏障。生物屏障参与调节肠道免疫系统,抵抗致病菌的入侵和损伤,维持肠道菌群的生态平衡。肠道菌群稳态的改变是诱发便秘的重要因素[46]。
2.5.1 GOS对便秘小鼠肠道菌群多样性的影响
α多样性表示组内肠道微生物多样性和丰富度,包括Shannon指数、Simpson指数、Chao1指数和Ace指数。各指数数值越大,表明该组微生物多样性越高。由图7A~D所示,与CON组相比,LOP组Shannon指数和Ace指数下降,经GOS干预后有所回升,但三组间无显著差异(P>0.05)。从Venn图可知,CON组表征出的OTU数最多(668个),GOS组次之(642个),LOP组最少(629个)。
β多样性用于分析不同组别间微生物群落的构成,通常采用主坐标分析(PCoA)描述β多样性,结果如图6F所示。LOP组样品点偏离CON组样品点,而GOS组样品点更接近于CON组样品点,说明GOS干预能使肠道菌群β多样性有所恢复,使其与CON组更相近。
这些结果说明GOS能够有效阻止便秘小鼠的肠道菌群物种多样性和丰富度的下降,调节肠道微生态平衡。
2.5.2 GOS对便秘小鼠肠道微生物组成的影响
进一步地,对小鼠肠道菌群的科水平和属水平进行分析,结果如图8所示。科水平上,毛螺菌科(Lachnospiraceae)、Muribaculaceae和乳杆菌科(Lactobacillaceae)占优势地位。毛螺菌科对维持肠道免疫稳态具有重要作用。有研究结果显示,便秘患者粪便中的毛螺菌科丰度更高,而肠道活动感知的改善与毛螺菌科的丰度降低有关[47−48]。Muribaculaceae是小鼠肠道中拟杆菌门的一个主要科,对复杂碳水化合物的降解具有重要作用[49]。与CON组相比,LOP组毛螺菌科(Lachnospiracee)丰度增加16.60%,Muribaculaceae丰度降低11.60%,这与之前研究中用Lop造模的结果一致[50]。与LOP组相比,GOS组毛螺菌科(Lachnospiraceae)丰度降低42.54%,Muribaculaceae和乳杆菌科(Lactobacillaceae)丰度分别增加35.65%和47.06%。
在属水平上,乳杆菌属(Lactobacillus)和norank_f_Muribaculaceae占优势地位(图8D~E)。两者皆是调节肠道的有益菌,前者可以调节免疫系统,抑制炎症反应,促进胃肠蠕动[51−52];后者与抗氧化有关[53],并已被证明可以改善小鼠肠道粘膜炎[54]。与CON组相比,LOP组norank_f_Muribaculaceae丰度降低25.50%。GOS干预后,与LOP组相比乳杆菌属丰度增加24.78%,norank_f_Muribaculaceae丰度增加58.04%。
为鉴别各组样本的特征菌属,采用LEfSe分析法来做线性判别分析。结果如图8C所示,GOS中的特征菌为g_Faecalibaculum,其丰度占比显著高于CON组和LOP组(图8F,P<0.05)。该特征菌属与短链脂肪酸的产生和防止肠道肿瘤生长有关[55]。
有研究指出,GOS可以相当完整地到达大肠,充当细菌发酵的底物,调节肠道微生物群的组成和活性[56],有助于乳杆菌等有益菌的增殖[57−58]。结合本实验结果,GOS可以通过调节肠道菌群来缓解便秘,具体体现在Muribaculaceae、乳杆菌和norank_f_Muribaculaceae等有益菌的富集。
2.6 GOS对便秘小鼠粪便中短链脂肪酸的影响
短链脂肪酸是肠道微生物的重要代谢产物。在小鼠粪便中,乙酸、丙酸和丁酸是主要的短链脂肪酸,占短链脂肪酸总量的90%~95%。乙酸盐可以增加肠道渗透压和粪便含水量,从而刺激肠道蠕动[59];丙酸盐能减少脂肪生成,降低血清胆固醇水平[60];丁酸盐有助于维持大肠完整性,并被证实能增加结肠运输[61−62]。肠转运时间的延长往往与短链脂肪酸的减少有关[63]。Zhang等[64]发现便秘小鼠粪便中乙酸盐、丙酸盐和丁酸盐的含量均出现显著降低。
如图9所示,LOP组小鼠粪便中的乙酸盐、丙酸盐、丁酸盐含量分别为(136.6±2.0) μmoL/g、(11.0±0.5)μmoL/g和(5.2±0.3)μmoL/g,与CON组相比均显著降低(P<0.05)。与LOP组相比,GOS组小鼠粪便中的丙酸盐与丁酸盐含量增加28.43%和42.56%,出现显著性差异(P<0.05),其中丁酸盐含量回调至与CON组无显著性差异(P>0.05)。GOS可作为底物被肠道微生物发酵,增加短链脂肪酸的产生。据报道,短链脂肪酸可通过增强电解质和水代谢,增加粪便含水量[65],从而起到缓解便秘的作用。
综上所述,GOS改善小鼠便秘的具体机制涉及肠道机械屏障、化学屏障和生物屏障的修复,如图10所示。具体而言,GOS可能通过上调Zo-1基因的表达来修复由Lop引起的肠道机械屏障损伤,通过改善肠道水通道蛋白相关基因(AQP4和AQP8)和粘蛋白相关基因(Muc2和Muc3)的表达来修复肠道化学屏障损伤,通过重塑肠道微生物群并调节短链脂肪酸含量来修复肠道生物屏障损伤。
