• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

淀粉-脂质复合物耐消化性的研究进展:影响因素和形成机制

马文华, 杨帆, 钱晓洁, 孙冰华, 马森

马文华,杨帆,钱晓洁,等. 淀粉-脂质复合物耐消化性的研究进展:影响因素和形成机制[J]. 食品工业科技,2025,46(9):1−10. doi: 10.13386/j.issn1002-0306.2024050151.
引用本文: 马文华,杨帆,钱晓洁,等. 淀粉-脂质复合物耐消化性的研究进展:影响因素和形成机制[J]. 食品工业科技,2025,46(9):1−10. doi: 10.13386/j.issn1002-0306.2024050151.
MA Wenhua, YANG Fan, QIAN Xiaojie, et al. Research Progress on the Digestibility Resistance of Starch-Lipid Complexes:The Influence Factor and Formation Mechanism[J]. Science and Technology of Food Industry, 2025, 46(9): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050151.
Citation: MA Wenhua, YANG Fan, QIAN Xiaojie, et al. Research Progress on the Digestibility Resistance of Starch-Lipid Complexes:The Influence Factor and Formation Mechanism[J]. Science and Technology of Food Industry, 2025, 46(9): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050151.

淀粉-脂质复合物耐消化性的研究进展:影响因素和形成机制

基金项目: 国家自然科学基金项目(32301989);河南省科技研发计划联合基金项目(232103810069,232103810066)。
详细信息
    作者简介:

    马文华(2000−),女,硕士研究生,研究方向:谷物资源开发与利用,E-mail:mawenhua0213@163.com

    通讯作者:

    孙冰华(1987−),女,博士,讲师,研究方向:谷物资源开发与利用,E-mail:sbhfood@126.com

    马 森(1983−),男,博士,教授,研究方向:谷物资源开发与利用,E-mail:masen@haut.edu.cn

  • 中图分类号: TS231

Research Progress on the Digestibility Resistance of Starch-Lipid Complexes:The Influence Factor and Formation Mechanism

  • 摘要: 谷物食品中淀粉的消化特性是影响餐后血糖生成指数(Glycemic index,GI)的关键因素。淀粉依其消化速度可分为抗消化淀粉、慢消化淀粉和快消化淀粉。淀粉-脂质复合物被认为是第五类抗性淀粉,可以在大肠中分解而不产生葡萄糖,从而降低GI。本文综述了淀粉-脂质复合物耐消化性的影响因素,包括淀粉结构、脂肪酸含量和结构、复合过程、消化酶的作用以及食品体系内其他组分间的相互作用;并基于影响因素的综合分析,进一步地揭示了淀粉-脂质复合物耐消化性的形成机制,为低GI健康食品的开发提供理论参考。未来还需进一步优化淀粉-脂质复合物制备参数,深入探究淀粉和脂质与食品中其他营养成分之间的互作机制,并研究复合物在消化吸收过程中对血糖、血脂等生理指标的影响,以提高其在食品体系中的功能性和加工过程中的稳定性。
    Abstract: The digestive properties of starches are the key factors contributing to the postprandial glycemic index (GI) of cereal foods. According to the digestion rate, they can be classified into resistant starch, slowly digestible starch, and rapidly digestible starch. Starch-lipid complexes, which are regarded as resistant starch (RS5) can be digested in the large intestine without producing glucose, and thereby reducing the GI value of food. In this study, a number of crucial factors influencing the digestion resistibility of these complexes are reviewed, which include the fine structure of starch, lipids content and structure, complex process, action of digestive enzymes, as well as the interaction of other components in the food system. And the formation mechanism of these complexes resistance to digestion are also analyzed and illustrated, providing a theoretical reference for the development of low-GI healthy foods. In the future, the preparation parameters for the starch-lipid complexes still need to be further optimized, and more depth about the interaction mechanism between starch-lipid complexes and other food nutritional components also need to be deeply explored. Meanwhile, the effect of these complexes on physiological indicators such as blood glucose and blood lipid during the process of digestion and absorption should be investigated, to improve its functionality in the food system and enhance this stability during the processing.
  • 随着2型糖尿病和心血管疾病等患病人群的急剧增加,对低升糖指数(Glycemic index,GI)淀粉基食物的需求愈加强烈。通常,低GI(GI<55)淀粉基食物中含有大量不易被人体消化吸收的淀粉,包括慢消化淀粉(Slowly digestible starch,SDS)和抗消化淀粉(Resistant starch,RS)两大类。其中,SDS在小肠中消化缓慢,血糖上升慢,RS在大肠中经微生物发酵生成短链脂肪酸,不产生葡萄糖,从而降低GI值[1]。目前,淀粉基食物中的抗消化淀粉主要分为五类[2]:物理包埋淀粉(RS1)主要存在于谷物、种子和豆类的外层,天然抗性淀粉颗粒(RS2)主要存在于未成熟食物中,回生淀粉(RS3)则主要是通过烹饪和冷却过程中淀粉的再结晶而形成,化学改性淀粉(RS4)是一种化学或生物转化而成的淀粉,由直链淀粉(Amylose,AM)与疏水性客体分子(如脂肪酸(Fatty acid,FA))络合形成的复合物属于RS5型抗性淀粉,是目前研究最为广泛且最具应用前景的一类抗性淀粉[3]

