• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

干腌火腿新型减盐策略及其机制研究进展

陈娟, 钟苑仪, 富国文, 潘洪彬, 张海彪, 吴传丰, 钱朝葵, 范江平

陈娟,钟苑仪,富国文,等. 干腌火腿新型减盐策略及其机制研究进展[J]. 食品工业科技,2025,46(9):435−444. doi: 10.13386/j.issn1002-0306.2024050210.
引用本文: 陈娟,钟苑仪,富国文,等. 干腌火腿新型减盐策略及其机制研究进展[J]. 食品工业科技,2025,46(9):435−444. doi: 10.13386/j.issn1002-0306.2024050210.
CHEN Juan, ZHONG Yuanyi, FU Guowen, et al. Research Progress on Novel Salt Reduction Strategy and Mechanism of Dry-cured Ham[J]. Science and Technology of Food Industry, 2025, 46(9): 435−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050210.
Citation: CHEN Juan, ZHONG Yuanyi, FU Guowen, et al. Research Progress on Novel Salt Reduction Strategy and Mechanism of Dry-cured Ham[J]. Science and Technology of Food Industry, 2025, 46(9): 435−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050210.

干腌火腿新型减盐策略及其机制研究进展

基金项目: 云南省施甸县保山猪产业科技特派团(202204BI090030);云南省人社厅专家工作站。
详细信息
    作者简介:

    陈娟(2001−),女,硕士研究生,研究方向:食品营养与品质控制,E-mail:chenjuan1619@126.com

    通讯作者:

    范江平(1972−),男,博士,教授,研究方向:食品科学与功能性食品,E-mail:fjp2282005@126.com

  • 中图分类号: TS251.5

Research Progress on Novel Salt Reduction Strategy and Mechanism of Dry-cured Ham

  • 摘要: 干腌火腿因其独特的风味和丰富的文化传承成为人们餐桌上备受喜爱的美味食物之一,深受广大消费者的欢迎,但其食盐含量过高问题对人们的身体健康造成了威胁并严重阻碍了其产业的发展。如何在确保干腌火腿品质和安全性的前提下降低食盐含量越发成为人们关注的焦点。本文综述了钠盐替代、风味增强剂、食盐物理形态改性、咸味肽以及介导腌制技术(物理介导:真空、超声波、超高压、脉冲电场技术;外源介导:加入糖、多羟基醇等外源物)的常见和新型减盐策略对低钠干腌火腿品质的影响及其降盐机制。此外,各减盐策略的优缺点也在文中进行了比较,发现单一的减盐方法仍存在一定的局限性。因此,将多种方法联合使用是实现减盐更有效的途径。本文旨在为生产出品质和安全性理想的低钠干腌火腿提供新思路及理论参考。
    Abstract: Dry-cured ham, one of delicious food with unique flavor and rich cultural heritage, is preferred by consumers and becomes a favorite food on people's table. However, since high salt content threatens people's health, it has seriously brought about hindering the development of ham industry. It has become the focus of people's attention to reduce the salt content of ham under the premise of ensuring the quality and safety of dry-cured ham. In this paper, several common and novel salt reduction strategies, which can potentially influence on the quality of low-sodium dry-cured ham, include sodium salt substitute, flavor enhancer, physical form modification of salt, salty peptide, and mediated curing techniques including not only physical mediation: vacuum, ultrasonic, ultra-high pressure, and pulsed electric field technology, but also exogenous mediations: adding exogenous substances such as sugar and polyhydroxyl alcohol and their mechanism of salt reduction are reviewed. It also compares the advantages and disadvantages of each salt reduction strategy and suggests that it still has certain limitations to produce ham by a single salt reduction method, the combination of multiple methods is thus a more effective way to achieve salt reduction. This paper aims to provide new insight and theoretical references for the production of low-sodium dry-cured ham with high quality and safety.
  • 干腌火腿是中国传统美食之一,因其独特的风味和传统文化内涵而深受人们的喜爱。干腌火腿常以猪肉、牛肉或羊肉等作为主要原料,食盐(NaCl)作为主要腌制剂,辅以白酒、亚硝酸盐、糖、香辛料等,经过复杂的修整、腌制、堆码、上挂、成熟等工序加工而成的一类腌肉制品,有着鲜嫩的质地和独特的风味。不同地区的干腌火腿采用当地特有的腌制方式,形成了丰富多样、各具特色的口味和加工工艺。食盐是干腌火腿加工中不可或缺的腌制剂之一,它不仅能提供咸味,还能改善产品色泽、质地、嫩度和适口性[1],产生浓郁的干腌火腿香味,提高蒸煮得率和保水性[23],并能有效地抑制有害微生物的增殖,对延长火腿的货架期和提高安全性起着重要作用[4]

    然而,随着生活水平日益提高,过量摄入Na已成为一个普遍的公共卫生问题,高盐肉制品对人体健康的潜在风险逐渐引起人们的重视。目前,国内干腌火腿仍采用传统高盐腌制方式,导致火腿中钠含量过高。饮食中摄入高钠可能诱发高血压,提高心血管疾病、肾脏疾病等风险[56]。越来越多的研究显示,盐的摄入还与肾结石和骨质疏松症的风险增加相关[7],并且可能是导致胃癌的一个主要原因[8]。同时,高盐分也是近年来人们对腌肉制品消费程度逐渐降低、阻碍其产业发展的重要因素之一。对此,2016年国务院印发的《“健康中国2030”规划纲要》提出“三减”政策,其中就包括“减盐”,明确提出到2030年我国人均每日NaCl摄入量将减少20%的目标[9]。因此,如何确保干腌火腿“减盐不减咸,减盐不降质”,正成为火腿产业发展的关键点。

    目前,关于干腌肉制品减盐策略的综述日益增加,而鲜有文章专门针对干腌火腿减盐策略进行总结。因此,本文全面阐述了干腌火腿的减盐方法,其中包括以往研究中常用的方法和新型减盐策略在干腌火腿中的研究现状及展望,如咸味肽、新型介导腌制技术等;还探讨了各方法的减盐机制及其对产品品质的影响,旨在为未来生产出品质优良且安全的低钠干腌火腿提供理论依据和创新思路。

    目前,干腌火腿的常见减盐方法包括直接降低食盐添加量、使用钠盐替代物或风味增强剂,这些方法已被大量研究证明能够降低盐含量的同时保持火腿良好的品质。此外,一些新型减盐策略,如食盐物理形态改性、咸味肽、以及基于真空、超声波(ultrasonic,US)、超高压(ultra-high pressure,UHP)、脉冲电场(pulsed electric field,PEF)、加入外源物(糖、多羟基醇等)的介导腌制技术已被证明能有效减少盐腌肉制品的盐含量或增强咸味感知,但在干腌火腿中的应用报道较少,这些新方法可以作为生产减盐火腿潜在的手段。表1对干腌火腿减盐策略及其优缺点进行了分类总结,包括常见和新型减盐策略两部分。

    表  1  干腌火腿常见和新型减盐策略及其优缺点
    Table  1.  Advantages and disadvantages of common and novel salt reduction strategies for dry-cured ham
    减盐策略 优点 缺点 参考文献
    常见减盐策略 直接降低食盐添加量 成本低、操作简便 产品品质恶化,整体风味下降 [1011]






