Research Progress on Microbial Diversity and Its Functional Activities during Pile Fermentation of Dark Tea
-
摘要: 黑茶是一种具有独特感官特征的后发酵茶。黑茶一般采用鲜叶制成的毛茶作为原料,通常由杀青、揉捻、渥堆发酵和干燥四步完成。渥堆发酵是黑茶加工的关键工序,以湿热作用为基础,利用微生物新陈代谢产生胞外酶,促进黑茶内含成分转化,形成独特的风味。本文对主要参与黑茶发酵中的微生物进行了归纳,总结了微生物对黑茶中多酚类物质、游离氨基酸、生物碱类、茶褐素和挥发性成分的影响。此外还探究了黑茶的抗氧化、胃肠道保护、降血糖血脂等功能活性。研究结果将为今后黑茶的加工生产以及更好地利用黑茶中活性成分提供帮助。Abstract: Dark tea is a type of post-fermented tea with unique sensory characteristics. The tea product is usually obtained in the four steps, namely fixation, rolling, pile fermentation, and drying. Pile fermentation, a key stage in dark tea processing, utilizes microbial metabolism to produce extracellular enzymes under the stimulation of moist heat. The enzyme activities modify the chemical components of the tea, thereby producing a dark tea with a distinct flavor. The present paper summarizes the types of microbes primarily involved in dark tea fermentation and their influences on polyphenols, free amino acids, alkaloids, theabrownins, and volatile components present in the dark tea. Besides, the functional activities of dark tea, including its antioxidant, gastroprotective, hypoglycemic, and hypolipidemic activities are also investigated. The results can aid in the optimization of dark tea processing and production and promote better utilization of the active components of dark tea.
-
Keywords:
- dark tea /
- processing technology /
- pile fermentation /
- microbial diversity /
- functional activity
-
茶是世界上最受欢迎的饮料之一,根据发酵程度的不同,茶可分为绿茶(未发酵)、白茶和黄茶(轻发酵)、乌龙茶(半发酵)、红茶(发酵)和黑茶(后发酵)六类[1]。其中,黑茶是中国特有的茶类,根据生产工序、原料和产地的不同,黑茶可分为普洱茶、青砖茶、六堡茶、茯砖茶和四川黑茶(又称藏茶)等[2]。黑茶口感醇厚、香气馥郁,适宜的储存环境和贮藏期的延长能够提升黑茶的风味品质。黑茶加工工艺较其他茶类稍显特殊,其关键步骤是渥堆发酵[3]。渥堆发酵又称微生物发酵或固态发酵,有了微生物的参与,黑茶被赋予独特的风味,其中的主要化合物如茶多酚、儿茶素、类黄酮、氨基酸和咖啡碱等含量也会受微生物及其代谢酶的作用而发生变化[4]。大量研究证明,黑茶提取物或其提纯的化合物具有显著的生物功能和健康益处[2,5−7]。
近年来,黑茶越来越受到人们的关注。发酵过程中微生物对黑茶中活性成分的转变或黑茶中活性成分含量的变化都会影响黑茶的功能活性。目前,由于对黑茶中微生物及其对活性物质的影响研究较少,所以了解渥堆发酵中微生物多样性及其对活性物质的影响,不仅能对黑茶的功能活性更加了解,还能为更好地利用黑茶作为饮料或功能性成分来预防和治疗某些疾病提供最新的科学依据。本文就黑茶的加工方式、功能活性成分、渥堆发酵过程中的主要微生物及微生物对活性成分的转化和黑茶的功能活性进行综述,以期为今后黑茶的加工生产以及更好地利用黑茶中活性成分提供理论依据。
1. 黑茶的加工工艺
1.1 黑茶的制备过程
加工过程对黑茶的质量有直接影响,黑茶一般以鲜叶制成的毛茶作为原料,通常由杀青、揉捻、渥堆发酵和干燥四步完成[8]。不同黑茶的杀青时间、揉捻程度,以及渥堆发酵的湿度、温度和时间等条件存在差异。
青砖茶和普洱茶均是将大种鲜叶制成青毛茶作为后发酵原料,经过渥堆发酵、精制、压制、干燥制成黑茶[9−10]。而六堡茶、茯砖茶和四川黑茶均是将鲜叶经过杀青、初揉后进行渥堆或堆闷制成黑毛茶,再以干燥后的黑毛茶为原料,进行“发花”或者渥堆、压制、干燥制成黑茶[11−13](图1)。在加工过程中微生物发酵是黑茶形成的关键,将茶叶控制在不同的温度和湿度条件下进行堆积,使微生物最大限度地繁殖,在酶和微生物的共同作用下,形成具有不同特征的黑茶。通常,原料在45~65 ℃,含水量为30%~35%的环境下进行微生物发酵40~60 d生产普洱茶;原料在25%~35%的含水量下,低于70 ℃进行微生物发酵15~35 d生产青砖茶;原料在40~55 ℃,含水量25%~30%下微生物发酵15~30 d生产六堡茶;原料在30 ℃,含水量22%~30%下微生物发酵10~13 d生产茯砖茶[14];原料在55 ℃,含水量22%~36%下微生物发酵14~16 d生产四川黑茶[13]。
1.2 黑茶渥堆发酵中的微生物
在渥堆发酵过程中,黑茶在湿热条件下会产生大量微生物,在微生物分泌的多酚氧化酶、过氧化物酶等胞外酶和微生物自身代谢的作用下,形成了黑茶独特的风味[15−17]。
在不同黑茶渥堆过程中发挥主要作用的真菌和细菌存在差异[18](表1)。真菌能够分泌大量的酶,如多酚氧化酶、淀粉酶等分解茶叶中的纤维素和淀粉等复杂的碳水化合物,而细菌主要参与了茶叶中其他碳水化合物和氮化合物的分解过程,产生有机酸和氨基酸等代谢产物,影响茶叶的风味和品质[19]。研究表明,曲霉属(Aspergillus)、假丝酵母菌属(Candida)、德巴利酵母属(Debaryomyces)、散囊菌属(Eurotium)、青霉菌属(Penicillium)、横梗霉属(Lichtheimia)是黑茶渥堆发酵中主要的真菌属;而芽孢杆菌属(Bacillus)、克雷伯氏菌属(Klebsiella)、乳杆菌属(Lactobacillus)和乳球菌属(Lactococcus)是渥堆发酵中主要的细菌属,多种微生物参与了黑茶主要品质成分的形成。例如,在普洱茶中,优势真菌群有酵母菌属(Saccharomycetes)、芽生葡萄孢酵母属(Blastobotrys)、曲霉属和青霉属,而优势细菌群落包括变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和厚壁菌门(Firmicutes),其中曲霉菌属和芽生葡萄孢酵母属在普洱茶真菌属中占主导地位[20]。此外,普洱茶中真菌属变化多样,Wang等[21]从普洱茶微生物发酵过程中分离出6种微生物10株,分离物分别为塔宾曲霉(Aspergillus tubingensis)、马瓦诺曲霉(Aspergillus marvanovae)、微小根毛霉(Rhizomucor pusillus)、肿梗根毛霉(Rhizomucor tauricus)、烟曲霉(Aspergillus fumigatus)和莫托假丝酵母(Candida mogii),其中马瓦诺曲霉和莫托假丝酵母是首次在普洱茶渥堆发酵中被发现,其他的微生物均在普洱茶发酵中报道过。