    基于淀粉-脂质复合物短程有序性和长程有序性的差异,淀粉-脂质复合物可分为有序度低的Ⅰ型复合物和有序度较高的II型复合物,Ⅱ型复合物又可细分为Ⅱa型和Ⅱb型,其中Ⅱb型热稳定性更高[4]。影响淀粉与脂质复合物的形成及其结构特性的因素包括淀粉结构[57](晶体类型、AM含量和淀粉链长)、脂肪酸的含量[8]与结构[9](链长和不饱和度)等内因,以及挤压、高压均质、微波和超声波等加工方式[1012]与条件[1314](水分、温度、pH等)等外因。此外,食品中的其他组分如蛋白质、酚类等在加工过程中也会与淀粉和脂质相互作用,进而影响其复合物的结构和消化性[15]。本文深入探讨淀粉-脂质复合物耐消化性的影响因素,归纳其形成机制,以期更好地掌握淀粉-脂质复合物的消化特性和加工品质,为其在改善公众健康、预防和控制相关疾病等方面的应用研究提供理论参考。

    淀粉的晶体结构主要分为A-型、B-型、C-型和V-型,对其抗酶解性和与脂质的络合能力有着显著影响。在烹饪进程中,直链淀粉分子经由螺旋堆积构建出 V-型晶体,其具备热稳定性。同时,脂肪酸的疏水部分存在于淀粉螺旋疏水腔内形成复合物,延缓晶体结构分解,限制消化酶对淀粉的接触和分解,从而提高了淀粉的耐消化性[16]。B-型晶体结构淀粉(如马铃薯淀粉)与脂质的络合效应及其分子间的作用力强于A-型晶体结构淀粉(如玉米淀粉)[17]。产生这一现象的原因主要与淀粉分子链的排列、晶胞的堆积、空间构型的差异有关,具体而言,相较于A-型晶体,B-型晶体更开放,淀粉分子更容易与FA进行络合[18]。此外,B-型淀粉具有更长的支链淀粉(Amylopectin,AP),这有助于形成更多的复合物,形成的B-型淀粉-脂质复合物的短程和长程有序度均高于A-型淀粉-脂质复合物[19]。但也有研究指出A-型淀粉更有利于形成淀粉-脂质复合物并提高RS含量[20],这一结果可能与AM含量的差异有关。而C-型晶体结构(如豆类淀粉)为A-型与B-型的复合形态,其复合物耐消化性主要取决于A-型/B-型晶体结构的比例与分布。

    AM和AP是淀粉的两大组成部分,其中AM线性度高、空间位阻弱,在与脂质配位时具有更大的优势。多项数据显示,AM含量与RS含量呈正相关[2122]。一方面,AM的长链结构使其能够在分子间形成更多的氢键,这些氢键增强了淀粉链之间的相互作用,使淀粉颗粒更加紧密和稳定,从而降低了淀粉的消化率[23];另一方面AM含量越高,形成的淀粉-脂质复合物越多,结构也越稳定,降低了淀粉对酶的可及性,表现出更强的耐消化能力[24]。有研究显示糯玉米淀粉、普通玉米淀粉和高直链玉米淀粉的直链淀粉含量分别为1.97%、29.25%、58.96%,且高直链玉米淀粉与脂肪酸形成复合物的含量、R1047/1022、相对结晶度和糊化焓(ΔH)最高,耐消化淀粉含量较对照提高了93.90%[17]。因而,AM含量被视为影响食物GI和抗性淀粉含量的关键因素之一。有研究证实,普鲁兰酶脱支处理可以提高淀粉中短直链淀粉的含量,使其与脂肪酸的复合程度增加[25]。随着处理时间的延长,X射线衍射图谱的V-型特征峰更加明显,淀粉-脂质络合物的数量增加,其结构有序性增强,RS和SDS含量上升。进一步说明酶解脱支处理可作为提高直链淀粉含量从而增强淀粉-脂质复合物耐消化性的有效策略[2627]

    除了与AM含量有关,淀粉与脂质复合物的消化性还与淀粉分子(尤其是AP)的链长与分布有关。有研究显示,对于AM而言,聚合度(Degree of polymerization,DP)在100~850范围内,高DP有利于形成结构更有序和更稳定的复合物[28],而低DP直链淀粉容易在分散过程中形成直链淀粉-直链淀粉晶体[29]。若AM分子链的DP过高,则会降低空间构象的有序性,影响与脂质的络合程度,阻碍其复合物的形成。AP由外到内可分为A链(DP10~20)、B支链(DP20~60)和具有一个还原末端的主链C链[30],这种分支结构不利于复合物的形成,但研究发现通过特定酶如淀粉蔗糖酶处理来调控淀粉分子的分支链长和去分支化,可增加AP的平均链长,提高其与脂质的络合能力[3132]。然而,AP链长的过度延长会加速淀粉分子链的重排与回生[33]。有研究指出与FA形成稳定络合物所需的短支链淀粉链长的DP约为20[34]。因此,当采用生物酶法改性处理延长AP链长时,可基于所形成螺旋(单螺旋或双螺旋)的高度与内径计算、脂质中FA的烃链长度分析。