    氯盐替代 与NaCl有相似特性,成本低、操作方便,减盐效果明显,对风味、质地、色泽影响较小 过量添加会产生苦味、金属味、涩味、刺激性味道,渗透速度慢,后腌制时间延长 [1416]
    非氯盐替代 有效降低钠含量,抑制微生物生长、延长保质期,对产品品质影响较小,提高产品持水能力,减少蒸煮损失 乳酸盐过量添加使产品有明显酸味,干燥期延长;磷酸盐过量使用会产生金属涩味、导致风味恶化、结构粗糙,同时高磷摄入会增加人体患病风险 [2122,
    2829]
    风味增强剂 掩盖不良风味,与替代盐联合使用起协同增效作用 部分风味增强剂成本较高,混合增咸物质的成分尚不明确 [3436]
    新型减盐策略 食盐物理形态改性 溶解扩散速率快,提高咸味感知,充分利用NaCl,无化学回味 改性NaCl成本高,应用范围有限,技术不成熟,食盐结构与口感的关系还需深入
    研究
    [3739]
    咸味肽 绿色健康,安全易接受,提供咸味同时能补充人体必需氨基酸 成本高、产量低,产业化生产尚未成熟,应用范围不广 [4852]





    物理介导(真空、超高压、超声波、脉冲电场等 常常作为辅助腌制技术,改善品质特性,提高腌制效率,主要集中于应用研究 成本高,作用参数要求高 [59,65,70,77]
    外源物介导
    (糖、多羟基醇)
    快速降低aw,抑制NaCl扩散 少有研究报道,目前应用范围较局限 [8487]
    下载: 导出CSV 
    | 显示表格

    降低干腌火腿中食盐含量,最简单的方法就是直接降低NaCl添加量,但此做法可能会导致组织蛋白酶B、L、H,氨基肽酶和脂质水解酶活性过高,致使蛋白质水解、脂质水解和脂质氧化过多,微生物快速生长,进而引起火腿的品质和整体风味下降[10]。因此,为了在减少NaCl添加量的同时能够保持火腿持水力、质地、感官、货架期等品质特性,许多研究利用与NaCl的感官、理化和安全等特性相似的钠盐替代物进行替代添加实现减盐。

    部分替代NaCl是减少火腿中钠含量的最佳选择,目前研究中经常使用KCl、CaCl2和MgCl2等作为食盐替代品。但要保证低盐火腿感官、质构、风味等品质特性的变化不显著或在可接受范围内,必须反复研究并合理地选择替代比例[11]

    KCl有着与NaCl极为相似的性质且安全性较高,是应用最多的钠盐替代物。研究表明KCl的适量添加能有效降低干腌火腿含盐量,且对产品的某些理化指标不产生显著影响。陈文彬等[12]用KCl替代30%NaCl并结合强化高温成熟工艺制成的干腌火腿盐含量显著降低(P<0.05),而色差值、色素状态和含量没有显著差异。黎良浩等[13]证明用KCl替代40%NaCl对干腌火腿的蛋白质降解过程无显著影响(P>0.05)。在一定程度上,KCl替代添加会对干腌火腿的风味、品质产生有利影响,但替代比超出一定范围时,则会产生苦味和不良口感。Zhang等[14]发现40%KCl替代组的金华火腿脂类挥发物含量较高,对成品风味产生显著影响。Ding等[15]用KCl替代30%或40%NaCl腌制的宣威火腿,有较好的感官可接受性。同时KCl取代促进了氨基酸和脂肪酸的释放,水分含量增加,有利于火腿风味和口感的改善。但当取代量达到50%及以上时,苦味特性显著增加(P<0.05)。因此,在不影响感官性能的前提下,用KCl部分替代NaCl是可行的,但需根据原料和加工工艺不同对最适替代比进行探索。

    Armenteros等[16]用氯盐混合物(KCl、NaCl、MgCl2、CaCl2)腌制火腿,与对照组(100% NaCl)相比,含有CaCl2和MgCl2的火腿盐含量下降,但感官属性受到显著影响,可能是二价阳离子产生的苦味、金属味、涩味等导致得分较低。Blesa等[17]用NaCl、KCl、CaCl2 、MgCl2的复配盐腌制西班牙火腿,结果表明其水分活度(water activity,aw)比传统腌制火腿高,这是由于钙镁的电荷密度比钠高,穿透肌肉内部的难度增加。这表明用钾、钙、镁等其他阳离子代替钠时,虽然干腌火腿的盐含量会降低,但苦味、金属味等不良风味也会随之产生,严重影响感官可接受性,同时想要达到与传统腌制火腿相同的aw需延长腌制时间,这无意中也增加了成本。Ripollés等[18]也用NaCl、KCl、CaCl2、MgCl2复配盐制作干腌火腿,结果表明脂肪降解程度略高,特别是饱和脂肪酸降解比较明显,而NaCl处理干腌火腿具有延迟氧化的效果,因此,使用氯盐替代NaCl时,找到合适的替代比对有效控制脂解率和保持最终产品的风味至关重要。

    除氯盐替代物,乳酸盐、磷酸盐、多聚磷酸盐[19]、抗坏血酸钙[20]等非氯盐替代物在减盐肉制品中也有应用。其中,乳酸盐在干腌火腿中被广泛应用,它能抑制腐败菌和致病菌的生长,起到抗菌保鲜、延长保质期的作用,常被用作复配钠盐替代物的组分[21]。Liao等[22]用NaCl、NaNO2和乳酸钾(C3H5KO3)复配腌制如皋火腿,结果表明添加2%C3H5KO3降低了总挥发性碱性氮值和好氧细菌总数,并改变了微生物群落。同时还改善了如皋火腿的感官性能,如适口性和稳定性,原因是C3H5KO3可以延缓酸味和异味的产生,并抑制微生物的生长,防止蛋白质和脂质的过度降解,从而提高最终产品的感官质量[23]。此外,乳酸盐的添加在降低含盐量的同时还有利于改善产品的质地和风味。Fulladosa等[24]研究证明C3H5KO3的添加对重组干腌火腿的色泽、风味和质地无不良影响。Costa-Corredor等[25]报道减少盐添加量会使火腿的咸度降低,但也会导致蛋白质的水解度、aw和柔软度提高,而C3H5KO3替代添加有助于降低这些影响。综上所述,乳酸盐具备其他盐类不具有的抑菌、改善品质等作用,用它来辅助其他氯盐替代物使用在减盐火腿中是可行的。

    磷酸盐能增强肉制品的保水性[26]、降低蒸煮损失率、改善质地特性以及调节pH等,是西式蒸煮火腿中重要的品质改良剂[27]。丁武等[28]研究表明添加磷酸盐(0.3%焦磷酸钠、0.3%多聚磷酸钠、0.2%六偏磷酸钠)能显著提高猪肌肉的嫩度和保水性。然而,当磷酸盐的添加量达到0.4%~0.5%时,会产生金属涩味或肥皂味,过量使用会导致肉制品风味、质地恶化,结构粗糙,还可能对人体健康构成威胁[29]。目前,磷酸盐作为食盐替代物在火腿中的应用报道较少,需严格控制添加量并研究其对火腿品质和安全性的影响。

    风味增强剂在一定程度上具有弥补由减盐而导致食物口感减弱的能力,通过增强感官感受,提高人们对低盐食品的接受度。柠檬酸、乳酸、乙酸、氨基酸、核糖核酸、酵母提取物[30]、香料、味精、酱油等常作为风味增强剂应用在低盐肉制品加工中。而风味增强剂经常与钠盐替代物联合使用,当替代物浓度超过一定范围时,可能会使肉制品产生不愉快味道,而风味增强剂的添加能够掩盖这些缺陷或增强其咸味[31]。目前,将钠盐替代物与风味增强剂复配并应用于低钠干腌火腿的研究也逐渐增多[32]