表 1 黑茶发酵中的主要微生物Table 1. Main microorganisms in fermentation of dark tea在青砖茶中,克雷伯菌属(Klebsiella)、类芽孢杆菌属(Paenibacillus)、科恩氏菌(Cohnella)和泛菌属(Pantoea)被认为是青砖茶发酵的主要细菌属,曲霉属和塞柏林德纳氏酵母(Cyberlindnera)是青砖茶发酵的主要真菌属。在发酵过程中大多数细菌和真菌起到协同作用[22−23]。有研究发现,温度对青砖茶中微生物有较深影响,微生物的丰富度随发酵温度的升高而降低,尽管微生物及其代谢类型在不同温度下存在差异,但大多数细菌和真菌在属水平上表现出正相关[24]。
在茯砖茶中,化学成分代谢相关的核心功能属,分别为散囊菌属、德巴利酵母属和曲霉属三个真菌属,克雷伯氏菌属、乳球菌属和芽孢杆菌属三个细菌属,同时,假丝酵母菌属、青霉属和假单胞菌属(Pseudomonas)在茯砖茶中也发挥着不可或缺的作用[5]。其中,散囊菌属(黄色闭合的铕孢子)又称“金花”发挥着重要作用,在茯砖茶中冠突散囊菌(Eurotium cristatum)是主要的散囊菌,其分泌多酚氧化酶、果胶酶和纤维素酶等,有助于茯砖茶的品质和功能活性[23]。尽管真菌群落被认为比细菌群落对茯砖茶发酵中的特征成分做出更大的贡献,但细菌的作用不应被忽视。研究发现克雷伯菌属在茯砖茶发酵的初始阶段占主导地位,而假单胞菌属、乳球菌属、芽孢杆菌、肠球菌属(Enterococcus)和寡养单胞菌属(Stenotrophomonas)在发酵后期和末期发挥主要作用[24]。
在六堡茶中,优势微生物在发酵前期为鞘氨醇单胞菌属(Sphingomonas)、甲基杆菌属(Methylobacterium)、金黄杆菌属(Chryseobacterium)、曲霉属、枝孢菌属(Cladosporium)、青霉属和芽生葡萄孢酵母属,发酵后期为葡萄球菌属(Staphylococcus)、短状杆菌属(Brachybacterium)、考克氏菌属(Kocuria)、芽生葡萄孢酵母属和曲霉属[25]。这些微生物与六堡茶中茶多糖、儿茶素、类黄酮和咖啡因的转变显著相关,在六堡茶品质形成中起着重要作用[25]。
在四川黑茶中,主要参与发酵的优势微生物以细菌为主,Yan等[26]在四川黑茶32 d发酵过程中定期测定细菌群落,结果表明假单胞菌属和肠杆菌属(Enterobacteriaceae)在第0、8、16和24 d表现出较高的丰度,芽孢杆菌属、考克氏菌属和乳杆菌属在第32 d的丰度更高,而双歧杆菌属(Bifidobacterium)、糖多孢菌属(Saccharopolyspora)和葡萄球菌属等也存在于黑茶发酵的不同阶段。其中芽孢杆菌属、乳杆菌属和糖多孢菌属与黑茶中黄酮含量显著相关[26]。
综上所述,由于加工工艺及渥堆发酵的条件不同,每种黑茶中发挥主要作用的微生物各不相同。此外,真菌和细菌的菌属种类对黑茶发酵起着至关重要的作用,在不同黑茶的微生物发酵过程中均含有其各自特色的菌种,从而形成了不同的黑茶风味。
2. 微生物对黑茶活性成分的影响
2.1 多酚类
与其他茶类相比,黑茶中总多酚含量仅为10%左右[33]。茶叶中儿茶素是茶多酚的主要成分,在黑茶中儿茶素主要分为酯型儿茶素和非酯型儿茶素。其中酯型儿茶素有表没食子儿茶素没食子酸酯(Epigallocatechin gallate,EGCG)和表儿茶素没食子酸酯(Epigallocatechin,ECG);非酯型儿茶素有表没食子儿茶素(Epigallocatechin,EGC)、表儿茶素(Epicatechin,EC)[34]。有研究对不同黑茶中儿茶素含量检测发现,在渥堆发酵55 d后,黑茶中没食子儿茶素没食子酸酯(Gallocatechin gallate,GCG)、儿茶素没食子酸酯(Catechin gallate,CG)、没食子儿茶素(Gallocatechin,GC)含量已非常低[35]。黑茶中其他多酚类物质主要为黄酮醇苷类物质,包括槲皮素苷、杨梅素苷及山奈酚苷等,渥堆发酵后槲皮素-3-葡萄糖苷显著增加,而黄酮醇苷类总量不断下降[35]。
有研究发现,渥堆发酵过程中真菌会分泌出大量的酶,促进黑茶中多酚类物质转变或氧化聚合,例如茯砖茶在“发花”过程中,冠突散囊菌分泌水解酶将酯型儿茶素分解成没食子酸(Gallic acid,GA)和非酯型儿茶素后,继续被大量微生物释放的胞外酶所氧化分解成简单的酚类[36]。同时,在普洱茶渥堆发酵过程中,有学者发现曲霉属中的Aspergillus pallidofulvus和Aspergillus sesamicola有助于GA和几种类黄酮的积累[37](图2)。此外,黑曲霉(Aspergillus niger)也会促进EGCG转化为ECG和GA,黑曲霉对EGCG的生物转化可以提高生物利用度并保持原始的DPPH活性[38]。微生物发酵后,黑茶中EGCG和ECG显著减少,EGC和EC显著增加,儿茶素含量的转变可能有助于减少茶的苦味和涩味[39]。最近,有研究从渥堆过程中分离出4种新的B环裂变的儿茶素[40]。
2.2 游离氨基酸
游离氨基酸是茶叶中的重要成分,对茶的香气和口感起着至关重要的作用。研究表明,茶氨酸是赋予绿茶鲜味的主要化合物,而黑茶渥堆发酵后茶氨酸含量急剧下降,总体游离氨基酸的含量显著降低[41−42]。在黑茶发酵过程中,游离氨基酸参与美拉德反应或者一些酶将氨基酸转化为挥发性醛类物质,从而促进茶叶风味和色泽[43]。氨基酸是微生物渥堆发酵中重要的氮源,有研究发现真菌中的塞柏林德纳氏酵母、曲霉属和和细菌中的克雷伯菌属,它们可能与渥堆发酵中碳氮代谢有关[44]。此外,寡养单胞菌属在发酵过程中会产生谷氨酰胺酶,从而降解肽和氨基酸,与黑茶发酵后的独特感官特征密切相关[45]。Zhu等[46]通过高效液相色谱法测定普洱茶渥堆发酵中游离氨基酸的含量变化发现,发酵49 d后,茶氨酸、色氨酸和缬氨酸含量分别降低了94.58%、20.54%和37.93%,丙氨酸、精氨酸和异亮氨酸含量随着发酵程度的增加而显著增加,而其他一些氨基酸如天冬氨酸、谷氨酸、酪氨酸和甲硫氨酸的含量没有显著变化,且在发酵过程中未检测到天冬酰胺。氨基酸含量的差异和变化也影响着黑茶的风味,例如丙氨酸和精氨酸有助于甜味的形成[47]。
2.3 生物碱类
茶是嘌呤类生物碱的重要来源,而咖啡碱是黑茶中含量最多的生物碱[33]。据报道,咖啡碱的含量会随加工工艺的不同而有所区别[48]。在细菌降解咖啡碱的代谢中,假单胞菌发挥了重要作用,主要以脱甲基的方式实现咖啡碱的降解[49]。与细菌相比,真菌对咖啡碱影响的研究甚少,有学者从普洱茶中分离到的聚多曲霉(Aspergillus sydowii)(散囊菌的一种)可降解普洱茶中的咖啡碱,且具有将咖啡碱转化为茶碱的能力(图3)[50−51]。在发酵过程中接种了聚多曲霉后发现,咖啡碱含量降低83.89%,可可碱增加4.15%,茶碱显著增加为原料的57倍以上,且发现茶碱、3-甲基黄嘌呤、1,7-二甲基黄嘌呤、7-甲基黄嘌呤的含量随咖啡碱的降解而增加,茶碱主要来源于咖啡碱的降解[51]。虽然有能降解咖啡碱功能的菌株被发现,但真菌降解咖啡碱相关酶方面的研究还很薄弱,今后对真菌降解咖啡碱的相关酶进行解析具有重要意义。
2.4 茶褐素
茶褐素是黑茶中的主要色素,是茶叶中的多酚类物质尤其是儿茶素在多酚氧化酶的催化作用下逐渐氧化聚合而成[52]。研究发现茶褐素是由酚酸、酯、蛋白质和多糖组成,主要来源于发酵过程中黄烷-3-醇及其没食子酸盐的氧化[21]。渥堆发酵过程中真菌所产生的多酚氧化酶会促使多酚类物质逐渐氧化聚合成茶黄素,茶黄素继而与双黄烷醇发生偶联反应生成茶红素,最后氧化形成茶褐素[52]。有研究者提出,在渥堆发酵过程中接种优势菌株有助于茶叶中色素的形成。例如,塔宾曲霉和其他丝状真菌释放的过氧化物酶、多酚氧化酶等酶会促进多酚的氧化[53]。田燕华[54]通过对不同菌种对茶褐素发酵效率进行比较,发现烟曲霉对茶褐素形成的影响最大。同时,与传统渥堆发酵相比,烟曲霉和黑曲霉接种后所得的茶褐素含量更高,并且缩短了发酵时间。此外,有学者以茶叶加工过程中绿茶残次品研磨成碎末作为原料,在其中接种黑曲霉进行渥堆发酵,并采用响应面优化工艺,结果发现茶褐素含量为29.07%[55]。微生物的加入显著促进了黑茶中多酚类物质氧化,有助于色素的堆积,影响黑茶茶汤的色泽,这为后期从茶叶中富集茶褐素提供了新的选择。