    随着FA含量的增加(0~5%),淀粉-脂质复合物的形成逐渐增加并趋于稳定,SDS和RS含量也随之增加,提高了体系的耐消化性[35]。此外,高FA含量还有助于形成更加稳定的微晶结构,这种微晶结构通过减少淀粉分子与水分子的接触,有效抑制了AM分子的水合和膨胀,进而阻碍AM的分散以及消化酶进入淀粉分子内部,从而显著降低淀粉的消化率[3637]。然而,当FA添加量超过一定限度时,分子间的疏水相互作用可能增强,导致FA分子发生聚集,从而干扰了淀粉与FA之间的有效结合。这意味着过高的FA添加量非但不能进一步促进淀粉-脂质复合物的形成,反而可能产生不利影响。

    当前研究主要聚焦于10~18个碳原子的FA对淀粉-脂质复合物形成的影响。研究指出,随着FA链长从10碳增加到12碳时, SDS和RS的含量均有所上升;然而,当FA链长进一步延长至18碳时,SDS和RS的含量则相对减少[38]。具体来说,短链FA因其良好的溶解性和分散性,能够更容易被包裹在淀粉螺旋腔内并通过疏水作用与淀粉链络合,形成较多的复合物,且倾向于形成有序度更高的II型复合物;而长链FA由于空间位阻效应显著,易在淀粉悬浮液中自聚集形成二聚体,这不仅降低了其溶解度和分散性,还减少了与淀粉分子的接触机会,导致复合物形成量减少,且易形成有序度低的I型复合物[39]。但长链FA复合物的晶体结构更稳定,这可能是由于其分子间相互作用更强[40]。而含有14个碳原子的FA与淀粉分子络合形成的复合物含量最多,但其RS含量较低而SDS含量较高,从而降低了酶对淀粉分子的敏感性,进而提高了其耐消化性。这主要归因于14碳FA复合物分子间相互作用较强[41]

    针对不饱和度对淀粉-脂质复合物耐消化性的研究主要集中于含有0~2个碳碳双键的FA,随着不饱和度的增加,RS含量增加而SDS含量略降低,复合物的耐消化性提高[42],但复合物的含量反而相对减少。这种趋势的原因在于双键的增加不仅增加了分子间的空间位阻,还增强了FA对水的亲和力,进而阻碍了不饱和FA与淀粉分子的络合[43]。但由于不饱和FA的空间位阻大,降低了消化酶对淀粉的可及性。此外,相较于饱和FA形成的II型复合物,不饱和FA与淀粉分子大多形成有序性较差的I型复合物。这是由于双键的存在使得FA链呈现出不完美的六边形结构,这种结构的不稳定性使得FA容易受到氧化的影响,进而会影响复合物的稳定性和有序度[44]。上述结果表明淀粉-不饱和FA的耐消化性并不是简单地与复合物含量呈正比。然而,某些研究结果显示不饱和度增加,复合物含量增加[45],这可能与实验原料以及条件有关。关于内部因素(包括淀粉结构、脂肪酸含量及其结构特性)对淀粉-脂质复合物耐消化性影响的综合评价,详见表1

    表  1  内因对淀粉-脂质复合物结构及耐消化性的影响
    Table  1.  Effects of endogenous factors on the structure and digestibility tolerance of starch-lipid complexes
    内因 条件 结构 对淀粉-脂质复合物形成的影响 对耐消化性的影响 文献
    淀粉 淀粉晶体
    结构类型
    A型 短支链多,晶体水分子少 耐消化性淀粉含量增加40%
    左右
    [1719]
    B型 短支链少,晶体水分子多,结构开放 利于形成淀粉-脂质复合物 耐消化性淀粉增加60%左右
    C型 A型和B型的结合 耐消化性淀粉增加30%左右
    V型 淀粉-疏水分子络合物 捕捉客体分子形成淀粉-脂质
    复合物
    抗性淀粉含量增加最多 [16]
    AM含量 含量>20% 结构稳定 利于淀粉-脂质复合物形成 耐消化性淀粉含量高于20% [2122]
    含量<20% 结构稳定性下降 减少淀粉-脂质复合物形成 耐消化性淀粉含量低于20%
    脱支处理 AM含量增加,促进II型复合物的形成 促进淀粉-脂质复合物形成 耐消化性提高 [2527]
    AM链长 DP100~850 稳定性、有序度增加 随链长增加形成增多 耐消化性高于对照样 [2834]
    较长链长 有序度降低 阻碍复合物形成 耐消化性低于对照样
    FA FA含量 0~5% 随FA含量增加,结构趋于稳定 利于淀粉-脂质复合物形成 耐消化性高于对照样 [3537]
    >20% FA易自聚集 不利于淀粉-脂质复合物形成 不耐消化
    FA链长 10~14个碳原子 II型 有利于淀粉-脂质复合物的形成 耐消化性淀粉含量高于40% [3841]
    16~18个碳原子 I型,易自聚集 阻碍淀粉-脂质复合物的形成 耐消化性淀粉含量低于40%
    FA不饱和度 无碳碳双键 II型 淀粉-脂质复合物含量增多 均高于对照样 [4245]
    1~2个碳碳双键 I型 利于形成淀粉-脂质复合物
    下载: 导出CSV 
    | 显示表格