3. 结论
本研究结果显示,与LOP组相比,GOS有效恢复便秘引起的体重下降、缩短首颗黑便时间、增加排便频率和粪便含水率、提高小肠推进率、恢复结肠组织病理学损伤。此外,GOS能显著下调肠道中AQP4与AQP8基因的表达(P<0.05),显著上调Muc2、Muc3和Zo-1基因的表达(P<0.05)。高通量测序结果表明,与LOP组相比,GOS组小鼠肠道菌群中有益菌丰度增加,其肠道菌群组成更接近正常小鼠。此外,GOS能显著回调便秘小鼠短链脂肪酸中丙酸盐和丁酸盐含量(P<0.05)。综上,GOS具有明显的润肠通便作用,有效缓解由Lop诱导的小鼠便秘,其作用机制可能是GOS的摄入恢复了便秘小鼠肠道化学和机械屏障的损伤、改善肠道微生物的组成并调节短链脂肪酸含量,从而调节肠道水分代谢和菌群平衡,促进肠道蠕动,进而缓解小鼠便秘。
-
表 1 实时荧光定量聚合酶链式反应引物序列
Table 1 Primer sequences for real-time quantitative polymerase chain reaction
基因 引物序列(5'-3') 引物序列(5'-3') GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA AQP4 CTTTCTGGAAGGCAGTCTCAG CCACACCGAGCAAAACAAAGAT AQP8 TGTGTAGTATGGACCTACCTGAG ACCGATAGACATCCGATGAAGAT Muc2 ATGCCCACCTCCTCAAAGAC GTAGTTTCCGTTGGAACAGTGAA Muc3 GCCGTGAATTGTATGAACGGA CGCAGTTGACCACGTTGACTA Claudin-1 GGGGACAACATCGTGACCG AGGAGTCGAAGACTTTGCACT Occludin TTGAAAGTCCACCTCCTTACAGA CCGGATAAAAAGAGTACGCTGG Zo-1 ACCACCAACCCGAGAAGAC CAGGAGTCATGGACGCACA -
[1] HANSON B, SIDDIQUE S M, SCARLETT Y, et al. American gastroenterological association institute technical review on the medical management of opioid-induced constipation[J]. Gastroenterology,2019,156(1):229−253. doi: 10.1053/j.gastro.2018.08.018
[2] BHARUCHA A E, LACY B E. Mechanisms, evaluation, and management of chronic constipation[J]. Gastroenterology,2020,158(5):1232−1249. doi: 10.1053/j.gastro.2019.12.034
[3] CAMILLERI M, FORD A C, MAWE G M, et al. Chronic constipation[J]. Nature Reviews Disease Primers,2017,3(1):17095. doi: 10.1038/nrdp.2017.95
[4] HEIDELBAUGH J J, STELWAGON M, MILLER S A, et al. The spectrum of constipation-predominant irritable bowel syndrome and chronic idiopathic constipation:Us survey assessing symptoms, care seeking, and disease burden[J]. Official Journal of the American College of Gastroenterology,2015,110(4):580−587. doi: 10.1038/ajg.2015.67
[5] GUÉRIN A, MODY R, FOK B, et al. Risk of developing colorectal cancer and benign colorectal neoplasm in patients with chronic constipation[J]. Alimentary Pharmacology & Therapeutics,2014,40(1):83−92.