2.5 挥发性成分
香气是鉴别黑茶风味品质重要的指标之一。黑茶中的挥发性物质主要有酯类、醛类、醇类、酮类、酸类和甲氧基酚类化合物等。与其他茶类相比,黑茶独特的微生物发酵过程使其具有完全不同的挥发性物质,一系列研究对黑茶发酵过程中挥发性物质的变化进行了表征。
酵母菌和黑曲霉会促进发酵过程中更多醇类的形成,例如芳樟醇及其氧化物、苯乙醇、松香醇和其他醇类物质,形成独特的花香和果香,此外,雪松醇、番红醛、3,5-辛二烯-2-酮和癸醛等物质也为黑茶中的花果香贡献者[56]。普洱茶在发酵过程中曲霉是催化芳樟醇和芳樟醇氧化物合成的主要来源。而且,茯砖茶中的冠突散囊菌所分泌的胞外酶也可催化芳樟醇的形成。据报道在速溶绿茶、传统绿茶或他茶制品中加入黑曲霉也能调节其香气的形成[57]。根霉参与催化甲氧基酚类化合物和β-紫罗兰酮等物质的形成,促进木质香气的形成,可以有效地改善黑茶的陈味,赋予黑茶醇厚的香气[57]。此外,芽孢杆菌也参与普洱茶和茯砖茶中风味物质的代谢合成,在接种枯草芽孢杆菌的茯砖茶中鉴定出45种挥发性有机化合物,主要由酮类、碳氢化合物、醛类和醇类组成。这些化合物的含量在发酵过程中显著增加,特别是在发酵后期,枯草芽孢杆菌发酵增强了黑茶中花香、果香和木香的强度[58]。
有研究发现,黑茶中存在的“金花菌”(散囊菌属)形成了独特的“菌花”香气[25]。例如,在发酵过程中,茯砖茶中所含有的冠突散囊菌和六堡茶中含有的阿姆斯特丹散囊菌都会随发酵时间增加,其中醛类、酮类化合物不断增加,此时“菌花”香气也随之增加[23,30]。
3. 黑茶的功能活性
黑茶具有诸多功能活性和健康益处(图4),据报道,每天饮用三杯发酵茶可分别降低冠心病和糖尿病的风险8.16%和12.77%[59]。有研究发现,一些黑茶比其他类型的茶具有更强的生理功能。例如,在六大茶类中,黑茶在小鼠体内具有最强的抗氧化活性和保肝活性[60]。因此,以下对黑茶的主要功能活性进行了简要的总结和讨论。
3.1 抗氧化
黑茶具有很强的抗氧化活性,不同黑茶的抗氧化活性不同。有许多研究采用1,1-二苯基 1-2-苦基-肼测定法(DPPH)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐测定法(ABTS)等对黑茶提取物进行体外抗氧化测定。研究发现,黑茶的抗氧化活性与EGCG、GCG和ECG水平呈正相关,并且黑茶中总黄酮和茶褐素的含量与使用细胞对抗氧化活性测定的值密切相关[61]。Lv等[33]通过DPPH法测定普洱茶、茯砖茶和六堡茶的抗氧化活性,发现普洱茶对DPPH自由基清除能力最强,清除率为87.83%±4.38%,其次为茯砖茶和六堡茶,清除率分别为87.60%±5.39%和82.31%±3.10%,结果表明不同黑茶具有不同的抗氧化活性,且活性差异显著。此外,有研究发现黑茶的体内抗氧化活性强于绿茶,与体外抗氧化结果相反[60],这可能与不同茶中的活性成分在体内的生物利用度有关。
针对黑茶在动物和细胞试验中的抗氧化活性研究,可得到以下结论。青砖茶水提物可使谷氨酸钠诱导的小鼠骨骼肌中的丙二醛(Malondialdehyde,MDA)、活性氧(Reactive oxygen species,ROS)和蛋白羰基化水平降低,超氧化物歧化酶(Superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(Glutathione peroxidase,GSH-Px)、过氧化氢酶(Catalase,CAT)和谷胱甘肽还原酶(Glutathione reductase,GR)等抗氧化酶活性增加,上调骨骼肌中的Nrf2信号通路和下游抗氧化因子[62]。普洱茶灌胃SD大鼠8周后,大鼠的血清、肝、肾和脑中的MDA含量降低,而GSH-Px活力、CAT活力和抑制羟自由基能力均得到增强[63]。茯砖茶多糖可保护小鼠中PC12细胞免受H2O2氧化所诱导的损伤,对PC12细胞有明显的保护作用[64]。在正常细胞代谢过程中产生的ROS会损害细胞,有研究用浓度为1.25~6.25 mg/mL的普洱茶处理人体癌细胞(HEp2、Caco2、Hep G2细胞系),发现随着普洱茶浓度的增加,其对人体癌细胞内ROS清除的能力也越强。若促进人体癌细胞内的ROS的产生,可能有助于增强ROS对癌细胞的破坏作用,从而发挥抗癌特性[65]。
3.2 胃肠道保护
黑茶提取物可促进有益菌的增殖,抑制有害菌的生长,来改善肠道菌群从而达到保护胃肠道的作用。
短链脂肪酸是由肠道微生物从难以消化的碳水化合物中产生的,它们在维持肠道功能和人类健康方面起着关键作用[66]。有研究表明,黑茶多糖发酵过程中短链脂肪酸的产生与肠道微生物相关,体外发酵结果证实了可以利用黑茶多糖产生短链脂肪酸,此外黑茶多糖还具有促进普雷沃氏菌属(Prevotella)、双歧杆菌属等有益菌的生长的能力[6]。随着研究进一步深入,从茯砖茶中提取的多糖经纯化后进行体外发酵评估,发酵后纯化的多糖分子量和碳水化合物的含量显著降低,表明其可被肠道菌群所利用,此外拟杆菌门(Bacteroidetes)、巨球型菌属(Megasphaera)和普雷沃氏菌属的相对丰度显著提高,与前人研究结果一致[67]。
普洱茶提取物对胃肠道有一定调节作用,如Hu等[68]用10 mg/kg/d普洱茶提取物处理3.5%葡聚糖硫酸钠诱导的结肠炎小鼠,一周后观察小鼠发现,普洱茶提取物的摄入可抑制肠道氧化应激介导的炎症通路,上调肠道紧密连接蛋白的表达,促进巨噬细胞的极化,起到维护肠道屏障的作用。同时,普洱茶提取物对肠道中微生物活性有一定影响,如抑制病原菌和平衡微生物菌落结构[69]。Zhou等[37]发现在胃肠道中可以通过提高乳酸菌科(Lactobacillaceae)、肠杆菌科(Enterobacteriaceae)、毛螺球菌科(Lachnospiraceae)和理研菌科(Rikenellaceae)等有益菌的丰度,减少苏黎世杆菌属(Turicibacter)和罗氏菌属(Rothia)等有害菌的丰度来维持肠道稳态。
总之,黑茶提取物可通过促进有益微生物的生长和活性,从而改善肠道健康降低疾病风险,可作为预防疾病的潜在益生元食品。
3.3 降血脂
微生物发酵会显著影响黑茶的降血脂作用,有研究发现,普洱茶在降血脂方面甚至比绿茶更有效,有助于降低心血管疾病风险[70]。
体外动物模型、细胞试验和临床实验等研究证实了黑茶在减少体重增加和脂肪堆积方面的作用。许多学者对茯砖茶(Fuzhuan brick tea,FBT)提取物进行了体外动物模型和细胞试验,研究表明将FBT提取物作用在高脂饮食诱导的肥胖小鼠中,发现喂养FBT提取物的小鼠的血清脂质标志物和炎症细胞因子水平明显降低。此外,FBT提取物还可通过上调棕色脂肪细胞特异性基因的表达来增强能量消耗并促进皮下脂肪组织的褐变,从而防止体重增加[71]。另外,在FBT提取物降血脂的研究中以C2C12细胞为研究对象,FBT提取物通过调节C2C12细胞的线粒体功能的功能障碍,同样能达到降低机体血脂的功效[7]。
而其他黑茶中的活性物质对降血脂也有着重要作用。六堡茶茶多糖(Liupao tea polysaccharide,LTPS)已被证实具有良好的胆固醇结合能力,Mao等[72]评估了高脂肪饮食诱导的高血脂症大鼠口服LTPS对其脂质代谢的影响,观察摄入LTPS四周后的小鼠,发现LTPS以剂量依赖性方式显著改善了高脂饮食诱导的高脂血症大鼠的脂质谱、脂质氧化和抗氧化酶活性,并引起胆汁酸浓度的显著增加,显示出良好的胆固醇结合能力。另外还有研究发现,将普洱茶提取物作用于利用油酸诱导的秀丽隐杆线虫,普洱茶提取物能够调节由油酸诱导的秀丽隐杆线虫全身脂肪沉积,有效抑制脂肪积累,普洱茶提取物还调节了线虫异常的运动能力,这表明其对线虫的整体健康状态有积极影响[73]。多酚类物质氧化聚合形成的产物例如茶褐素在降血脂方面有着显著作用,其主要通过以下几种方式降低血脂水平,有效抑制肥胖。首先,Xiao等[74]评价了茶褐素及其不同分子量组分在体内的降血脂活性,发现茶褐素与胆汁酸结合,通过抑制肠道脂质吸收来减轻高脂血症,同时抑制胰脂肪酶和胆固醇酯酶的酶活性,显著降低了斑马鱼高血脂症的血脂水平。其次,茶褐素可通过增强环磷酸腺苷水平来激活昼夜节律、蛋白激酶A、单磷酸腺苷活化蛋白激酶和胰岛素信号通路,从而改善大鼠代谢综合征,有效预防肥胖[75]。最后,茶褐素还可增加回肠共轭胆汁酸的水平,进而抑制肠道FXR-FGF15信号通路,导致粪便排泄增加,肝胆固醇降低,脂肪生成减少[76]。