    在加工过程中,高压均质会使脂质以小液滴的形式均匀分散在淀粉中,增加了淀粉与FA的接触面积,促进了复合物的形成。同时,机械剪切力和湍流作用使淀粉颗粒分解,释放出AM,降低了淀粉的分子量,增加了AM的含量,有助于与FA形成稳定的复合物[46]。这些变化与均质压力密切相关,随着均质压力(20~150 MPa)增加,复合物增多,热稳定性也提高,结构主要为Ⅰ型晶体结构,同时也可能存在Ⅱ型[47]。淀粉-脂质复合物结构越有序、越稳定,对酶的抵抗力越强。为进一步探究高压均质处理对淀粉-脂质复合物结构与耐消化性的影响,研究人员观察到高压均质处理后的复合物呈现出更加致密的块状结构,这种结构能够抵抗酶的消化作用。并且在较高压力下,形成了新的半结晶结构,这种结构可能源自具有较高转变温度的II型复合物,表现出较强的抗酶活性。这均为高压均质处理促进复合物形成和增强淀粉的耐消化性提供了理论支撑[48]

    淀粉和脂质在挤压过程中经历剪切力、热和压力的同时作用,增大了淀粉分子的双螺旋直径,为FA的进入提供了空间,从而促进复合物形成,增强了淀粉的耐消化能力[49]。然而淀粉颗粒在挤压过程中可能会遭受破坏,这可能导致消化初期淀粉的快速水解。而在后期,由于高压和水热共同作用下断裂的淀粉链重新排列,形成更紧密且有序的结晶区域,使得SDS和RS含量增多[50]。此现象表明,挤压处理在一定程度上影响淀粉的微观结构和消化特性。在挤压过程中,淀粉-脂质复合物形成还受到多种因素的调控,其中物料水分含量和筒体温度是两大关键因素[51],但由于挤压过程本身的复杂性和多变性,其常被视为一种"黑箱操作",使得精确控制复合体形成的条件参数成为挑战[52]

    超声处理产生的热效应与机械力会破坏淀粉分子链,导致分子聚合度降低,进而增加AM的含量,但也会使得淀粉颗粒完整性遭到破坏,形成的淀粉-脂质复合物的数量和稳定性均会受到影响[53]。因此适当的超声处理条件,如功率密度为160~400 W/cm²,使淀粉颗粒膨胀并分解,促进AM分子的释放,增加淀粉-脂质复合物的生成[54],从而可提高复合物分子间相互作用力、短程淀粉分子的有序性和结晶度,产生更多的RS和SDS,提高耐消化性[5556]。除了单一频率的超声处理外,多频功率超声处理也可以通过打开双螺旋结构,增加AM与脂质分子的络合,增强结构有序度和耐消化能力[5658]。然而,过度超声处理可能降低体系耐消化性,比如功率密度>600 W/cm2时会使得形成的复合物相对减少[59]。并且长期超声作用引起的空化和机械效应,导致淀粉颗粒表面出现更多的孔隙和侵蚀结构,导致消化酶进入复合物内部结构,从而降低体系的耐消化性[60]

    微波是一种干热加工方式,与湿热烹饪相比,微波处理后淀粉-脂质复合物样品的衍射峰强度明显较弱,降低了复合物的含量和热稳定性,这表明微波在一定程度上破坏了复合物结晶区域的片层排列,从而破坏晶体结构的有序性[61]。微波使淀粉分子迅速振动,引起分子间碰撞、挤压和摩擦,导致淀粉分子粒径变小和复合物的分解[62]。此外,微波通过氢键作用增强了分子间和分子内的作用力,限制了水分子与AM和AP的游离羟基结合,降低了淀粉的溶胀程度[63]。这些结果致使样品中SDS与RS的含量减少,进而使其耐消化性下降。但也有研究发现微波处理会促进淀粉-脂质复合物的生成,Ⅰ型复合物的产量增加,并形成了Ⅱ型复合物,提高了体系的耐消化性[64]。这可能是因为微波处理过程中淀粉颗粒可以在快速加热条件下短时间内膨胀和破裂,促进了AM分子的释放,增加分子的流动性,使得复合物的形成量少于分解量,从而促进了淀粉-脂质复合物的形成。

    淀粉-脂质复合物的稳定性和淀粉的糊化程度都受水分影响。研究数据表明,在一定范围内(20%~60%)增加物料的水分含量,降低了直链淀粉分子间的相互作用力,复合物的形成增加,其耐消化性也随之提高[6566]。同时,水分含量的增加也会影响淀粉的糊化程度,糊化程度越高,淀粉分子越容易被脂质分子包围形成复合物[67]。当含水率为40%时,易形成有序度高的Ⅱ型复合物。这一发现可能是由于在该含水率下,水分能够更好地起到媒介作用,促进淀粉分子与FA间的相互作用和结合[68]。然而,水分含量并不是越高越好。一是当水分含量过高时,可能会导致复合物结构破坏和淀粉糊化过度,过度糊化的淀粉更容易被消化酶分解;二是水分含量的增加还会使复合物结构变得松散,从而降低了分子间的相互作用力,使得消化酶更容易渗透到复合物内部,容易被酶分解[69]