    酵母提取物、味精、酱油、氨基酸等属于鲜味化合物,添加鲜味成分可以通过重新平衡整体味觉感知来增强低钠产品的风味轮廓,还可以通过鲜味-盐的相互作用提高感知咸度。例如添加酱油可以减少炒猪肉中盐的用量,是因为其固有的咸味和谷氨酸含量可以增强咸味感知[33]。Delgado-Pando等[34]添加少于0.4%的酵母提取物和甘氨酸混合物腌制火腿,含盐量减少约20%,而产品的总体可接受性无显著差异。这可能是由于酵母提取物中的鲜味物质和食盐之间的协同作用以及甘氨酸提供的愉悦口感,有效地增强了低盐干腌火腿的整体风味轮廓。另外,将风味增强剂和钠盐替代物复配使用已被证明能减少干腌肉制品含盐量且保持良好的感官可接受性。这是因为风味增强剂能有效掩盖由NaCl、KCl、CaCl2在腌制中引起的酸败气味和余味[3536]。目前,风味增强剂在低钠干腌火腿中的应用已被研究,但在低钠香肠、干腌猪腰肉和干腌牛肉等肉制品中运用更广泛。

    咸味感知能力与盐的溶解速率呈正相关,盐颗粒越小、表面积越大,其溶解和扩散能力越强[3738]。提高唾液中NaCl的溶解速度可以促进离子向味蕾的迅速转移,从而潜在地增强食物的咸味感知[39]。因此,在不影响产品质量的前提下,改变盐的形状和大小是实现减盐的重要策略之一。

    诺丁汉大学采用将标准盐晶体转化为自由流动结晶微球的技术制成了SODA-LO™盐微球,它能有效减少食物中高达50%的盐分而不会破坏其风味或结构[40]。Rios-Mera等[41]用微粉化盐降低了牛肉汉堡中的盐含量,且其pH、颜色参数和一些感官特性不受影响。但也有研究发现用微粉盐代替食盐并不能提升火鸡火腿的咸味感[42],它可能仅是降低某些固体食品(如薯片、饼干)中钠含量的有效方法[43],这说明此减盐策略的应用对象还有一定局限性。尽管NaCl物理形态改性能降低食品含盐量且无不良风味,但高成本限制了其应用,且将它用于生产低钠干腌火腿的研究鲜有报道,其适用性还需深入研究。

    咸味肽是一种小分子肽,具有咸味或增强咸味的特性。它一般通过食品提取或氨基酸合成,既能提供咸味又能补充人体所需氨基酸,被视作绿色健康的盐替代品。近年来,咸味肽被用于减盐肉制品加工中并保持其风味和质地[44]。两种咸味肽(orn-Tau.HCl和orn-β-Ala.HCl)是由Tada等[45]在合成酪蛋白水解物N端类似物的研究中发现,结构式如图1所示,其咸度与NaCl溶液相似或更高。咸味肽的呈味特性受其氨基酸序列和空间结构影响,相同氨基酸构成序列不同其多肽呈味特性不同,同一多肽在不同溶液中咸味增强效果也不同[46]。尽管咸味肽的机理尚未完全阐明,但研究表明一些短肽,特别是含有精氨酸的肽与NaCl存在协同作用,能够产生更强的咸味味觉[47]。Wang等[48]从牛骨中纯化鉴定出一种新型咸味肽KER(Lys-Glu-Arg),该肽表现出良好的咸度,且与NaCl存在协同增咸效应。王欣等[49]用双酶水解哈氏仿对虾蛋白得到的酶解液咸度达到55 mmol/L。严方[50]也证明将豌豆肽及其美拉德肽产物加到盐溶液中均能促进阿米洛利敏感型味觉细胞数增加,提高人体对咸味的敏感性。以上研究表明从动植物中提取的咸味肽表现出良好的潜在增咸效果。目前,已有研究将咸味肽运用在腌腊肉制品中去减盐。赵立等[51]将咸味猪骨肽制成冻干粉部分替代NaCl加工低盐香肠,成功达到了减盐不减咸的效果,赋予了低盐香肠更好的风味。侯婷婷等[52]用NaCl、KCl和咸味肽复配腌制肉块,盐含量下降且质量和风味与对照组(100%NaCl)相似。这些研究都为生产低钠火腿提供了理论依据。

    图  1  两种咸味肽的结构图[45]
    Figure  1.  Structure diagrams of two salty peptides[45]

    咸味肽作为新兴减盐策略在生产低钠干腌火腿中表现出广阔的应用前景,但鲜有文献报道。将咸味肽和钠盐复配使用腌制火腿,会大大增加减盐火腿的成本。因此,未来可以考虑使用咸味粗肽替代添加,另外可以从原料的选择和加工条件的控制方面进行研究,以实现咸味肽从肉蛋白中高效酶解释放,与氯化钠协同作用从而达到减盐不减咸的效果。

    由于肉的基质复杂,NaCl在肉中的扩散速度通常较慢,且受到肌纤维中肌间和肌内脂肪的阻碍会使腌制时间较长,利用新型的非侵入性非热技术,如真空、超声波、超高压、脉冲电场等技术可以加速NaCl传质,提高腌制效率。目前低盐肉制品加工中常见的新型物理介导腌制技术如图2所示。

    图  2  常见的新型物理介导腌制技术[53]
    Figure  2.  Common novel physically-mediated curing techniques[53]

    使用真空浸渍技术可以在多孔食品盐渍过程中获得更快的盐渍动力学,从而缩短腌制时间,促进食盐均匀分布。这是由于流体动力学机制(压力梯度促进溶液吸收)和浓度梯度促进扩散现象的结合所导致的。真空浸渍是一种改进的渗透脱水技术,它需要在真空条件下将原料浸渍在盐溶液中,通过负压将盐水渗透到产品内部[54]。而传统的中式干腌火腿主要采用干法腌制,这可能导致真空浸渍技术在生产低钠干腌火腿中应用受限。

    Bampi等[55]发现真空脉冲应用在湿腌过程中能缩短牛肉块的盐腌时间。而对于干腌食品,通常与滚揉工艺相结合在连续或缓慢脉冲真空下加工。滚揉处理有助于破坏肉组织,促进NaCl向肌肉中扩散,增强腌肉制品的嫩度、多汁性和适口性[56]。另外,真空滚揉会在滚筒内腔产生负压,促进盐水的渗透和平衡,消除气泡[57]。Hayes等[56]结果表明,滚揉和真空滚揉都提高了干腌牛肉的含盐量和感官接受度。但真空滚揉的效果更好,加速了干腌过程,提升了牛肉的感官质量和产量。Marriott等[58]报道真空滚揉可以提高火腿腌制渗透率和颜色稳定性。付浩华等[59]用复配腌制料(2%NaCl、0.2%D-异抗坏血酸钠、0.7%迷迭香)结合真空滚揉工艺使腊肉腌制速度更快更均匀,盐含量下降高于20%,感官得分提高,并保持良好的贮藏性能和风味。此外,真空滚揉还常与其他非热加工技术联合使用,Jiang等[60]报道超声辅助真空滚揉腌制大大提高了五香牛肉挥发性风味化合物的种类和数量,有助于增强整体风味特征。在现代肉类加工中,真空滚揉技术常用于对肉类进行预处理。然而,传统的单一真空滚揉工艺在处理大块肉类时仍然耗时较长。由于火腿体积大且形状特殊,需要寻找合适的真空滚揉参数,并与其他减盐策略联合使用可能达到更好的减盐效果[61]

    US技术在适当强度范围内,能够增加盐腌肉制品腌制过程中盐的扩散系数,加快食盐渗透,展现出提高腌制效率、减少盐含量,增强低钠干腌肉制品品质的潜力,是一种前景广阔的减盐腌制技术[62]。当US在液体介质中传播时会在盐水中产生微湍流和微搅拌,超声空化产生的微射流会对肉细胞造成破坏,海绵效应会形成微通道,这些作用都可以减小肉在腌制过程中的内外部阻力,从而加速NaCl渗透[63]