总的来说,这些研究表明,黑茶提取物或成分具有降血脂作用,其机制与调节脂质代谢、改善肥胖相关炎症和调节肠道微生物群有关。
3.4 降血糖
当空腹血糖水平高于5.6 mmol/L或餐后2 h高于7.8 mmol/L时就会引发高血糖,是糖尿病的主要症状之一[77]。有研究表明,高血糖常伴有SOD、MDA和GSH-Px血清水平的变化[78]。糖尿病及其相关的代谢紊乱是世界性的问题,许多研究表明,肠道菌群结构组成的变化与宿主的生理和病理过程密切相关。
一系列研究揭示了黑茶通过减轻肥胖动物胰岛素抵抗而发挥了对糖尿病的抵抗作用。据报道,在高脂饮食诱导的肥胖小鼠中,茯砖茶水提物通过刺激胰岛素信号通路中的蛋白激酶B/葡萄糖转运蛋白4(AKT/GLUT4)、叉头框蛋白O1(FoxO1)和雷帕霉素靶蛋白/核糖体蛋白S6激酶1(mTOR/S6K1)以及抑制骨骼肌中信号调节蛋白(SIRP-α)的表达来减轻胰岛素抵抗[79]。此外,茯砖茶提取物还可通过调节糖原合成和葡萄糖的吸收、刺激糖酵解和调控降糖相关蛋白和mRNA的表达来达到降血糖的效果[80]。Zhu等[81]探究了六堡茶(Liupao tea,LBT)提取物对代谢紊乱和肠道菌群失调的高血糖小鼠的影响,结果发现LBT提取物可通过激活PI3K/Akt通路缓解胰岛素的抵抗,改善高血糖引起的代谢紊乱,对肠道微生物测序结果显示,LBT提取物处理增加了有益菌的丰度,降低了有害或条件致病菌的丰度。同时,高剂量LBT提取物的降血糖效果与二甲双胍相当,且可增加拟杆菌门/厚壁菌门的比例和上调产生短链脂肪酸的细菌丰度等,在调节糖尿病诱导的肠道菌群紊乱方面表现出有益的作用[82]。有结果表明,青砖茶提取物通过刺激AKT信号和上调谷氨酸钠诱导的肥胖小鼠骨骼肌中葡萄糖转运蛋白(GLUT4)的蛋白水平来帮助胰岛素信号传导[83]。
总之,黑茶提取物或成分表现出显著的抗糖尿病活性,可通过降低血糖水平和减轻胰岛素抵抗来实现,这表明黑茶可以成为预防和控制糖尿病的功能性食品成分的良好来源。
3.5 抗癌
黑茶及其提取物在体外具有抗癌活性。黑茶多糖DTP-1是从湖南安化黑茶中经DEAE-纤维素柱和葡聚糖凝胶柱纯化后,得到的一种新型黑茶多糖,研究发现DTP-1能有效抑制癌细胞增殖,诱导细胞凋亡,同时它几乎不影响正常细胞的代谢[84]。普洱茶中所提取的七种挥发性单体物质(1,2,3-三甲氧基苯、1,2,4-三甲氧基苯、1,2-二甲氧基苯、β-紫罗酮、α-松油醇、叶绿醇和植酮)对人结肠癌细胞HCT116、人肝癌细胞HepG2和人乳腺癌细胞MDA-MB-231的增殖均具有抑制作用,尤其是β-紫罗酮对三种癌细胞均表现出较强的抗癌活性[85]。进一步研究发现,普洱茶水提物可通过刺激细胞周期阻塞、S期细胞积累和诱导细胞凋亡对人乳腺癌细胞MDA-MB-231的增殖产生抑制作用,且这种抑制作用具有剂量依赖性[86]。余婕等[87]用青砖茶水提物干预牛血清诱导的HepG2细胞,发现当青砖茶水提物的质量浓度大于240 μg/mL时,对HepG2细胞的增殖具有明显的抑制作用。总之,黑茶及其提取物能够抑制癌细胞的增殖和诱导细胞凋亡,具有较强的抗癌活性。
3.6 抗炎
炎症的发生、发展与很多疾病的形成有着十分密切的关系,许多研究在动物模型和细胞试验中探讨了黑茶发挥抗炎活性的重要作用。黄祥祥等[88]建立葡聚糖硫酸钠诱导溃疡性结肠炎小鼠模型,在灌喂不同剂量的茯砖茶后,发现小鼠血清中IL-6、IL-8、IL-1β、TNF-α、IFN-γ等炎性因子的水平显著降低,且Janus激酶2/信号转导及转录激活因子3(JAK2/STAT3)炎性信号通路被抑制,表明茯砖茶可通过抑制炎性信号通路和降低炎性因子来改善小鼠溃疡性结肠炎。纯化后的茯砖茶多糖可通过调节肠道微生物群和促进短链脂肪酸的产生来治疗炎症性肠病,具有显著的抗炎活性[89]。此外,茯砖茶多糖还可通过抑制炎症因子的产生和相关细胞因子mRNA的表达来缓解结肠炎[90]。普洱茶水提物可通过抑制核因子κB(NF-κB)的表达及活性从而促进巨噬细胞的凋亡,降低体内炎症水平,且对巨噬细胞炎症因子的抑制作用与普洱茶水提物浓度呈正相关[91−92]。
3.7 其他功能活性
除了上述黑茶的功能活性之外,对黑茶其他功能活性也有少量研究。目前由于免疫衰老和年龄增长而引起的慢性炎症是导致老年人感染癌症和自身免疫疾病的主要因素。Zhang等[93]分别将浓度为125、250和500 mg/kg的普洱茶提取物喂养易衰老的小鼠,口服4周后发现普洱茶提取物显著提高了外周血液中初始T淋巴细胞、CD8、CD28 T淋巴细胞和NK细胞的比例,降低了易衰老小鼠促炎细胞因子IL-6的水平。这些均表明,普洱茶提取物可通过恢复免疫缺陷和减少促炎细胞因子来逆转免疫衰老。
有研究发现六堡茶发酵前后茶多糖的含量及分子量均有所变化,发酵后茶多糖含量由1.83±0.09 g/100 g增加到3.44±0.28 g/100 g,对发酵前后六堡茶中的茶多糖分别进行体外活性试验,发现发酵后的六堡茶茶多糖引起胆汁酸浓度的显著增加,显示出良好的胆固醇结合能力和抗凝血活性[94]。
在动物模型试验中,黑茶也表现出神经保护作用。安化黑茶中分离出的儿茶素衍生物显示出了极强的神经保护作用,通过调节N-甲基-D-天门冬氨酸受体2B亚基(NR2B)的表达、激活磷脂酰肌醇3-激酶/蛋白激酶B信号通路(PI3K/AKT)的信号传导和半胱天冬酶依赖性通路,保护SH-SY5Y细胞免受N-甲基-D-天冬氨酸诱导的损伤和细胞凋亡[95]。
4. 结论与展望
渥堆发酵在黑茶品质的形成中发挥了重要作用。从渥堆发酵中鉴定出多种微生物,包括真菌中曲霉属、散囊菌属、青霉菌属等,细菌中芽孢杆菌属、克雷伯菌属、乳杆菌属等。微生物的新陈代谢、发酵过程中所形成的酶会影响黑茶中多酚、氨基酸、咖啡碱等活性物质的转化或含量的变化,从而影响黑茶风味和品质的形成。如儿茶素含量的减少有助于减少茶的苦味和涩味,丙氨酸和精氨酸有助于甜味的形成。同时,黑茶在降血糖、胃肠道保护等方面也发挥着重要作用,是预防和管理某些慢性疾病的重要膳食成分。
未来关于黑茶研究中值得重视的几点:积极开展黑茶中活性成分的生物利用度和生物转化机制研究,优化黑茶发酵工艺;渥堆发酵过程中微生物所分泌的酶会促进黑茶中活性物质的转变,但相关酶和代谢反应有待充分了解;微生物的活性是否会直接影响黑茶的品质,渥堆发酵中是加工条件影响了微生物,微生物再影响发酵,还是需要综合考虑多种因素的相互作用,这有待进一步研究;不同黑茶中的微生物有共性也有个性,不仅需要关注微生物的共性特征,也需要关注黑茶中的特殊微生物对健康的有益影响和潜在机制的研究;同时探索黑茶中活性成分的功能机制,开展临床试验和应用研究,评估其在预防和治疗慢性疾病方面的潜力和安全性。
-
表 1 黑茶发酵中的主要微生物
Table 1 Main microorganisms in fermentation of dark tea
-
[1] LIU Y, HUANG W, ZHANG C, et al. Targeted and untargeted metabolomic analyses and biological activity of Tibetan tea[J]. Food Chemistry,2022,384:132517. doi: 10.1016/j.foodchem.2022.132517
[2] LIN F J, WEI X L, LIU H Y, et al. State-of-the-art review of dark tea:from chemistry to health benefits[J]. Trends in Food Science & Technology,2021,109:126−138.