    通常来讲,在低于90 ℃下淀粉分子与FA形成的复合物通常具有较有序的结构,被称为“Ⅰ型”复合物,其熔化温度低于100 ℃。而在高于90 ℃下,由于成核缓慢,结晶有充足的传播时间,会形成比Ⅰ型复合物更稳定和耐消化的“Ⅱ型”复合物,熔化温度高于100 ℃[70]。研究表明,在一定的温度范围内(60~180 ℃),升高温度可以促进淀粉分子与脂肪酸的结合,增强复合物的热稳定性和耐消化性[7172]。这是因为反应温度的升高有助于打破分子间的束缚,增加分子间的自由度,从而促进分子间的相互作用和结合,形成更稳定、更耐消化的复合物。然而,过高的温度(>210 ℃)可能会使淀粉过度糊化,破坏复合物的结构,导致复合物的分解,从而降低其耐消化性。此外局部过热或温度波动也会对复合物的形成产生影响[73]

    在不同的pH条件下,淀粉分子与FA的溶解度、分子形态以及相互作用方式都会发生变化,这些变化直接影响到复合物的形成和稳定性。高于FA pKa值的pH有利于淀粉与长链FA之间形成复合物,而低于pKa值的pH则有利于淀粉与短链FA之间形成复合物。有研究发现酸性条件不利于复合物的形成,这是由于在酸性条件下FA将主要以难溶的未解离形式存在,淀粉分子由于酸水解降低了结合能力。而在pH>7条件下发生了更多的络合作用,这种现象出现的原因是AM在碱性条件的膨胀以及FA在碱性溶液中更大的溶解度[74]。并且随着pH的增加,AM与脂质的络合能力会增强。这是因为pH的增加可以使淀粉分子获得更多的负电荷,从而增强了与带正电荷的脂质分子的吸引力,这进一步提高了淀粉-脂质复合物的热稳定性和耐消化性[75]。然而,过高的pH可能会导致淀粉分子的过度解离,导致淀粉分子间的相互作用减弱,破坏复合物的结构,从而降低其耐消化性。关于外部因素(复合方式和条件)对淀粉-脂质复合物耐消化性影响的综合描述,详见表2

    表  2  外因对淀粉-脂质复合物结构及耐消化性的影响
    Table  2.  Effects of external factors on the structure and digestibility tolerance of starch-lipid complex
    外因 复合参数 对淀粉-脂质复合物结构类型的影响 对耐消化性的影响 参考文献
    复合方式 高压均质 20~150 MPa 低压下较多形成Ⅰ型高压下较多形成Ⅱ型 高于未处理样品 [4647]
    挤压 有利于形成Ⅱ性复合物 高于未处理样品 [4950]
    超声波 160~640 W/cm2 低功率 较多形成Ⅰ型复合物或I、Ⅱ型混合物 耐消化性降低,但高于未处理样品 [5459]
    适中功率 较多形成Ⅱ型复合物 耐消化性最高
    高功率 形成Ⅱ型复合物,有序度和稳定性降低 耐消化性略降低,但高于未处理样品
    微波 形成Ⅰ型复合物,有序结晶结构被破坏 低于未处理样品 [6163]
    复合条件 水分含量 20%~60% 随水分含量的增加,复合物形成增多,易形成Ⅱ型复合物 耐消化性提高 [6566]
    过高水分含量 淀粉分子糊化,结构松散 不耐消化 [69]
    反应温度 <90 ℃ 形成Ⅰ型复合物 耐消化性程度较低 [7172]
    >90 ℃ 形成Ⅱ型复合物 耐消化程度高
    温度过高 淀粉糊化过度,破坏复合物的结构 降低耐消化性
    pH pH<pKa 利于淀粉分子与短链FA形成复合物 随淀粉-脂质复合物形成增多,耐消化性提高 [7475]
    pH>pKa 利于淀粉分子与长链FA形成复合物
    pH<7 不利于形成淀粉-脂质复合物 不耐消化
    pH≥7 利于形成淀粉-脂质复合物 耐消化性提高
    下载: 导出CSV 
    | 显示表格