    Inguglia等[64]将超声波技术和KCl替代盐联合使用,短时间内降低了腌制猪腰肉含盐量,而pH、水分含量、aw未改变。Barretto等[65]运用US技术辅助腌制重组火腿,降低了32%钠含量,改善了低钠火腿颜色,总液体释放量减少,不影响氧化稳定性。同时在肌肉纤维中产生的微裂缝改变了火腿的微观结构,提高了味觉和质地参数的感官可接受度。高子武等[66]研究表明US能有效促进牛肉肌原纤维蛋白氧化降解,提高肉的保水性和嫩度。但也有研究表明US处理可能会使肉制品产生异味、物理参数改变以及主要和次要化合物发生降解从而导致产品质量受损[67]。Kang等[68]报道US技术使腌制牛肉的脂肪氧化程度显著提高,空化效应和由此产生的自由基使蛋白质氧化,蛋白结构发生变化。虽然US技术在降低盐腌肉制品钠含量方面有潜在应用,但不适宜的超声功率反而会引起肌肉组织的破坏,导致肌肉纤维松散[62]。另外,由于干腌火腿的形状、体积和腌制方式较其他肉制品特殊,所以需要针对不同干腌火腿的原料和腌制工艺进一步探究适宜的超声参数。

    高压加工腌制火腿是一种在西班牙被使用的非热巴氏杀菌技术,具有降低干腌火腿盐含量的潜力[69]。目前,超高压处理的增咸机制也逐渐受到关注,从超微结构和分子角度对这一现象进行解释有助于提出高压加工处理作为干腌火腿减盐的解决方案。Picouet等[70]研究表明,干腌火腿经600 MPa高压处理后可以在不增加实际含盐量的情况下增强其咸味感知,这可能是超高压使Na+与肉蛋白的相互作用发生改变。600 MPa高压处理使干腌火腿肌纤维束之间的间隙减小,同时干扰了肌原纤维内部超微结构。UHP产生的挤压效应和蛋白质变性有利于将水分挤出组织,施加压力后,少量Na释放到干腌火腿水相中,增加了火腿中游离Na总量,同时超微结构有序度的丧失有助于这种释放,这解释了超高压处理火腿的咸味感知增强。Fulladosa等[24]的研究也发现高压处理(600 MPa)显著影响了火腿的咸味、鲜味、甜味等风味特征,感官质地和切片外观。

    此外,UHP的应用已被证明可以成功灭活肉制品中的有害病原体和腐败微生物[71],从而提高肉制品的安全性并延长保质期[72]。Fulladosa等[73]研究了C3H5KO3和UHP共同作用对减盐重构火腿安全性和质量的影响,结果表明乳酸钾和高压处理显著抑制了优势菌群的生长,但对减盐火腿的品质没有负面影响。通过添加NaCl来提高肉类蛋白质增溶性、持水力和改善质地,已被确定为对肉制品结构特性有重大影响的关键过程,而研究表明UHP能够补偿减盐肉制品的功能和感官特性的损失[7475]。Zhou等[71]用200 MPa高压处理钾盐替代25% NaCl的鸡肉香肠,不仅盐含量下降,且高压处理使香肠的硬度和多汁性提高,质地更加紧密,蒸煮损失降低。目前,超高压技术常常作为辅助技术配合低盐腌制配方用于肉糜类产品中,起到促进低盐凝胶体系构建的作用[71]。而对低钠干腌火腿是否会产生相同的效果还需进一步研究,并且需要根据原料、加工工艺、腌制剂等的不同探索出最适施加压力和时间。

    PEF技术是基于两电极之间的电流而诱发电穿孔现象且加工时间短,能耗低的一种非热处理新兴技术,与传统热加工方式相比,在延长产品保质期及保证食品营养和感官品质方面有良好的应用前景[76]。PEF在肉制品中的应用变得越来越有吸引力,在短时间的高压脉冲下,PEF可以通过扩大现有孔隙或创造新孔隙来诱导细胞膜渗透,因此可以用作预处理以提高腌制效率,促进食盐快速均匀分布,并增强咸味感知[77]。脉冲电场加速肉类腌制的潜在机理如图3所示。作为减盐干腌火腿的辅助腌制技术,其表现出良好的潜能。Dong等[78]发现经PEF(4.5 kV)处理12 h后猪肉的中心盐含量与不经任何处理20 h的中心盐含量相似,说明PEF处理能有效缩短腌制时间。同时,PEF改变了猪肉的微观结构和肌原纤维蛋白二级结构,有效促进了盐的扩散。还有研究报道,PEF能通过物理破坏肌肉纤维来增强肉的嫩度[79]。Jeong等[80]报道了牛肉在PEF处理后,嫩度得以提高,且随场强的增加效果越好。当施加场强为2.0 kV/cm时,剪切力降低35%。然而,PEF在改善肉质嫩度方面的作用仍具争议,其影响机制尚未完全明确。Khan等[81]研究发现低脉冲电场对提高肉嫩度无显著影响,而高脉冲电场反而会提高肉的脂质氧化程度,对牛肉质量产生负面影响。这表明不同强度的PEF处理肉制品可能产生不同效果。

    图  3  脉冲电场加速肉类腌制的潜在机制[79]
    Figure  3.  Potential mechanism of meat curing acceleration by a pulsed electric field[79]

    PEF技术通过电穿孔现象、增加膜和细胞通透性去影响盐的扩散和钠离子的传递,从而改善咀嚼时的咸味感知。然而,电穿孔却受到PEF参数、细胞参数和膜参数等众多因素的影响[82]。另外,虽然PEF被归类为非热能技术,但由于电能转化为热能,温度往往会升高,这种热电效应可能会影响色泽、持水性和质地等肉质属性[83]。因此,以后的研究需结合干腌火腿自身属性和不同加工工艺,寻找PEF辅助腌制的最佳组合条件,从而节省时间和能源,保证产品品质。

    外源介导腌制是在不改变盐本身性质的情况下,通过加入外源物质改变渗透压,从而影响食品基质中水分迁移行为,加快盐腌肉制品达到低aw的速度,降低盐的吸收率。其中糖、多羟基醇等物质常被作为外源物应用到腌制肉制品中,它们能与氯化钠结合作为渗透剂,通过快速降低肉的aw,抑制盐的扩散速率,从而降低肉制品的最终含盐量[84]

    研究表明,由盐、水和糖组成的三元溶液的渗透压及脱水效果比由盐和水组成的二元溶液更强,是由于大分子质量的糖停留在细胞表面,扩散速度比盐慢,且产生较高的细胞外渗透压。另外,糖还会产生“屏障效应”,阻碍NaCl扩散,这有利于减少肉制品中的食盐含量[8586]。食品级甘油是一种简单的多羟基醇,微甜、无色、无毒。甘油、NaCl与水的三元溶液被认为是肉类食品的高渗介质,能加速细胞中的水分流失,同时在样品表面形成溶质膜,延缓了NaCl扩散速度,从而降低盐含量。如图4所示,从氢键的角度分析,在这个三元体系中,由于甘油和水之间的氢键相互作用,导致与氯化钠相互作用的水分子数量减少,进入细胞的Na数量也减少。同时,水分子可以与氯化钠水合,细胞可以将水分子排到外部的盐系统,从而降低细胞内的含水量[87]。刘春丽[88]用丙三醇介导腌制火腿,结果表明丙三醇的添加有利于降低火腿的盐分和水分含量,对产品的持水力、质构等有一定的提升作用。也有研究报道通过甘油介导腌制降低盐含量已在一些腌肉质品中有应用。Gu等[89]用超声辅助甘油介导腌制猪里脊肉,产品的食盐含量、aw和蒸煮损失降低,产品质地得以改善。Liu等[90]的研究也有相似的结果。但现有的研究大多只评估了甘油对降低aw的影响,而对甘油在减少肉制品钠含量方面缺乏系统的研究。综上所述,今后应该对外源物介导腌制的低钠火腿的感官、理化、安全特性等展开深入研究。

    图  4  甘油溶质膜延缓氯化钠扩散的机制[87]
    Figure  4.  Mechanism of glycerol solute film retarding sodium chloride diffusion[87]