[3] 严宽, 李翔宇, 张建, 等. 四川黑茶渥堆发酵不同时期细菌群落结构与多样性[J]. 宜宾学院学报,2023,23(12):38−43. [YAN Kuan, LI Xiangyui, ZHANG Jian, et al. Bacterial community structure and diversity in different periods of Sichuan dark tea[J]. Journal of Yibin University,2023,23(12):38−43.] YAN Kuan, LI Xiangyui, ZHANG Jian, et al. Bacterial community structure and diversity in different periods of Sichuan dark tea[J]. Journal of Yibin University, 2023, 23(12): 38−43.
[4] 徐正刚, 吴良, 刘石泉, 等. 黑茶发酵过程中微生物多样性研究进展[J]. 生物学杂志, 2019, 36(3):929-5. [XU Zhenggang, WU Liang, LIU Shiquan, et al. Review for development of microbial diversity during dark tea fermentation period[J]. Journal of Biology, 2019, 36(3):92-95.] XU Zhenggang, WU Liang, LIU Shiquan, et al. Review for development of microbial diversity during dark tea fermentation period[J]. Journal of Biology, 2019, 36(3): 92-95.
[5] DU Y, YANG W, YANG C, et al. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea[J]. Trends in Food Science & Technology,2022,119:452−466.
[6] TAN Y, LI M, KONG K, et al. In vitro simulated digestion of and microbial characteristics in colonic fermentation of polysaccharides from four varieties of Tibetan tea[J]. Food Research International,2023,163:112255. doi: 10.1016/j.foodres.2022.112255
[7] YOO A, AHN J, SEO H D, et al. Fuzhuan brick tea extract ameliorates obesity-induced skeletal muscle atrophy by alleviating mitochondrial dysfunction in mice[J]. The Journal of Nutritional Biochemistry,2024,125:109532. doi: 10.1016/j.jnutbio.2023.109532
[8] 王雪蕾. 不同产地黑茶品质对比分析与综合评价[D]. 昆明:云南农业大学, 2023. [WANG Xuelei. Comparative analysis and evaluation of dark tea quality from different origins[D]. Kunming:Yunnan Agricultural University, 2023.] WANG Xuelei. Comparative analysis and evaluation of dark tea quality from different origins[D]. Kunming: Yunnan Agricultural University, 2023.
[9] 何建刚, 郭晓园, 陈学礼, 等. 湖北青砖茶产业现状及发展对策[J]. 现代农业科技,2019,10:241−243. [HE Jiangang, GUO Xiaoyuan, CHEN Xueli, et al. Present situation and development countermeasure of green brick tea industry in Hubei[J]. Modern Agricultural Science and Technology,2019,10:241−243.] doi: 10.3969/j.issn.1007-5739.2019.14.138 HE Jiangang, GUO Xiaoyuan, CHEN Xueli, et al. Present situation and development countermeasure of green brick tea industry in Hubei[J]. Modern Agricultural Science and Technology, 2019, 10: 241−243. doi: 10.3969/j.issn.1007-5739.2019.14.138
[10] 蒋金星, 何华锋, 桂安辉, 等. 中国黑茶的起源与加工工艺[J]. 中国农学通报,2017,33(25):70−75. [JIANG Jinxing, HE Huafeng, GUI Anhui, et al. Chinese dark tea:Origination and processing[J]. Chinese Agricultural Science Bulletin,2017,33(25):70−75.] doi: 10.11924/j.issn.1000-6850.casb16080009 JIANG Jinxing, HE Huafeng, GUI Anhui, et al. Chinese dark tea: Origination and processing[J]. Chinese Agricultural Science Bulletin, 2017, 33(25): 70−75. doi: 10.11924/j.issn.1000-6850.casb16080009
[11] 邓倩, 何新华, 庞月兰, 等. 六堡茶加工技术研究进展[J]. 南方园艺,2023,34(1):67−73. [DENG Qian, HE Xinhua, PANG Guilan, et al. Research progress on processing technology of Liupao tea[J]. Southern Horticulture,2023,34(1):67−73.] doi: 10.3969/j.issn.1674-5868.2023.01.013 DENG Qian, HE Xinhua, PANG Guilan, et al. Research progress on processing technology of Liupao tea[J]. Southern Horticulture, 2023, 34(1): 67−73. doi: 10.3969/j.issn.1674-5868.2023.01.013
[12] 王婧昀. 湖南安化黑茶产业化发展问题及对策研究[D]. 长沙:中南林业科技大学, 2018. [WANG Jingyun. Problem and countermeasures of dark tea industrialization in Anhua[D]. Changsha:Central South University of Forestry and Technology, 2018.] WANG Jingyun. Problem and countermeasures of dark tea industrialization in Anhua[D]. Changsha: Central South University of Forestry and Technology, 2018.
[13] 钟晓雪. 四川黑砖茶和茯砖茶的加工技术及品质评价[D]. 成都:四川农业大学, 2017. [ZHONG Xiaoxue. The research on processing technology and quality evaluation of dark brick tea and Fuzhuan brick tea in Sichuan[D]. Chengdu:Sichuan Agricultural University, 2017.] ZHONG Xiaoxue. The research on processing technology and quality evaluation of dark brick tea and Fuzhuan brick tea in Sichuan[D]. Chengdu: Sichuan Agricultural University, 2017.
[14] MA W, SHI Y, YANG G, et al. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J]. Food Chemistry,2022,375:131877. doi: 10.1016/j.foodchem.2021.131877
[15] 单治国, 张春花, 周红杰, 等. 不同菌种固态发酵对普洱茶化学成分和感官品质的影响[J]. 福建茶叶,2019,41(10):6−8. [SAHN Zhiguo, ZAHNG Chunhua, Zhou Hongjie, et al. The chemical composition of Pu-erh tea by solid-state fermentation of different strains and the effect on sensory quality[J]. Tea in Fujian,2019,41(10):6−8.] doi: 10.3969/j.issn.1005-2291.2019.10.004 SAHN Zhiguo, ZAHNG Chunhua, Zhou Hongjie, et al. The chemical composition of Pu-erh tea by solid-state fermentation of different strains and the effect on sensory quality[J]. Tea in Fujian, 2019, 41(10): 6−8. doi: 10.3969/j.issn.1005-2291.2019.10.004
[16] [戴宇樵, 潘科, 李琴, 等. 黑茶品质形成与功效研究进展[J]. 江苏农业科学,2021,49(10):24−29. [DAI Yuqiao, PAN Ke, LI Qin, et al. Research progress on quality formation and efficacy of dark tea[J]. Jiangsu Agricultural Sciences,2021,49(10):24−29.] DAI Yuqiao, PAN Ke, LI Qin, et al. Research progress on quality formation and efficacy of dark tea[J]. Jiangsu Agricultural Sciences, 2021, 49(10): 24−29.