[6] PEERY A F, CROCKETT S D, MURPHY C C, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the united states:Update 2018[J]. Gastroenterology,2019,156(1):254−272. doi: 10.1053/j.gastro.2018.08.063
[7] PARK A R, OH D K. Galacto-oligosaccharide production using microbial β-galactosidase:Current state and perspectives[J]. Applied Microbiology and Biotechnology,2010,85(5):1279−1286. doi: 10.1007/s00253-009-2356-2
[8] XU T, SUN R, ZHANG Y, et al. Recent research and application prospect of functional oligosaccharides on intestinal disease treatment[J]. Molecules,2022,27(21):7622. doi: 10.3390/molecules27217622
[9] LI P H, LU W C, CHAN Y J, et al. Feasibility of using seaweed (Gracilaria coronopifolia) synbiotic as a bioactive material for intestinal health[J]. Foods,2019,8(12):623. doi: 10.3390/foods8120623
[10] QAMAR T R, IQBAL S, SYED F, et al. Impact of novel prebiotic galacto-oligosaccharides on various biomarkers of colorectal cancer in wister rats[J]. International Journal of Molecular Sciences,2017,18(9):1785. doi: 10.3390/ijms18091785
[11] WEAVER C M, MARTIN B R, NAKATSU C H, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation[J]. Journal of Agricultural and Food Chemistry,2011,59(12):6501−6510. doi: 10.1021/jf2009777
[12] SCHOEMAKER M H, HAGEMAN J H J, TEN HAAF D, et al. Prebiotic galacto-oligosaccharides impact stool frequency and fecal microbiota in self-reported constipated adults:A randomized clinical trial[J]. Nutrients,2022,14(2):309. doi: 10.3390/nu14020309
[13] TEURI U, KORPELA R. Galacto-oligosaccharides relieve constipation in elderly people[J]. Annals of Nutrition & Metabolism,1998,42(6):319−327.
[14] SIERRA C, BERNAL M J, BLASCO J, et al. Prebiotic effect during the first year of life in healthy infants fed formula containing gos as the only prebiotic:A multicentre, randomised, double-blind and placebo-controlled trial[J]. European Journal of Nutrition,2015,54(1):89−99. doi: 10.1007/s00394-014-0689-9
[15] WANG L, HU L, YAN S, et al. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation[J]. Food & Function,2017,8(5):1966−1978.
[16] GAO X, HU Y, TAO Y, et al. Cymbopogon citratus (DC. ) stapf aqueous extract ameliorates loperamide-induced constipation in mice by promoting gastrointestinal motility and regulating the gut microbiota[J]. Frontiers in Microbiology,2022,13:1017804. doi: 10.3389/fmicb.2022.1017804
[17] WANG L, CHAI M, WANG J, et al. Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice[J]. Food & Function,2022,13(9):5037−5049.
[18] WANG G, WANG H, JIN Y, et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota[J]. Food Research International,2022,155:111003. doi: 10.1016/j.foodres.2022.111003
[19] CAI W F, LIN S X, MA P Y, et al. Semen pruni oil attenuates loperamide-induced constipation in mice by regulating neurotransmitters, oxidative stress and inflammatory response[J]. Journal of Functional Foods,2023,107:105676. doi: 10.1016/j.jff.2023.105676
[20] HUANG H, WANG Y T, DING X F, et al. Hemp seeds attenuate loperamide-induced constipation in mice[J]. Frontiers in Microbiology,2024,15:1353105.