    随着大健康时代的到来,食盐摄入过多已成为全球健康领域的重要问题,减少干腌火腿中的盐含量仍是当前火腿生产行业的一个严峻挑战。目前直接减少钠盐添加量、用钠盐替代物、风味增强剂替代添加的几种常用减盐策略已被广泛运用在干腌火腿中,但这些方法在减盐的同时会对产品的感官、理化和安全特性产生不同程度的影响,需注意替代添加量的范围。另外,一些新型减盐策略在生产减盐干腌火腿中表现出良好的潜能。首先,改变NaCl的物理形态,咸味肽的添加可以增强咸味感知,减少最终产品的含盐量且无化学回味。但由于改性NaCl的成本高限制了其应用,且目前咸味肽研究大部分还停留在分离鉴定层面,需要进一步探索其呈味特性及规律,分析其与受体的结合位点,从而实现成本低、产量高的咸味肽产业化生产。其次,新型介导腌制技术常作为辅助腌制技术去促进食盐或复配盐在干腌肉制品中快速均匀分布,从而减少腌制过程中盐的渗透。但这些技术想推广应用于干腌火腿,还需对技术工艺参数、产品特性、相互影响机制进行深入探索。

    综上所述,虽然上述每一种减盐方法都有一定的局限性,但多种方法联合使用可以起到协同增效作用,因此可以进行一些复合型减盐策略的相关研究。NaCl是一种价格低廉且必不可少的腌制剂,减盐势必会增加一定的成本。因此,在保证产品品质和安全性的同时探索出一种成本低廉、操作性强的减盐方法是干腌火腿行业亟待解决的问题。

  • 图  1   两种咸味肽的结构图[45]

    Figure  1.   Structure diagrams of two salty peptides[45]

    图  2   常见的新型物理介导腌制技术[53]

    Figure  2.   Common novel physically-mediated curing techniques[53]

    图  3   脉冲电场加速肉类腌制的潜在机制[79]

    Figure  3.   Potential mechanism of meat curing acceleration by a pulsed electric field[79]

    图  4   甘油溶质膜延缓氯化钠扩散的机制[87]

    Figure  4.   Mechanism of glycerol solute film retarding sodium chloride diffusion[87]

    表  1   干腌火腿常见和新型减盐策略及其优缺点

    Table  1   Advantages and disadvantages of common and novel salt reduction strategies for dry-cured ham

    减盐策略 优点 缺点 参考文献
    常见减盐策略 直接降低食盐添加量 成本低、操作简便 产品品质恶化,整体风味下降 [1011]






    氯盐替代 与NaCl有相似特性,成本低、操作方便,减盐效果明显,对风味、质地、色泽影响较小 过量添加会产生苦味、金属味、涩味、刺激性味道,渗透速度慢,后腌制时间延长 [1416]
    非氯盐替代 有效降低钠含量,抑制微生物生长、延长保质期,对产品品质影响较小,提高产品持水能力,减少蒸煮损失 乳酸盐过量添加使产品有明显酸味,干燥期延长;磷酸盐过量使用会产生金属涩味、导致风味恶化、结构粗糙,同时高磷摄入会增加人体患病风险 [2122,
    2829]
    风味增强剂 掩盖不良风味,与替代盐联合使用起协同增效作用 部分风味增强剂成本较高,混合增咸物质的成分尚不明确 [3436]
    新型减盐策略 食盐物理形态改性 溶解扩散速率快,提高咸味感知,充分利用NaCl,无化学回味 改性NaCl成本高,应用范围有限,技术不成熟,食盐结构与口感的关系还需深入
    研究
    [3739]
    咸味肽 绿色健康,安全易接受,提供咸味同时能补充人体必需氨基酸 成本高、产量低,产业化生产尚未成熟,应用范围不广 [4852]





    物理介导(真空、超高压、超声波、脉冲电场等 常常作为辅助腌制技术,改善品质特性,提高腌制效率,主要集中于应用研究 成本高,作用参数要求高 [59,65,70,77]
    外源物介导
    (糖、多羟基醇)
    快速降低aw,抑制NaCl扩散 少有研究报道,目前应用范围较局限 [8487]
    下载: 导出CSV
  • [1]

    ZHOU Y, ZHOU C Y, PAN D, et al. The effect of sodium chloride levels on the taste and texture of dry-cured ham[J]. Journal of Food Measurement and Characterization,2020,14:2646−2655. doi: 10.1007/s11694-020-00511-3

    [2] 吴亮亮, 罗瑞明, 孔丰, 等. 食盐添加量对滩羊肉蒸煮损失、嫩度及水分分布的影响[J]. 食品工业科技,2016,37(2):322−325, 366. [WU L L, LUO R M, KONG F, et al. Effect of cooking loss, tenderness and water distribution of Tan sheep at different salt addition treatment[J]. Science and Technology of Food Industry,2016,37(2):322−325, 366.]

    WU L L, LUO R M, KONG F, et al. Effect of cooking loss, tenderness and water distribution of Tan sheep at different salt addition treatment[J]. Science and Technology of Food Industry, 2016, 37(2): 322−325, 366.

    [3] 孟嘉珺, 许树荣, 邓莎, 等. 食盐腌制对鸡肉品质、肌原纤维蛋白结构和功能特性的影响[J]. 食品工业科技,2022,43(24):45−53. [MENG J J, XU S R, DENG S, et al. Effects of salt marinating on chicken quality and structure characteristics, function characteristics of chicken myofibrin protein[J]. Science and Technology of Food Industry,2022,43(24):45−53.]

    MENG J J, XU S R, DENG S, et al. Effects of salt marinating on chicken quality and structure characteristics, function characteristics of chicken myofibrin protein[J]. Science and Technology of Food Industry, 2022, 43(24): 45−53.

    [4]

    BARCENILLA C, ÁLVAREZ-ORDÓÑEZ A, LÓPEZ M, et al. Microbiological safety and shelf-life of low-salt meat products-a review[J]. Foods,2022,11(15):2331. doi: 10.3390/foods11152331

    [5]

    WATSO J C, FANCHER I S, GOMEZ D H, et al. The damaging duo:Obesity and excess dietary salt contribute to hypertension and cardiovascular disease[J]. Obesity Reviews,2023,24(8):e13589. doi: 10.1111/obr.13589

    [6]

    BOVÉE D M, UIJL E, SEVERS D, et al. Dietary salt modifies the blood pressure response to renin-angiotensin inhibition in experimental chronic kidney disease[J]. American Journal of Physiology-Renal Physiology,2021,320(4):F654−F668. doi: 10.1152/ajprenal.00603.2020

    [7]

    TAKASE H, TAKEUCHI Y, FUJITA T, et al. Excessive salt intake reduces bone density in the general female population[J]. European Journal of Clinical Investigation,2023,53(10):e14034. doi: 10.1111/eci.14034

    [8]

    WU X M, CHEN L L, CHENG J X, et al. Effect of dietary salt intake on risk of gastric cancer:A systematic review and meta-analysis of case-control studies[J]. Nutrients,2022,14(20):4260. doi: 10.3390/nu14204260

    [9] 国务院. “健康中国2030”规划纲要[OL]. (2016-10-25) [2024-4-18]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm. [The State Council. “Healthy China 2030” plan outline[OL]. (2016-10-25) [2024-4-18]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm.]

    The State Council. “Healthy China 2030” plan outline[OL]. (2016-10-25) [2024-4-18]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm.

    [10] 皮若冰, 李大鹏, 洪惠, 等. 肉制品中减盐策略研究进展[J]. 食品工业科技,2022,43(13):408−415. [PI R B, LI D P, HONG H, et al. Research progress on sodium salt reduction strategies in processed meat products[J]. Science and Technology of Food Industry,2022,43(13):408−415.]

    PI R B, LI D P, HONG H, et al. Research progress on sodium salt reduction strategies in processed meat products[J]. Science and Technology of Food Industry, 2022, 43(13): 408−415.