[17] 蒋萍萍, 伍琳琳, 王铁龙, 等. 黑茶的研究进展[J]. 农产品加工,2020(5):73−78. [JIANG Pingping, WU Linlin, WANG Tielong, et al. Research progress of dark tea[J]. J Farm Products Processing,2020(5):73−78.] JIANG Pingping, WU Linlin, WANG Tielong, et al. Research progress of dark tea[J]. J Farm Products Processing, 2020(5): 73−78.
[18] LI Q, LI Y D, LUO Y, et al. Characterization of the key aroma compounds and microorganisms during the manufacturing process of Fu brick tea[J]. LWT-food Science And Technology,2020,127:109355. doi: 10.1016/j.lwt.2020.109355
[19] WANG B T, HU S, YU X Y, et al. Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in fungi[J]. Polymers,2020,12(3):530. doi: 10.3390/polym12030530
[20] XUE J, YANG L, YANG Y, et al. Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles[J]. LWT-food Science And Technology,2020,124:109147. doi: 10.1016/j.lwt.2020.109147
[21] WANG Q, GONG J, CHISTI Y, et al. Fungal isolates from a Pu‐erh type tea fermentation and their ability to convert tea polyphenols to theabrownins[J]. Journal of Food Science,2015,80(4):809−817.
[22] WU S, WANG W, ZHU W, et al. Microbial community succession in the fermentation of Qingzhuan tea at various temperatures and their correlations with the quality formation[J]. International Journal of Food Microbiology,2022,382:109937. doi: 10.1016/j.ijfoodmicro.2022.109937
[23] XIAO Y, ZHONG K, BAI J R, et al. Insight into effects of isolated Eurotium cristatum from Pingwu Fuzhuan brick tea on the fermentation process and quality characteristics of Fuzhuan brick tea[J]. Journal of the Science of Food and Agriculture,2020,100(9):3598−3607. doi: 10.1002/jsfa.10353
[24] LI Q, HUANG J, LI Y, et al. Fungal community succession and major components change during manufacturing process of Fu brick tea[J]. Scientific Reports,2017,7(1):6947. doi: 10.1038/s41598-017-07098-8
[25] WANG J, ZHANG J W, CHEN Y, et al. The relationship between microbial dynamics and dominant chemical components during Liupao tea processing[J]. Food Bioscience,2021,43:101315. doi: 10.1016/j.fbio.2021.101315
[26] YAN K, YAN L, MENG L, et al. Comprehensive analysis of bacterial community structure and diversity in Sichuan dark tea (Camellia sinensis)[J]. Frontiers in Microbiology,2021,12:735618. doi: 10.3389/fmicb.2021.735618
[27] MA C, LI X, ZHENG C, et al. Comparison of characteristic components in tea-leaves fermented by Aspergillus pallidofulvus PT-3, Aspergillus sesamicola PT-4 and Penicillium manginii PT-5 using LC-MS metabolomics and HPLC analysis[J]. Food Chemistry,2021,350:129228. doi: 10.1016/j.foodchem.2021.129228
[28] ZHAO M, ZHOU Y, XIA H, et al. Quantitative microbiome analysis reveals the microbial community assembly along with its correlation with the flavor substances during the manufacturing process of Qingzhuan brick tea at an industrial scale[J]. LWT-food Science And Technology,2022,167:113835. doi: 10.1016/j.lwt.2022.113835
[29] 张丹丹, 王佳佳, 朱雯, 等. 青砖茶渥堆发酵中微生物的变化[J]. 食品科学,2019,40(6):166−172. [ZHANG Dandan, WANG Jiajia, ZHU Wen, et al. changes of microbial community during pile fermentation of Qingzhuan tea[J]. Food Science,2019,40(6):166−172.] doi: 10.7506/spkx1002-6630-20180428-367 ZHANG Dandan, WANG Jiajia, ZHU Wen, et al. changes of microbial community during pile fermentation of Qingzhuan tea[J]. Food Science, 2019, 40(6): 166−172. doi: 10.7506/spkx1002-6630-20180428-367
[30] 欧惠算. 六堡茶微生物的分离鉴定及优势菌对茶叶成分的影响研究[D]. 广州:华南农业大学, 2017. [OU Huisuan. Isolation and identification of microbes from Liubao tea and study on the influence of dominant bacteria on tea components[D]. Guangzhou:South China Agricultural University, 2017.] OU Huisuan. Isolation and identification of microbes from Liubao tea and study on the influence of dominant bacteria on tea components[D]. Guangzhou: South China Agricultural University, 2017.
[31] RUI Y, WAN P, CHEN G, et al. Analysis of bacterial and fungal communities by Illumina MiSeq platforms and characterization of Aspergillus cristatus in Fuzhuan brick tea[J]. LWT-food Science And Technolog,2019,110:168−174. doi: 10.1016/j.lwt.2019.04.092
[32] JIANG Y, YU P, LIU X, et al. Shifts in diversity and function of bacterial community during manufacture of rushan[J]. Journal of Dairy Science,2021,104(12):12375−12393. doi: 10.3168/jds.2021-20654
[33] LV H P, ZHANG Y, SHI J, et al. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies[J]. Food Research International,2017,100:486−493. doi: 10.1016/j.foodres.2016.10.024
[34] 曹永, 赵谋明, 赵甜甜, 等. 不同黑茶提取物功能性成分分析及活性评价[J]. 食品科学,2017,38(18):54−59. [CAO Yong, ZHAO Mouming, ZHAO Tiantian, et al. Functional components and activities of different dark tea extracts[J]. Food Science,2017,38(18):54−59.] doi: 10.7506/spkx1002-6630-201718009 CAO Yong, ZHAO Mouming, ZHAO Tiantian, et al. Functional components and activities of different dark tea extracts[J]. Food Science, 2017, 38(18): 54−59. doi: 10.7506/spkx1002-6630-201718009
[35] 张厅, 刘晓, 熊元元, 等. 四川黑茶渥堆过程中主要品质成分和茶汤色差变化及其相关性研究[J]. 食品与发酵工业,2022,48(9):154−162. [ZHANG Ting, LIU Xiao, XIONG Yuanyuan, et al. Study on the main quality components and color difference of Sichuan black tea during pile fermentation and their correlation[J]. Food and Fermentation Industry,2022,48(9):154−162.] ZHANG Ting, LIU Xiao, XIONG Yuanyuan, et al. Study on the main quality components and color difference of Sichuan black tea during pile fermentation and their correlation[J]. Food and Fermentation Industry, 2022, 48(9): 154−162.
[36] HUANG Y, CHEN R, CHEN Y, et al. Dynamics changes in volatile profile, non-volatile metabolites and antioxidant activities of dark tea infusion during submerged fermentation with Eurotium cristatum[J]. Food Bioscience,2023,55:168−174.
[37] ZHOU B, MA B, MA C, et al. Classification of Pu-erh ripened teas and their differences in chemical constituents and antioxidant capacity[J]. LWT-food Science And Technology,2022,153:112370. doi: 10.1016/j.lwt.2021.112370
[38] LIU T, ZHOU G, DU M, et al. The interplay between (−)-epigallocatechin-3-gallate (EGCG) and Aspergillus niger RAF106, an EGCG-biotransforming fungus derived from Pu-erh tea[J]. Lwt-food Science And Technology,2023,180:114678. doi: 10.1016/j.lwt.2023.114678
[39] 罗燕, 唐玉雪, 文敏, 等. 青砖茶渥堆过程中理化特性及细菌多样性分析[J]. 食品安全质量检测学报,2022,13(16):5128−5136. [LUO Yan, TANG Yuxue, WEN Min, et al. Analysis of physicochemical property and bacterial diversity during the pile-fermentation of Qingzhuan tea[J]. Journal of Food Safety & Quality,2022,13(16):5128−5136.] doi: 10.3969/j.issn.2095-0381.2022.16.spaqzljcjs202216005 LUO Yan, TANG Yuxue, WEN Min, et al. Analysis of physicochemical property and bacterial diversity during the pile-fermentation of Qingzhuan tea[J]. Journal of Food Safety & Quality, 2022, 13(16): 5128−5136. doi: 10.3969/j.issn.2095-0381.2022.16.spaqzljcjs202216005
[40] ZHU Y F, CHEN J J, JI X M, et al. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea[J]. Food Chemistry,2015,170:110−117. doi: 10.1016/j.foodchem.2014.08.075
[41] ZHANG X, WEN B, ZHANG Y, et al. Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars[J]. Scientia Horticulturae,2022,295:110823. doi: 10.1016/j.scienta.2021.110823
[42] 李银花, 李娟, 杨新河. 湖北青砖茶渥堆过程中主要生化成分的变化研究[J]. 农产品加工,2017(19):44−47. [LI Yinhua, LI Juan, YANG Xinhe, et al. Study on the changes of main biochemical components of Hubei green brick tea during pile fermentation[J]. Farm Product Processing,2017(19):44−47.] LI Yinhua, LI Juan, YANG Xinhe, et al. Study on the changes of main biochemical components of Hubei green brick tea during pile fermentation[J]. Farm Product Processing, 2017(19): 44−47.