    淀粉的消化过程包含三个阶段:酶向淀粉的扩散、酶在淀粉上的吸附以及酶解作用。如图1所示,淀粉-脂质复合物的晶体结构可分为结晶区、半结晶区和无定形区。这些区域的紧密程度和有序度影响了复合物的耐消化性。淀粉-脂质复合物增强淀粉对酶解的抗性存在两种机制:一是淀粉-脂质复合物具有紧凑的结构,可以降低淀粉颗粒的溶胀,从而降低AM的渗出,这阻碍了酶-底物复合物的形成,减缓或阻止酶与淀粉的接触,二是其有序的结晶结构还可以阻碍酶进入颗粒内部,降低酶的可及性,减缓或阻止酶在淀粉结构中的作用[76]。因此具有更高有序度的复合物结构,如Ⅱ型复合物,表现出更高的耐消化性,相比之下,结构较为松散或无序的I型复合物则较易被酶降解[77]。此外,淀粉-脂质复合物结构内部FA的存在也影响了酶接触。这些FA占据了消化酶的位点,使得酶难以与淀粉分子有效结合,进一步降低了酶解效率[78]

    图  1  淀粉-脂质复合物的微观结构及消化酶与各部位的结合情况[78]
    Figure  1.  Microstructure of starch-lipid complex and the binding of digestive enzymes to various parts[78]

    蛋白质的对淀粉-脂质复合物的耐消化性的影响主要有两方面。一是与AM和FA形成新的三元复合物,这种结合导致淀粉的晶体结构发生改变,从而使其结构更为复杂且难以被消化酶降解[79]。二是特定种类的蛋白质,如麦谷蛋白和β-乳球蛋白等的乳化作用使更多的FA在体系中分散更加均匀,增加了FA与AM接触的机率[80],促进淀粉-脂质复合物的形成,并形成相对稳定的络合物。但并不是所有蛋白质的加入都可以促进复合物的形成,例如麦胶蛋白会覆盖淀粉颗粒的表面,从而减少AM与FA之间的接触[81]。这种现象与蛋白质的等电点有着密切关系,等电点高于7.0的蛋白质(如GE(A型明胶))更易与FA发生相互作用,利于淀粉-蛋白质-脂质复合物的形成,增强淀粉的耐消化性[82]。并且在一定范围内增加蛋白质的浓度,复合物的形成以及耐消化性也会随之增加。有研究发现淀粉-脂质-蛋白质的耐消化性比相应的二元复合物要强,这是由于三元复合物结构有序性更强, 空间位阻更大, 而且三元混合体系中存在的蛋白质可能与淀粉酶作用导致其与底物反应的能力降低[83]。此外,蛋白质的存在还可能参与形成淀粉凝胶,改变食品结构,影响其抗酶解能力。

    酚类化合物是一种抗氧化剂,可以抑制脂质氧化和淀粉酶的活性,从而延缓淀粉的消化。并且有研究发现多酚可以与淀粉形成复合物从而增加淀粉的耐消化性[84]。在分子水平上,酚类可与淀粉分子形成两种类型的复合物。一种是被证实为单个左旋螺旋形式的V型淀粉-多酚复合物,这种V型结构虽只有疏水的烷基链被包裹在AM的螺旋空腔内(如图2A),但由于酚类化合物与淀粉的紧密结合,也形成了一个相对稳定的复合物。这种复合物与淀粉-脂类复合物具有类似的消化特性。另一种是非包合复合物,是由于酚类化合物并未进入AM螺旋空腔内部,其羟基或羰基通过氢键与AM相互作用形成分子间聚集体(如图2B),可与FA形成一种三元体系。两种相互作用的结果和对淀粉性质的影响会受制备方法的影响,比如莲子淀粉与茶多酚在低功率超声波作用下形成非包合复合物,在高功率超声波作用下形成了V型复合物[85],而在高压下主要形成V型复合物[86]。与淀粉-脂类复合物相比,酚类复合物可能具有更高的耐消化性。这是由于多酚能与消化酶的活性位点结合,更有效地抑制消化酶的活性,从而进一步减缓复合物的酶解[87]。此外,多酚还可以抑制淀粉在复合物中的降解,从而保持复合物的稳定性。

    图  2  淀粉-酚类复合物的两种结构示意图[88]
    Figure  2.  Two structural diagrams of starch-phenolic complexes[88]

    淀粉-脂质复合物可以是Ⅰ型或Ⅱ型,这取决于复合条件、淀粉与脂质的含量和结构等各种影响因素的相互作用。由于结构有序度和结晶度较高,Ⅱ型复合物比Ⅰ型复合物具有更高的抗性。总的来说,AM更容易与脂质形成复合物,从而提高其耐消化性能。而不同类型的脂质具有不同的结构和性质,FA碳链越短,不饱和程度越高,复合物的热稳定性越强,有序度越高,其消化速率越慢。淀粉分子和FA在加工过程中也受到多种因素的影响,如温度、压力、pH和水分含量等都会影响复合物的形成和结构,从而影响其耐消化性。此外,食品中存在的其他物质,如蛋白质、酚类等也会与淀粉或FA形成新的复合物,从而影响整体消化性能。明确加工过程中调控淀粉-脂质复合物形成和加工稳定性及耐消化性等品质的影响因素和关键参数,以便实现更精确的控制和优化,开发出更健康、更符合消费者需求的食品。