    [11]

    WANG J, HUANG X H, ZHANG Y Y, et al. Effect of sodium salt on meat products and reduction sodium strategie-A review[J]. Meat Science,2023,205:109296. doi: 10.1016/j.meatsci.2023.109296

    [12] 陈文彬, 黎良浩, 王健, 等. 部分KCl替代NaCl对强化高温成熟工艺干腌火腿肌肉色泽形成的影响[J]. 食品科学,2017,38(17):77−84. [CHEN W B, LI H L, WANG J, et al. Effect of partial repiacement of NaCl with KCl combined with high-temperature ripening on color formation in dry-cured hams[J]. Food Science,2017,38(17):77−84.] doi: 10.7506/spkx1002-6630-201717014

    CHEN W B, LI H L, WANG J, et al. Effect of partial repiacement of NaCl with KCl combined with high-temperature ripening on color formation in dry-cured hams[J]. Food Science, 2017, 38(17): 77−84. doi: 10.7506/spkx1002-6630-201717014

    [13] 黎良浩, 王永丽, 唐静, 等. KCl部分替代NaCl对干腌火腿工艺过程中蛋白质水解的影响[J]. 食品工业科技,2015,36(18):103−107,112. [LI H L, WANG Y L, TANG J, et al. Influence of partial replacement of NaCl with KCl on proteolysis during processing of dry-cured hams[J]. Science and Technology of Food Industry,2015,36(18):103−107,112.]

    LI H L, WANG Y L, TANG J, et al. Influence of partial replacement of NaCl with KCl on proteolysis during processing of dry-cured hams[J]. Science and Technology of Food Industry, 2015, 36(18): 103−107,112.

    [14]

    ZHANG Y Y, WU H Z, TANG J, et al. Influence of partial replacement of NaCl with KCl on formation of volatile compounds in Jinhua ham during processing[J]. Food Science and Biotechnology,2016,25:379−391. doi: 10.1007/s10068-016-0053-3

    [15]

    DING X L, WANG G Y, ZOU Y L, et al. Evaluation of small molecular metabolites and sensory properties of Xuanwei ham salted with partial replacement of NaCl by KCl[J]. Meat Science,2021,175:108465. doi: 10.1016/j.meatsci.2021.108465

    [16]

    ARMENTEROS M, ARISTOY M C, BARAT J M, et al. Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts[J]. Meat Science,2012,90(2):361−367. doi: 10.1016/j.meatsci.2011.07.023

    [17]

    BLESA E, ALIÑO M, BARAT J M, et al. Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts[J]. Meat Science,2008,78(1-2):135−142. doi: 10.1016/j.meatsci.2007.07.008

    [18]

    RIPOLLÉS S, CAMPAGNOL P C, ARMENTEROS M, et al. Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham[J]. Meat Science,2011,89(1):58−64. doi: 10.1016/j.meatsci.2011.03.021

    [19]

    XUE S W, ZOU Y F, CHEN X, et al. Effects of sodium tripolyphosphate on functional properties of low-salt single-step high-pressure processed chicken breast sausage[J]. International Journal of Food Science & Technology,2016,51(9):2106−2113.

    [20]

    YANG S J, MA X L, HUANG Y F, et al. Comprehensive effects of potassium lactate, calcium ascorbate and magnesium chloride as alternative salts on physicochemical properties, sensory characteristics and volatile compounds in low-sodium marinated beef[J]. Foods,2024,13(2):291. doi: 10.3390/foods13020291

    [21]

    SHELEF L A. Antimicrobial effects of lactates:A review[J]. Journal of Food Protection,1994,57(5):445−450. doi: 10.4315/0362-028X-57.5.445

    [22]

    LIAO R, WANG Y, XIA Q, et al. Effects of potassium lactate on sensory attributes, bacterial community succession and biogenic amines formation in Rugao ham[J]. Food Science and Human Wellness,2024,13(1):198−210. doi: 10.26599/FSHW.2022.9250017

    [23]

    AKSU M I, EBRU E. The effect of potassium lactate on the free amino acid composition, lipid oxidation, colour, microbiological, and sensory properties of ready-to-eat pastırma, a dry-cured and dried meat product[J]. Journal of Food Science and Technology,2022,59(4):1288−1298. doi: 10.1007/s13197-021-05137-x

    [24]

    FULLADOSA E, SERRA X, GOU P, et al. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content[J]. Meat Science,2009,82(2):213−218. doi: 10.1016/j.meatsci.2009.01.013

    [25]

    COSTA-CORREDOR A, SERRA X, ARNAU J, et al. Reduction of NaCl content in restructured dry-cured hams:Post-resting temperature and drying level effects on physicochemical and sensory parameters[J]. Meat Science,2009,83(3):390−397. doi: 10.1016/j.meatsci.2009.06.011

    [26] 李苗云, 张秋会, 柳艳霞, 等. 不同磷酸盐对肉品保水性的影响[J]. 河南农业大学学报,2008(4):439−442. [LI M Y, ZHANG Q H, LIU Y X, et al. Effect of phosphates on meat water-holding capacity[J]. Journal of Henan Agricultural University,2008(4):439−442.]

    LI M Y, ZHANG Q H, LIU Y X, et al. Effect of phosphates on meat water-holding capacity[J]. Journal of Henan Agricultural University, 2008(4): 439−442.

    [27] 朱晓龙. 磷酸盐在肉类加工中的应用及检测[J]. 肉类工业,2003(7):36−41. [ZHU X L. Application and detection of phosphate in meat processing[J]. Meat Industry,2003(7):36−41.]

    ZHU X L. Application and detection of phosphate in meat processing[J]. Meat Industry, 2003(7): 36−41.

    [28] 丁武, 寇莉萍, 任建. 不同磷酸盐对猪肌肉嫩度及保水性的影响[J]. 食品科学,2009,30(21):56−58. [DING W, KOU L P, REN J. Effect of polyphosphates on tenderness and water-holding capacity of pork muscles[J]. Food Science,2009,30(21):56−58.]

    DING W, KOU L P, REN J. Effect of polyphosphates on tenderness and water-holding capacity of pork muscles[J]. Food Science, 2009, 30(21): 56−58.

    [29] 乔晓铃, 张迎阳. 肉类工业面临新的磷酸盐问题[J]. 肉类研究,2004(4):36−38. [QIAO X L, ZHANG Y Y. The meat industry faces a new phosphate problem[J]. Meat Research,2004(4):36−38.]

    QIAO X L, ZHANG Y Y. The meat industry faces a new phosphate problem[J]. Meat Research, 2004(4): 36−38.

    [30]

    ŞEN Y, EVREN B. Utilization of yeast extract as a flavor enhancer and masking agent in sodium-reduced marinated shrimp[J]. Molecules,2023,29(1):182. doi: 10.3390/molecules29010182

    [31]

    LIU S X, ZHANG Y W, HARLINA P W, et al. Sensory characteristics of low sodium dry-cured beef and their relation to odor intensity and electronic nose signals[J]. International Journal of Food Properties,2020,23(1):116−126. doi: 10.1080/10942912.2019.1708927

    [32]

    LIU X, PIAO C X, JU M. Effects of low salt on lipid oxidation and hydrolysis, fatty acids composition and volatiles flavor compounds of dry-cured ham during ripening[J]. LWT-Food Science and Technology,2023,187:115347. doi: 10.1016/j.lwt.2023.115347

    [33]

    KREMER S, MOJET J, SHIMOJO R. Salt reduction in foods using naturally brewed soy sauce[J]. Journal of Food Science,2009,74(6):S255−S262.