[43] HU S, HE C, LI Y C, et al. The formation of aroma quality of dark tea during pile-fermentation based on multi-omics[J]. LWT-food Science And Technology,2021,147:111491. doi: 10.1016/j.lwt.2021.111491
[44] LI Q, CHAI S, LI Y, et al, Biochemical components associated with microbial community shift during the pile-fermentation of primary dark tea[J]. Frontiers in Microbiology, 2018, 9:1509.
[45] LI Q, LI Y, LUO Y, et al, Shifts in diversity and function of the bacterial community during the manufacture of fu brick tea[J]. Food Microbiology, 2019, 80:70-76.
[46] ZHU Y, LUO Y, WANG P, et al. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation[J]. Food Chemistry,2016,194:643−649. doi: 10.1016/j.foodchem.2015.08.054
[47] JIRO K, AKIRA S, AKIMITSU K, et al. Contribution of peptides and amino acids to the taste of foods[J]. LWT-food Science And Technology,1969,17:4,689−695.
[48] ZHAO F, WU W, WANG C, et al. Dynamic change of oligopeptides and free amino acids composition in five types of tea with different fermentation degree processed from the same batch of fresh tea (Camelilia sinensis L. ) leaves[J]. Food Chemistry,2023,404:134608. doi: 10.1016/j.foodchem.2022.134608
[49] GUTIERREZ A E, SHAH P, REX A E, et al. Bioassay for determining the concentrations of caffeine and individual methylxanthines in complex samples[J]. Applied and Environmental Microbiology,2019,85(23):e01965−19.
[50] 郑城钦, 马存强, 张正艳, 等. 茶叶微生物固态发酵中咖啡碱降解途径初探[J]. 茶叶科学,2020,40(3):386−396. [ZHENG Chengqin, MA Cunqiang, ZHANG Zhengyan, et al. A preliminary study on the degradation pathway of caffeine in tea microbial solid-state fermentation[J]. Journal of Tea Science,2020,40(3):386−396.] doi: 10.3969/j.issn.1000-369X.2020.03.009 ZHENG Chengqin, MA Cunqiang, ZHANG Zhengyan, et al. A preliminary study on the degradation pathway of caffeine in tea microbial solid-state fermentation[J]. Journal of Tea Science, 2020, 40(3): 386−396. doi: 10.3969/j.issn.1000-369X.2020.03.009
[51] 胡永强. Desarmillaria tabescens降解咖啡碱特性及其在茶叶发酵中的应用研究[D]. 南宁:广西民族大学, 2023. [HU Yongqiang. Characteristics of Desarmillaria tabescens degrading caffeine and its application in tea fermentation[D]. Nanning:Guangxi University for Nationalities, 2023.] HU Yongqiang. Characteristics of Desarmillaria tabescens degrading caffeine and its application in tea fermentation[D]. Nanning: Guangxi University for Nationalities, 2023.
[52] WANG S P, LIU P P, FENG L, et al. Rapid determination of tea polyphenols content in Qingzhuan tea based on near infrared spectroscopy in conjunction with three different PLS algorithms[J]. Food Science And Technology Research,2022,42:e94322. doi: 10.1590/fst.94322
[53] LONG P, WEN M, GRANATO D, et al. Untargeted and targeted metabolomics reveal the chemical characteristic of Pu-erh tea (Camellia assamica) during pile-fermentation[J]. Food Chemistry,2020,311:125895. doi: 10.1016/j.foodchem.2019.125895
[54] 田燕华. 液态发酵生产茶褐素及其功能活性研究[D]. 武汉:华中科技大学, 2019. [TIAN Huayan. Study on the production of theabrownin by liquid fermentation and its biological activity[D]. Wuhan:Huazhong University of Science and Technology, 2019.] TIAN Huayan. Study on the production of theabrownin by liquid fermentation and its biological activity[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[55] 罗春燕. 碎末茶生产茶褐素发酵工艺研究[D], 贵阳:贵州大学, 2021. [LUO Chunyan. Study on fermentation technology of producing thea brownin from crushed tea[D]. Guiyang:Guizhou University, 2021.] LUO Chunyan. Study on fermentation technology of producing thea brownin from crushed tea[D]. Guiyang: Guizhou University, 2021.
[56] 张春花, 单治国, 袁文侠, 等. 不同有益菌固态发酵对普洱茶香气成分的影响研究[J]. 茶叶科学,2010,30(4):251−258. [ZHANG Chunhua, SHAN Zhiguo, et al. Study on the effect of solid state fermentation with different beneficial bacteria on the aroma components of Pu'er tea[J]. Journal of Tea Science,2010,30(4):251−258.] doi: 10.3969/j.issn.1000-369X.2010.04.003 ZHANG Chunhua, SHAN Zhiguo, et al. Study on the effect of solid state fermentation with different beneficial bacteria on the aroma components of Pu'er tea[J]. Journal of Tea Science, 2010, 30(4): 251−258. doi: 10.3969/j.issn.1000-369X.2010.04.003
[57] YAN X, TIAN Y, ZHAO F, et al. Analysis of the key aroma components of Pu'er tea by synergistic fermentation with three beneficial microorganisms[J]. Food Chemistry:X,2024,21:101048.
[58] XIAO L, YANG C, ZHANG X, et al. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas[J]. Food Chemistry:X,2023,19:100811.
[59] LAVIOLA L, D'ORIA R, CALDERONI I, et al. 58th EASD annual meeting of the european association for the study of diabetes:stockholm, sweden, 19-23 September 2022[J]. Diabetologia,2022,65(Suppl 1):421−421.
[60] CAO S Y, LI B Y, GAN R Y, et al. The in vivo antioxidant and hepatoprotective actions of selected chinese teas[J]. Foods,2020,9(3):262. doi: 10.3390/foods9030262
[61] ZHENG P, QIN C Y, LIU P P, et al. Untargeted metabolomics combined with bioassay reveals the change in critical bioactive compounds during the processing of Qingzhuan tea[J]. Molecules,2021,26(21):6718. doi: 10.3390/molecules26216718
[62] GAO W, XIAO C, HU J, et al. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathway[J]. Biomedicine & Pharmacotherapy,2018,103:637−644.
[63] 冷彦, 赵艳, 王静, 等. 高压脉冲电场处理普洱熟茶对大鼠体内抗氧化活性的影响[J]. 江西农业学报,2021,33(10):103−110. [LENG Yan, ZHAO Yan, WANG Jing, et al. Effect of high voltage pulsed electric field on antioxidant activity of Pu'er cooked tea in rats[J]. Journal of Jiangxi Agriculture,2021,33(10):103−110.] LENG Yan, ZHAO Yan, WANG Jing, et al. Effect of high voltage pulsed electric field on antioxidant activity of Pu'er cooked tea in rats[J]. Journal of Jiangxi Agriculture, 2021, 33(10): 103−110.
[64] 张佳欣, 余有本. 不同贮存年限茯砖茶多糖的抗氧化及免疫特性的比较研究[J]. 中国食品添加剂,2023,34(6):146−151. [ZHENG Jiaxin, YU Youben. Comparative study on antioxidant and immune characteristics of Fuzhuan tea polysaccharide with different storage years[J]. China Food Additives,2023,34(6):146−151.] ZHENG Jiaxin, YU Youben. Comparative study on antioxidant and immune characteristics of Fuzhuan tea polysaccharide with different storage years[J]. China Food Additives, 2023, 34(6): 146−151.
[65] WANG Q, BELŠČAK-CVITANOVIĆ A, DURGO K, et al. Physicochemical properties and biological activities of a high-theabrownins instant Pu-erh tea produced using Aspergillus tubingensis[J]. LWT-food Science And Technology,2018,90:598−605. doi: 10.1016/j.lwt.2018.01.021
[66] RENAN C , JOSÉ LI , ALINEVIEIRA , et al. Regulation of immune cell function by shortchain fatty acids[J]. Clinical &Translational Immunology, 2016, 5(4):e73.