[21] 王倩男, 杨雯, 薛婷芳, 等. 人参肽对小鼠的润肠通便效果[J]. 食品工业科技,2025,46(2):317−323. [WANG Q N, YANG W, XUE T F, et al. Study on the effect of ginseng peptide on laxative in mice[J]. Science and Technology of Food Industry,2025,46(2):317−323.] WANG Q N, YANG W, XUE T F, et al. Study on the effect of ginseng peptide on laxative in mice[J]. Science and Technology of Food Industry, 2025, 46(2): 317−323.
[22] 钟浩. 植物乳杆菌缓解高脂膳食诱导小鼠胰岛素抵抗的作用及其机理探究[D]. 杭州:浙江大学, 2023. [ZHONG H. Exploring the effects and potential mechanisms of Lactobacillus plantarum in attenuating high-fat diet induced insulin resistance in mice[D]. Hangzhou:Zhejiang University, 2023.] ZHONG H. Exploring the effects and potential mechanisms of Lactobacillus plantarum in attenuating high-fat diet induced insulin resistance in mice[D]. Hangzhou: Zhejiang University, 2023.
[23] SHI Y, CHEN F, WANG Z, et al. Effect and mechanism of functional compound fruit drink on gut microbiota in constipation mice[J]. Food Chemisty,2023,401:134210. doi: 10.1016/j.foodchem.2022.134210
[24] ZHANG J, FENG F, ZHAO M. Glycerol monocaprylate modulates gut microbiota and increases short-chain fatty acids production without adverse effects on metabolism and inflammation[J]. Nutrients,2021,13(5):1427. doi: 10.3390/nu13051427
[25] ZHAO Y, ZHANG C, YU L, et al. Strain-specific effect of Limosilactobacillus fermentum with distinct genetic lineages on loperamide-induced constipation in mice:Attributing effects to certain genes[J]. Food & Function,2022,13(24):12742−12754.
[26] 韩伟林, 冼俊思, 李容娣, 等. 桑叶粉的润肠通便作用[J]. 蚕业科学,2023,49(3):277−282. [HAN W L, XIAN J S, LI R D, et al. Study on the laxative function of mulberry leaf powder J]. Acta Sericologica Sinica,2023,49(3):277−282.
[27] 姚一博, 王迪, 王钱陶, 等. 盐酸洛哌丁胺诱导的小鼠慢传输型便秘模型的实验研究[J]. 中国实验动物学报,2020,28(3):370−375. [YAO Y B. WANG D, WANG Q T, et al. Experimental study of slow transit constipation induced by loperamide hydrochloride in mice[J]. Acta Laboratorium Animalis Scientia Sinica,2020,28(3):370−375.] doi: 10.3969/j.issn.1005-4847.2020.03.012 YAO Y B. WANG D, WANG Q T, et al. Experimental study of slow transit constipation induced by loperamide hydrochloride in mice[J]. Acta Laboratorium Animalis Scientia Sinica, 2020, 28(3): 370−375. doi: 10.3969/j.issn.1005-4847.2020.03.012
[28] ZHOU X, CHEN Y, MA X, et al. Efficacy of bacillus coagulans bc01 on loperamide hydrochloride-induced constipation model in kunming mice[J]. Frontiers In Nutrition,2022,9:964257. doi: 10.3389/fnut.2022.964257
[29] QIU B, ZHU L, ZHANG S, et al. Prevention of loperamide-induced constipation in mice and alteration of 5-hydroxytryotamine signaling by Ligilactobacillus salivarius Li01 [J]. Nutrients, 2022, 14(19).