    [34]

    DELGADO-PANDO G, ALLEN P, KERRY J P, et al. Optimising the acceptability of reduced-salt ham with flavourings using a mixture design[J]. Meat Science,2019,156:1−10. doi: 10.1016/j.meatsci.2019.05.010

    [35]

    VIDAL V A S, SANTANA J B, PAGLARINI C S, et al. Adding lysine and yeast extract improves sensory properties of low sodium salted meat[J]. Meat Science,2020,159:107911. doi: 10.1016/j.meatsci.2019.107911

    [36]

    CAMPAGNOL P C B, dos SANTOS B A, MORGANO M A, et al. Application of lysine, taurine, disodium inosinate and disodium guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl[J]. Meat Science,2011,87(3):239−243. doi: 10.1016/j.meatsci.2010.10.018

    [37]

    RIOS-MERA J D, SELANI M M, PATINHO I, et al. Modification of NaCl structure as a sodium reduction strategy in meat products:An overview[J]. Meat Science,2021,174:108417. doi: 10.1016/j.meatsci.2020.108417

    [38]

    SUN C X, ZHOU X L, HU Z N, et al. Food and salt structure design for salt reducing[J]. Innovative Food Science & Emerging Technologies,2021,67:102570.

    [39]

    VINITHA K, SETHUPATHY P, MOSES J A, et al. Conventional and emerging approaches for reducing dietary intake of salt[J]. Food Research International,2022,152:110933. doi: 10.1016/j.foodres.2021.110933

    [40]

    TUNIEVA E K, GORBUNOVA N A. Alternative methods of technological processing to reduce salt in meat products[J]. Theory and Practice of Meat Processing,2017,2(1):47−56. doi: 10.21323/2414-438X-2017-2-1-47-56

    [41]

    RIOS-MERA J D, SALDAÑA E, CRUZADO-BRAVO M L M, et al. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt[J]. Food Research International,2019,121:288−295. doi: 10.1016/j.foodres.2019.03.044

    [42]

    GALVÃO M T E L, MOURA D B, BARRETTO A C S, et al. Effects of micronized sodium chloride on the sensory profile and consumer acceptance of turkey ham with reduced sodium content[J]. Food Science and Technology,2014,34(1):189−194. doi: 10.1590/S0101-20612014005000009

    [43]

    ZHANG L L, QIAO Z Y, LIU S Q, et al. Particle size reduction technique for NaCl crystals as effective and applicable strategy for saltiness enhancement in solid foods[J]. LWT-Food Science and Technology,2023,191:115655.

    [44]

    HU Y Y, BADAR I H, LIU Y, et al. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides:A review[J]. Food Chemistry,2024,453:139664. doi: 10.1016/j.foodchem.2024.139664

    [45]

    TADA M, SHINODA I, OKAI H. L-Ornithyltaurine, a new salty peptide[J]. Journal of Agricultural and Food Chemistry,1984,32(5):992−996. doi: 10.1021/jf00125a009

    [46]

    LE B, YU B B, AMIN M S, et al. Salt taste receptors and associated salty/salt taste-enhancing peptides:A comprehensive review of structure and function[J]. Trends in Food Science & Technology,2022,129:657−666.

    [47]

    SCHINDLER A, DUNKEL A, STÄHLER F, et al. Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach[J]. Journal of Agricultural and Food Chemistry,2011,59(23):12578−12588. doi: 10.1021/jf2041593

    [48]

    WANG H Y, CHEN D, LU W J, et al. Novel salty peptides derived from bovine bone:Identification, taste characteristic, and salt-enhancing mechanism[J]. Food Chemistry,2024,447:139035. doi: 10.1016/j.foodchem.2024.139035

    [49] 王欣, 安灿, 陈美龄, 等. 酶水解哈氏仿对虾蛋白提高咸味的研究[J]. 中国调味品,2017,42(5):12−16. [WANG X, AN C, CHEN M L, et al. Enzymatic hydrolysis of Parapenaeopsis hardwickii (Miers) protein for enhancing saltiness[J]. China Condiment,2017,42(5):12−16.]

    WANG X, AN C, CHEN M L, et al. Enzymatic hydrolysis of Parapenaeopsis hardwickii (Miers) protein for enhancing saltiness[J]. China Condiment, 2017, 42(5): 12−16.

    [50] 严方. 豌豆蛋白美拉德肽制备及其呈味特性研究[D]. 无锡:江南大学, 2021. [YAN F. Preparation of pea protein Maillard peptides and their flavor characteristics[D]. Wuxi:Jiangnan University, 2021.]

    YAN F. Preparation of pea protein Maillard peptides and their flavor characteristics[D]. Wuxi: Jiangnan University, 2021.

    [51] 赵立, 曹雨欣, 宋子伟, 等. 咸味猪骨肽部分替代NaCl 对低盐香肠品质和风味的影响[J/OL]. 食品工业科技. 1−21. [2024-08-31]. https://doi.org/10.13386/j.issn1002-0306.2023120208. [ZHAO L, CAO Y X, SONG Z W, et al. Study on salt reduction of yeast extract and its application in broth powder[J/OL]. Science and Technology of Food Industry, 1−21. [2024-08-31]. https://doi.org/10.13386/j.issn1002-0306.2023120208.]

    ZHAO L, CAO Y X, SONG Z W, et al. Study on salt reduction of yeast extract and its application in broth powder[J/OL]. Science and Technology of Food Industry, 1−21. [2024-08-31]. https://doi.org/10.13386/j.issn1002-0306.2023120208.

    [52] 侯婷婷, 刘鑫, 崔福顺, 等. 低钠发酵肉制品理化特性及风味分析[J]. 食品与机械,2019,35(10):126−130,205. [HOU T T, LIU X, CUI F S, et al. Study on physicochemical property and flavor of fermented meat products with low sodium[J]. Food & Machinery,2019,35(10):126−130,205.]

    HOU T T, LIU X, CUI F S, et al. Study on physicochemical property and flavor of fermented meat products with low sodium[J]. Food & Machinery, 2019, 35(10): 126−130,205.

    [53]

    JIA S L, SHEN H R, WANG D, et al. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms:A comprehensive review[J]. Food Chemistry,2023,431:137142.

    [54]

    SALEENA P, JAYASHREE E, ANEES K. A comprehensive review on vacuum impregnation:Mechanism, applications and prospects[J]. Food and Bioprocess Technology,2023,17:1−14.

    [55]

    BAMPI M, DOMSCHKE N N, SCHMIDT F C, et al. Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts[J]. LWT-Food Science and Technology,2016,74:26−33. doi: 10.1016/j.lwt.2016.07.009

    [56]

    HAYES J E, KENNY T A, WARD P, et al. Development of a modified dry curing process for beef[J]. Meat Science,2007,77(3):314−323. doi: 10.1016/j.meatsci.2007.03.021

    [57]

    ZHANG R U, XING L J, KANG D C, et al. Effects of ultrasound-assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins[J]. Ultrasonics Sonochemistry,2021,74:105582. doi: 10.1016/j.ultsonch.2021.105582

    [58]

    MARRIOTT N G, GRAHAM P P, BOLING J W, et al. Vacuum tumbling of dry-cured hams[J]. Journal of Animal Science,1984,58(6):1376−1381. doi: 10.2527/jas1984.5861376x

    [59] 付浩华. 低盐腊肉加工工艺优化[J]. 肉类工业,2019(7):14−18,22. [FU H H. Optimization of processing technology for low-salt bacon[J]. Meat Industry,2019(7):14−18,22.]

    FU H H. Optimization of processing technology for low-salt bacon[J]. Meat Industry, 2019(7): 14−18,22.