[67] WANG M J, CHEN G J, CHEN D, et al. Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation[J]. International Journal of Biological Macromolecules,2019,140:858−870. doi: 10.1016/j.ijbiomac.2019.08.187
[68] HU S S, LI S, LIU Y, et al. Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. Journal of Agricultural and Food Chemistry,2021,69(36):10592−10605. doi: 10.1021/acs.jafc.1c04032
[69] ZHOU S, YANG J, PAN Y, et al. Pu'er raw tea extract alleviates DSS-induced colitis in mice by restoring intestinal barrier function and maintaining gut microbiota homeostasis[J]. Food Bioscience,2023,53:102750. doi: 10.1016/j.fbio.2023.102750
[70] KUO K L, WENG M S, CHIANG C-T, et al. Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, Pu-erh, and green tea leaves in rats[J]. Journal of Agricultural and Food Chemistry,2005,53(2):480−489. doi: 10.1021/jf049375k
[71] YOO A, JUNG K M, AHN J, et al. Fuzhuan brick tea extract prevents diet-induced obesity via stimulation of fat browning in mice[J]. Food Chemistry,2022,377:132006. doi: 10.1016/j.foodchem.2021.132006
[72] MAO Y, WEI B, TENG J, et al. Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia[J]. International Journal of Food Science & Technology,2018,53(3):599−607.
[73] ZHOU S, CHEN J, YANG S, et al. Pu'er raw tea extract alleviates lipid deposition in both LO2 cells and caenorhabditis elegans[J]. Food Bioscience,2022,50:102172. doi: 10.1016/j.fbio.2022.102172
[74] XIAO Y, HUANG Y, LONG F, et al. Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models[J]. Food Chemistry,2023,404:134382. doi: 10.1016/j.foodchem.2022.134382
[75] WU E, ZHANG T, TAN C, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats[J]. European Journal of Nutrition,2019,59(5):1937−1950.
[76] HUANG F, ZHENG X, MA X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications,2019,10(1):4971. doi: 10.1038/s41467-019-12896-x
[77] ALLAM M M, EL-ZAWAWY H T. Type 2 diabetes mellitus non-surgical remission:A possible mission[J]. Journal of Clinical & Translational Endocrinology,2019,18:100206.
[78] TANEERA J, DHAIBAN S, MOHAMMED A K, et al. GNAS gene is an important regulator of insulin secretory capacity in pancreatic β-cells[J]. Gene,2019,715:144028. doi: 10.1016/j.gene.2019.144028
[79] DU H P, WANG Q, YANG X B, et al. Fu brick tea alleviates chronic kidney disease of rats with high fat diet consumption through attenuating insulin resistance in skeletal muscle[J]. Journal of Agricultural and Food Chemistry,2019,67:2839−2847. doi: 10.1021/acs.jafc.8b06927
[80] XU W, ZHOU Y, LIN L, et al. Hypoglycemic effects of black brick tea with fungal growth in hyperglycemic mice model[J]. Food Science and Human Wellness,2022,11(3):711−718. doi: 10.1016/j.fshw.2021.12.028
[81] ZHU J, WU M, ZHOU H, et al. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora[J]. Food Research International,2021,148:110594. doi: 10.1016/j.foodres.2021.110594
[82] DING Q, ZHANG B, ZHENG W, et al. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet[J]. Biomedicine & Pharmacotherapy,2019,118:109262.
[83] GAO W Q, XIAO C Y, HU J, et al. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathway[J]. Biomedicine & Pharmacotherapy,2018,103:637−644.
[84] LIU M, GONG Z, LIU H, et al. Structural characterization and anti-tumor activity in vitro of a water-soluble polysaccharide from dark brick tea[J]. International Journal of Biological Macromolecules,2022,205:615−625. doi: 10.1016/j.ijbiomac.2022.02.089
[85] 韩莎莎, 高雄, 林晓蓉, 等. 普洱茶挥发性组分的抗癌、抗炎功能特性[J]. 食品工业科技,2019,40(3):97−105. [HAN Shasha, GAO Xiong, LIN Xiaorong, et al. Anti-cancer and anti-inflammatory activities of volatile components from Pu-erh tea[J]. Science and Technology of Food Industry,2019,40(3):97−105.] HAN Shasha, GAO Xiong, LIN Xiaorong, et al. Anti-cancer and anti-inflammatory activities of volatile components from Pu-erh tea[J]. Science and Technology of Food Industry, 2019, 40(3): 97−105.
[86] XIE J, YU H S, SONG S, et al. Pu-erh tea water extract mediates cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells[J]. Frontiers in Pharmacology,2017,8:190.
[87] 余婕, 闫梦真, 陈桂婷, 等. 青砖茶水提物对HepG2细胞脂肪变性的干预作用[J]. 三峡大学学报(自然科学版),2020,42(2):107−112. [YU Jie, YAN Mengzhen, CHEN Guiting, et al. Intervention effect to water extract of green brick tea on steatosis of HepG2 ce11[J]. Journal of China Three Gorges University(Natural Sciences),2020,42(2):107−112.] YU Jie, YAN Mengzhen, CHEN Guiting, et al. Intervention effect to water extract of green brick tea on steatosis of HepG2 ce11[J]. Journal of China Three Gorges University(Natural Sciences), 2020, 42(2): 107−112.
[88] 黄翔翔, 谭婷, 禹利君, 等. 茯砖茶对葡聚糖硫酸钠诱导UC小鼠炎症及肠道微生物的影响[J]. 茶叶科学,2021,41(5):681−694. [HUANG Xiangxiang, TAN Ting, YU Lijun, et al. Effects of Fu brick tea on inflammation and intestinal microflora diversity in mice with DSS-induced ulcerative colitis[J]. Journal of Tea Science,2021,41(5):681−694.] doi: 10.3969/j.issn.1000-369X.2021.05.008 HUANG Xiangxiang, TAN Ting, YU Lijun, et al. Effects of Fu brick tea on inflammation and intestinal microflora diversity in mice with DSS-induced ulcerative colitis[J]. Journal of Tea Science, 2021, 41(5): 681−694. doi: 10.3969/j.issn.1000-369X.2021.05.008
[89] CHEN G, WANG M, ZENG Z, et al. Fuzhuan brick tea polysaccharides serve as a promising candidate for remodeling the gut microbiota from colitis subjects in vitro:Fermentation characteristic and anti-inflammatory activity[J]. Food Chemistry,2022,391:133203. doi: 10.1016/j.foodchem.2022.133203
[90] ZENG Z, XIE Z, CHEN G, et al. Anti-inflammatory and gut microbiota modulatory effects of polysaccharides from Fuzhuan brick tea on colitis in mice induced by dextran sulfate sodium[J]. Food & Function,2022,13(2):649−663.
[91] 肖懿慧, 贺明, 舒娟, 等. 普洱茶通过降低NF-κB活性促巨噬细胞凋亡改善动脉粥样硬化[J]. 西安交通大学学报(医学版),2019,40(6):847−852. [XIAO Yihui, HE Ming, SHU Juan, et al. Pu'er tea improves atherosclerosis by reducing NF-κB activity and promoting macrophage apoptosis[J]. Journal of Xi'an Jiaotong University(Medical Sciences),2019,40(6):847−852.] XIAO Yihui, HE Ming, SHU Juan, et al. Pu'er tea improves atherosclerosis by reducing NF-κB activity and promoting macrophage apoptosis[J]. Journal of Xi'an Jiaotong University(Medical Sciences), 2019, 40(6): 847−852.
[92] 李春磊. 普洱茶水提物抗炎功效研究[D]. 长春:长春理工大学, 2012. [LI Chunlei. Study on anti-inflammatory effect of Pu'er tea water extract[D]. Changchun:Changchun University of Technology, 2012.] LI Chunlei. Study on anti-inflammatory effect of Pu'er tea water extract[D]. Changchun: Changchun University of Technology, 2012.
[93] ZHANG L, SHAO W F, YUAN L, et al. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM)[J]. Food Chemistry,2012,135(4):2222−2228. doi: 10.1016/j.foodchem.2012.07.033
[94] QIN H, HUANG L, TENG J, et al. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation[J]. Food Chemistry,2021,353:129419. doi: 10.1016/j.foodchem.2021.129419
[95] LIU J, FAN Y, KIM D, et al. Neuroprotective effect of catechins derivatives isolated from Anhua dark tea on NMDA-induced excitotoxicity in SH-SY5Y cells[J]. Fitoterapia,2019,137:104240. doi: 10.1016/j.fitote.2019.104240