[30] KWON J I, PARK Y, NOH D O, et al. Complex-oligosaccharide composed of galacto-oligosaccharide and lactulose ameliorates loperamide-induced constipation in rats[J]. Food Science and Biotechnology,2018,27(3):781−788. doi: 10.1007/s10068-017-0300-2
[31] SHI J, XIE Q, YUE Y, et al. Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfate-induced colitis in mice[J]. Food & Function,2021,12(11):5130−5143.
[32] CUI L, HUA Y, ZOU S, et al. Combination of fenchone and sodium hyaluronate ameliorated constipation-predominant irritable bowel syndrome and underlying mechanisms[J]. Chemical Biology & Drug Design,2024,103(1):e14397.
[33] ZHANG X, YANG H, ZHENG J, et al. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice[J]. Carbohydrate Polymers,2021,253:117218. doi: 10.1016/j.carbpol.2020.117218
[34] SU Y, ZHU R, PANG C, et al. Laxative effect of Wenyang Yiqi decoction on loperamide-induced astriction model mice[J]. Annals of Translational Medicine,2023,11(4):170. doi: 10.21037/atm-23-6
[35] SALVO ROMERO E, ALONSO COTONER C, PARDO CAMACHO C, et al. The intestinal barrier function and its involvement in digestive disease[J]. Revista Espanola de Enfermedades Digestivas,2015,107(11):686−696.
[36] AGRE P. The aquaporin water channels[J]. Proceedings of the American Thoracic Society,2006,3(1):5−13. doi: 10.1513/pats.200510-109JH
[37] DENG Y, LI M, MEI L, et al. Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-induced constipation in rats[J]. Beneficial Microbes,2018,9(3):453−464. doi: 10.3920/BM2017.0062
[38] CAO Y, HE Y, WEI C, et al. Aquaporins alteration profiles revealed different actions of senna, sennosides, and sennoside a in diarrhea-rats [J]. International Journal of Molecular Sciences, 2018, 19(10).
[39] HU T G, WEN P, FU H Z, et al. Protective effect of mulberry (Morus atropurpurea) fruit against diphenoxylate-induced constipation in mice through the modulation of gut microbiota[J]. Food & Function,2019,10(3):1513−1528.
[40] HUANG J, LI S, WANG Q, et al. Pediococcus pentosaceus b49 from human colostrum ameliorates constipation in mice[J]. Food & Function,2020,11(6):5607−5620.
[41] SUN Y, YAN C, JIN S, et al. Curative effect and mechanism of Guiren Runchang granules on morphine-induced slow transit constipation in mice[J]. Evidence-based Complementary and Alternative Medicine,2020,2020:5493192. doi: 10.1155/2020/5493192
[42] LU Y, YU Z, ZHANG Z, et al. Bifidobacterium animalis f1-7 in combination with konjac glucomannan improves constipation in mice via humoral transport[J]. Food & Function,2021,12(2):791−801.
[43] JOHANSSON M E V, SJÖVALL H, HANSSON G C. The gastrointestinal mucus system in health and disease[J]. Nature Reviews Gastroenterology & Hepatology,2013,10(6):352−361.
[44] LI R, XU S, LI B, et al. Gut indigenous Ruminococcus gnavus alleviates constipation and stress-related behaviors in mice with loperamide-induced constipation[J]. Food & Function,2023,14(12):5702−5715.
[45] QIAO H, ZHAO T, YIN J, et al. Structural characteristics of inulin and microcrystalline cellulose and their effect on ameliorating colitis and altering colonic microbiota in dextran sodium sulfate-induced colitic mice[J]. ACS Omega,2022,7(13):10921−10932. doi: 10.1021/acsomega.1c06552
[46] VRIESMAN M H, KOPPEN I J N, CAMILLERI M, et al. Management of functional constipation in children and adults[J]. Nature Reviews Gastroenterology & Hepatology,2020,17(1):21−39.