    [60]

    JIANG F Y, ZHANG J, ZHANG R Y, et al. Effects of ultrasound-assisted vacuum tumbling on the flavor of spiced beef[J]. Food Bioscience,2024,58:103652. doi: 10.1016/j.fbio.2024.103652

    [61]

    LI Y, FENG T, SUN J X, et al. Physicochemical and microstructural attributes of marinated chicken breast influenced by breathing ultrasonic tumbling[J]. Ultrasonics Sonochemistry,2020,64:105022. doi: 10.1016/j.ultsonch.2020.105022

    [62]

    GÓMEZ-SALAZAR J A, GALVÁN-NAVARRO A, LORENZO J M, et al. Ultrasound effect on salt reduction in meat products:A review[J]. Current Opinion in Food Science,2021,38:71−78. doi: 10.1016/j.cofs.2020.10.030

    [63]

    PEREZ-SANTAESCOLASTICA C, FRAEYE I, BARBA F J, et al. Application of non-invasive technologies in dry-cured ham:An overview[J]. Trends in Food Science & Technology,2019,86:360−374.

    [64]

    INGUGLIA E S, GRANATO D, KERRY J P, et al. Ultrasound for meat processing:Effects of salt reduction and storage on meat quality parameters[J]. Applied Sciences,2020,11(1):117. doi: 10.3390/app11010117

    [65]

    BARRETTO T L, POLLONIO M A R, TELIS-ROMERO J, et al. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction[J]. Meat Science,2018,145:55−62. doi: 10.1016/j.meatsci.2018.05.023

    [66] 高子武, 吴丹璇, 王恒鹏, 等. 腌制方式对牛肉肌原纤维蛋白特性及水分分布的影响[J]. 食品与发酵工业,2021,47(24):179−186. [GAO Z W, WU D X, WANG H P, et al. Effects of curing process on myofibrillar protein characteristics and water distribution of beef[J]. Food and Fermentation Industries,2021,47(24):179−186.]

    GAO Z W, WU D X, WANG H P, et al. Effects of curing process on myofibrillar protein characteristics and water distribution of beef[J]. Food and Fermentation Industries, 2021, 47(24): 179−186.

    [67]

    PINGRET D, FABIANO-TIXIER A S, CHEMAT F. Degradation during application of ultrasound in food processing:A review[J]. Food Control,2013,31(2):593−606. doi: 10.1016/j.foodcont.2012.11.039

    [68]

    KANG D C, ZOU Y H, CHENG Y P, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry,2016,33:47−53. doi: 10.1016/j.ultsonch.2016.04.024

    [69]

    BOSSE R, MÜLLER A, GIBIS M, et al. Recent advances in cured raw ham manufacture[J]. Critical Reviews in Food Science and Nutrition,2018,58(4):610−630. doi: 10.1080/10408398.2016.1208634

    [70]

    PICOUET P A, SALA X, GARCIA-GIL N, et al. High pressure processing of dry-cured ham:Ultrastructural and molecular changes affecting sodium and water dynamics[J]. Innovative Food Science & Emerging Technologies,2012,16:335−340.

    [71]

    ZHOU Y, WATKINS P, OISETH S, et al. High pressure processing improves the sensory quality of sodium-reduced chicken sausage formulated with three anion types of potassium salt[J]. Food Control,2021,126:108008. doi: 10.1016/j.foodcont.2021.108008

    [72]

    BOLUMAR T, ORLIEN V, SIKES A, et al. High-pressure processing of meat:Molecular impacts and industrial applications[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):332−368. doi: 10.1111/1541-4337.12670

    [73]

    FULLADOSA E, SALA X, GOU P, et al. K-lactate and high pressure effects on the safety and quality of restructured hams[J]. Meat Science,2012,91(1):56−61. doi: 10.1016/j.meatsci.2011.12.006

    [74]

    NUYGEN M, ARVAJ L, BALAMURUGAN S. The use of high pressure processing to compensate for the effects of salt reduction in ready-to-eat meat products[J]. Critical Reviews in Food Science and Nutrition,2024,64(9):2533−2547. doi: 10.1080/10408398.2022.2124398

    [75]

    CLARIANA M, GUERRERO L, SÁRRAGA C, et al. Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period[J]. Innovative Food Science & Emerging Technologies,2011,12(4):456−465.

    [76]

    BHAT Z F, MORTON J D, MASON S L, et al. Current and future prospects for the use of pulsed electric field in the meat industry[J]. Critical Reviews in Food Science and Nutrition,2019,59(10):1660−1674. doi: 10.1080/10408398.2018.1425825

    [77]

    ZHANG Y, WANG R, WEN Q H, et al. Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process[J]. Innovative Food Science & Emerging Technologies,2022,80:103061.

    [78]

    DONG Z Q, LI X F, LIU Z, et al. Pulsed electric field using the needle–needle electrodes for improving the salt diffusion of pork brine salting[J]. Journal of Food Science,2023,88(5):2023−2035. doi: 10.1111/1750-3841.16528

    [79]

    GUO Y C, HAN M Y, CHEN L, et al. Pulsed electric field:A novel processing technology for meat quality enhancing[J]. Food Bioscience,2024,58:103645. doi: 10.1016/j.fbio.2024.103645

    [80]

    JEONG S H, KIM E C, LEE D U. The impact of a consecutive process of pulsed electric field, sous-vide cooking, and reheating on the properties of beef semitendinosus muscle[J] Foods, 2020, 9(11):1674.

    [81]

    KHAN A A, RANDHAWA M A, CARNE A, et al. Effect of low and high pulsed electric field on the quality and nutritional minerals in cold boned beef M. longissimus et lumborum[J]. Innovative Food Science & Emerging Technologies,2017,41:135−143.

    [82]

    SAULIS G. Electroporation of cell membranes:The fundamental effects of pulsed electric fields in food processing[J]. Food Engineering Reviews,2010,2:52−73. doi: 10.1007/s12393-010-9023-3

    [83]

    O'DOWD L P, ARIMI J M, NOCI F, et al. An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle[J]. Meat Science,2013,93(2):303−309. doi: 10.1016/j.meatsci.2012.09.010

    [84]

    GONG X H, WAN J, ZHOU Y, et al. Mediated curing strategy:An overview of salt reduction for dry-cured meat products[J]. Food Reviews International,2023,39(7):4565−4580. doi: 10.1080/87559129.2022.2029478

    [85]

    CHEN D, ZHU Q J, ZHOU Y, et al. Simulation study of xylitol-mediated effect on NaCl diffusion behavior in cured pork tenderloin[J]. Foods,2023,12(7):1451. doi: 10.3390/foods12071451

    [86]

    DIMAKOPOULOU-PAPAZOGLOU D, KATSANIDIS E. Diffusion coefficients and volume changes of beef meat during osmotic dehydration in binary and ternary solutions[J]. Food and Bioproducts Processing,2019,116:10−19. doi: 10.1016/j.fbp.2019.04.007

    [87]

    CHEN C, LI W Z, SONG Y C, et al. Concentration dependence of water self-diffusion coefficients in dilute glycerol–water binary and glycerol–water–sodium chloride ternary solutions and the insights from hydrogen bonds[J]. Molecular Physics,2012,110(5):283−291. doi: 10.1080/00268976.2011.641602

    [88] 刘春丽. 新型腌制对发酵里脊火腿品质影响及蛋白质组学的研究[D]. 贵阳:贵州大学, 2020. [LIU C L. Effect of new curing on quality and proteomics of fermented loin ham[D]. Guiyang:Guizhou University, 2020.]

    LIU C L. Effect of new curing on quality and proteomics of fermented loin ham[D]. Guiyang: Guizhou University, 2020.

    [89]

    GU S, ZHU Q J, ZHOU Y, et al. Effect of ultrasound combined with glycerol-mediated low-sodium curing on the quality and protein structure of pork tenderloin[J]. Foods,2022,11(23):3798. doi: 10.3390/foods11233798

    [90]

    LIU L G, ZHOU Y, WAN J, et al. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin:On the basis of molecular docking[J]. Food Chemistry:X,2022,15:100401.

图(4)  /  表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  31
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 网络出版日期:  2025-02-28
  • 刊出日期:  2025-04-30

目录

/

返回文章
返回
x 关闭 永久关闭