    在未来的研究中,一方面,我们亟需更为深入地探究各类食品成分之间繁复的相互作用机制,将研究范畴延展至膳食纤维、矿物质等诸多成分与淀粉-脂质复合物协同作用对食品消化性能的影响,以及如何协同优化食品的营养价值、加工品质和感官品质。另一方面,还需进一步深入探究淀粉-脂质复合物耐消化性的功能性应用。其一,针对不同人群的生理特性和营养需求,定制化地设计具备特定消化性能的食品。例如,为老年人开发易于消化吸收且能提供充足营养的食品;为运动员研制能够快速补充能量但又不会引发血糖大幅波动的食品。其二,研究淀粉-脂质复合物在功能性食品中的应用,例如开发具有降低血糖、胆固醇或具有抗氧化特性的食品,这或许需要深入钻研复合物的消化动力学和生物利用度。其三,研究淀粉-脂质复合物在消化吸收过程中的作用机制,以及对血糖、血脂、肠道菌群等生理指标的影响,深入了解其功能性,为其在健康食品中的应用提供更有力的科学依据。其次,结合大数据和人工智能技术,整合分析源自不同研究的大量数据,挖掘潜在的规律和趋势,建立模型,为食品研发和营养策略制定提供更为智能和高效的指导。

  • 图  1   淀粉-脂质复合物的微观结构及消化酶与各部位的结合情况[78]

    Figure  1.   Microstructure of starch-lipid complex and the binding of digestive enzymes to various parts[78]

    图  2   淀粉-酚类复合物的两种结构示意图[88]

    Figure  2.   Two structural diagrams of starch-phenolic complexes[88]

    表  1   内因对淀粉-脂质复合物结构及耐消化性的影响

    Table  1   Effects of endogenous factors on the structure and digestibility tolerance of starch-lipid complexes

    内因 条件 结构 对淀粉-脂质复合物形成的影响 对耐消化性的影响 文献
    淀粉 淀粉晶体
    结构类型
    A型 短支链多,晶体水分子少 耐消化性淀粉含量增加40%
    左右
    [1719]
    B型 短支链少,晶体水分子多,结构开放 利于形成淀粉-脂质复合物 耐消化性淀粉增加60%左右
    C型 A型和B型的结合 耐消化性淀粉增加30%左右
    V型 淀粉-疏水分子络合物 捕捉客体分子形成淀粉-脂质
    复合物
    抗性淀粉含量增加最多 [16]
    AM含量 含量>20% 结构稳定 利于淀粉-脂质复合物形成 耐消化性淀粉含量高于20% [2122]
    含量<20% 结构稳定性下降 减少淀粉-脂质复合物形成 耐消化性淀粉含量低于20%
    脱支处理 AM含量增加,促进II型复合物的形成 促进淀粉-脂质复合物形成 耐消化性提高 [2527]
    AM链长 DP100~850 稳定性、有序度增加 随链长增加形成增多 耐消化性高于对照样 [2834]
    较长链长 有序度降低 阻碍复合物形成 耐消化性低于对照样
    FA FA含量 0~5% 随FA含量增加,结构趋于稳定 利于淀粉-脂质复合物形成 耐消化性高于对照样 [3537]
    >20% FA易自聚集 不利于淀粉-脂质复合物形成 不耐消化
    FA链长 10~14个碳原子 II型 有利于淀粉-脂质复合物的形成 耐消化性淀粉含量高于40% [3841]
    16~18个碳原子 I型,易自聚集 阻碍淀粉-脂质复合物的形成 耐消化性淀粉含量低于40%
    FA不饱和度 无碳碳双键 II型 淀粉-脂质复合物含量增多 均高于对照样 [4245]
    1~2个碳碳双键 I型 利于形成淀粉-脂质复合物
    下载: 导出CSV

    表  2   外因对淀粉-脂质复合物结构及耐消化性的影响

    Table  2   Effects of external factors on the structure and digestibility tolerance of starch-lipid complex

    外因 复合参数 对淀粉-脂质复合物结构类型的影响 对耐消化性的影响 参考文献
    复合方式 高压均质 20~150 MPa 低压下较多形成Ⅰ型高压下较多形成Ⅱ型 高于未处理样品 [4647]
    挤压 有利于形成Ⅱ性复合物 高于未处理样品 [4950]
    超声波 160~640 W/cm2 低功率 较多形成Ⅰ型复合物或I、Ⅱ型混合物 耐消化性降低,但高于未处理样品 [5459]
    适中功率 较多形成Ⅱ型复合物 耐消化性最高
    高功率 形成Ⅱ型复合物,有序度和稳定性降低 耐消化性略降低,但高于未处理样品
    微波 形成Ⅰ型复合物,有序结晶结构被破坏 低于未处理样品 [6163]
    复合条件 水分含量 20%~60% 随水分含量的增加,复合物形成增多,易形成Ⅱ型复合物 耐消化性提高 [6566]
    过高水分含量 淀粉分子糊化,结构松散 不耐消化 [69]
    反应温度 <90 ℃ 形成Ⅰ型复合物 耐消化性程度较低 [7172]
    >90 ℃ 形成Ⅱ型复合物 耐消化程度高
    温度过高 淀粉糊化过度,破坏复合物的结构 降低耐消化性
    pH pH<pKa 利于淀粉分子与短链FA形成复合物 随淀粉-脂质复合物形成增多,耐消化性提高 [7475]
    pH>pKa 利于淀粉分子与长链FA形成复合物
    pH<7 不利于形成淀粉-脂质复合物 不耐消化
    pH≥7 利于形成淀粉-脂质复合物 耐消化性提高
    下载: 导出CSV
  • [1] 管骁, 夏吉安, 张妤, 等. 抗性淀粉的性质、制备及其对慢性肾脏病的影响[J]. 食品与生物技术学报,2024,43(1):1−12. [GUAN Xiao, XIA Jian, ZHANG Yu, et al. Properties, preparation and effects of resistant starch on chronic kidney disease[J]. Journal of Food Science and Biotechnology,2024,43(1):1−12.] doi: 10.12441/spyswjs.20211106003