[47] GUO M, YAO J, YANG F, et al. The composition of intestinal microbiota and its association with functional constipation of the elderly patients[J]. Future Microbiology,2020,15(3):163−175. doi: 10.2217/fmb-2019-0283
[48] KIM M C, LEE S, PARK J K, et al. Effects of id-hws1000 on the perception of bowel activity and microbiome in subjects with functional constipation:A randomized, double-blind placebo-controlled study[J]. Journal of Medicinal Food,2021,24(8):883−893. doi: 10.1089/jmf.2020.4746
[49] LAGKOUVARDOS I, LESKER T R, HITCH T C A, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome,2019,7(1):28. doi: 10.1186/s40168-019-0637-2
[50] HU Y, GAO X, ZHAO Y, et al. Flavonoids in amomum Tsaoko crevost et lemarie ameliorate loperamide-induced constipation in mice by regulating gut microbiota and related metabolites [J]. International Journal of Molecular Sciences, 2023, 24(8).
[51] DIMIDI E, CHRISTODOULIDES S, SCOTT S M, et al. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation[J]. Advances in Nutrition,2017,8(3):484−494. doi: 10.3945/an.116.014407
[52] LIU G, HUANG Y, ZHAI L. Impact of nutritional and environmental factors on inflammation, oxidative stress, and the microbiome[J]. BioMed Research International,2018,2018:5606845.
[53] HU S, LI S, LIU Y, et al. Aged ripe pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. Journal of Agricultural and Food Chemistry,2021,69(36):10592−10605. doi: 10.1021/acs.jafc.1c04032
[54] WANG L, WANG R, WEI G Y, et al. Cryptotanshinone alleviates chemotherapy-induced colitis in mice with colon cancer via regulating fecal-bacteria-related lipid metabolism[J]. Pharmacological Research,2021,163:105232. doi: 10.1016/j.phrs.2020.105232
[55] ZAGATO E, POZZI C, BERTOCCHI A, et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth[J]. Nature Microbiology,2020,5(3):511−524. doi: 10.1038/s41564-019-0649-5
[56] WATSON D, O'CONNELL MOTHERWAY M, SCHOTERMAN M H, et al. Selective carbohydrate utilization by lactobacilli and bifidobacteria[J]. Journal of Applied Microbiology,2013,114(4):1132−1146. doi: 10.1111/jam.12105
[57] ARNOLD J W, ROACH J, FABELA S, et al. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut[J]. Microbiome,2021,9(1):31. doi: 10.1186/s40168-020-00980-0
[58] BEN X M, ZHOU X Y, ZHAO W H, et al. Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants[J]. Chinese Medical Journal,2004,117(6):927−931.
[59] LIN Q, LIU M, ERHUNMWUNSEE F, et al. Chinese patent medicine shouhui tongbian capsule attenuated loperamide-induced constipation through modulating the gut microbiota in rat[J]. Journal of Ethnopharmacology,2022,298:115575. doi: 10.1016/j.jep.2022.115575
[60] HOSSEINI E, GROOTAERT C, VERSTRAETE W, et al. Propionate as a health-promoting microbial metabolite in the human gut[J]. Nutrition Reviews,2011,69(5):245−258. doi: 10.1111/j.1753-4887.2011.00388.x
[61] JIANG H, DONG J, JIANG S, et al. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats[J]. Food Research International,2020,136:109316. doi: 10.1016/j.foodres.2020.109316
[62] SORET R, CHEVALIER J, DE COPPET P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats[J]. Gastroenterology,2010,138(5):1772−1782. doi: 10.1053/j.gastro.2010.01.053
[63] PROCHÁZKOVÁ N, FALONY G, DRAGSTED L O, et al. Advancing human gut microbiota research by considering gut transit time[J]. Gut,2023,72(1):180−191. doi: 10.1136/gutjnl-2022-328166
[64] ZHANG C, WANG L, LIU X, et al. The different ways multi-strain probiotics with different ratios of bifidobacterium and lactobacillus relieve constipation induced by loperamide in mice[J]. Nutrients,2023,15(19):4230. doi: 10.3390/nu15194230
[65] ZHANG Q, ZHONG D, SUN R, et al. Prevention of loperamide induced constipation in mice by kgm and the mechanisms of different gastrointestinal tract microbiota regulation[J]. Carbohydrate Polymers,2021,256:117418. doi: 10.1016/j.carbpol.2020.117418