    GUAN Xiao, XIA Jian, ZHANG Yu, et al. Properties, preparation and effects of resistant starch on chronic kidney disease[J]. Journal of Food Science and Biotechnology, 2024, 43(1): 1−12. doi: 10.12441/spyswjs.20211106003

    [2]

    JIANG F, DU C W, JIANG W Q, et al. The preparation, formation, fermentability, and applications of resistant starch[J]. International Journal of Biological Macromolecules,2020,150:1155−1161. doi: 10.1016/j.ijbiomac.2019.10.124

    [3]

    ZHENG B, WANG T T, WANG H W, et al. Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type V) in rats fed by high-fat diet[J]. Carbohydrate Polymers,2020,246:1−34.

    [4] 张俊杰, 王鹏, 岳程程, 等. 淀粉-脂质复合物研究进展[J]. 中国粮油学报,2023,38(8):250−259. [ZHANG Junjie, WANG Peng, YUE Chengcheng, et al. Research progress of starch-lipid complex[J]. Journal of the Chinese Cereals and Oils Association,2023,38(8):250−259.] doi: 10.3969/j.issn.1003-0174.2023.08.034

    ZHANG Junjie, WANG Peng, YUE Chengcheng, et al. Research progress of starch-lipid complex[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(8): 250−259. doi: 10.3969/j.issn.1003-0174.2023.08.034

    [5]

    WANG L L, ZHAO S M, KONG J X, et al. Changing cooking mode can slow the starch digestion of colored brown rice:A view of starch structural changes during cooking[J]. International Journal of Biological Macromolecules,2020,155:226−232. doi: 10.1016/j.ijbiomac.2020.03.203

    [6] 黄承刚, 李津源, 徐任园, 等. 直链淀粉含量对淀粉-脂肪酸复合物形成及理化特性的影响[J]. 食品工业科技,2022,43(13):49−55. [HUANG Chenggang, LI Jinyuan, XU Renyuan, et al. Effects of amylose content on the formation and physicochemical properties of starch-fatty acid complex[J]. Science and Technology of Food Industry,2022,43(13):49−55.]

    HUANG Chenggang, LI Jinyuan, XU Renyuan, et al. Effects of amylose content on the formation and physicochemical properties of starch-fatty acid complex[J]. Science and Technology of Food Industry, 2022, 43(13): 49−55.

    [7]

    ZHANG Y, WANG X, WANG Y, et al. Effect of starch chain length on the physicochemical properties of starch-lipid composites prepared by melt extrusion[J]. Food Chemistry,2018,262:116−123.

    [8]

    LIU Q, WANG Y H, YANG Y Y, et al. Structure, physicochemical properties and in vitro digestibility of extruded starch-fauric acid complexes with different amylose contents[J]. Food Hydrocolloids,2023,136:1−10.

    [9] 江佳妮, 向贵元, 邓佳宜, 等. 脂肪酸链长对高直链玉米淀粉-脂质复合物结构及理化性质的影响[J]. 食品与机械,2022,38(3):25−31. [JIANG Jiani, XIANG Guiyuan, DENG Jiayi, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose maize starch lipid complex[J]. Food and Machinery,2022,38(3):25−31.]

    JIANG Jiani, XIANG Guiyuan, DENG Jiayi, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose maize starch lipid complex[J]. Food and Machinery, 2022, 38(3): 25−31.

    [10]

    NIU B, QIN Y, ZHU X, et al. Effect of plasma-activated water on the formation of endogenous wheat starch-lipid complexes during extrusion[J]. International Journal of Biological Macromolecules,2024,257:1−7.

    [11] 刘静娜, 张少飞. 高压均质制备玉米淀粉-脂质复合物及其性质研究[J]. 食品工业,2018,39(9):40−43. [LIU Jingna, ZHANG Shaofei. Preparation and properties of corn starch-lipid complex by high pressure homogenization[J]. The Food Industry,2018,39(9):40−43.]

    LIU Jingna, ZHANG Shaofei. Preparation and properties of corn starch-lipid complex by high pressure homogenization[J]. The Food Industry, 2018, 39(9): 40−43.

    [12] 郁映涛, 曹少攀, 肖刘洋, 等. 不同温度条件的超声波处理对玉米淀粉脂质复合能力的影响及其机理[J]. 食品科学,2023,44(23):77−85. [YU Yingtao, CAO Shaopan, XIAO Liuyang, et al. Effect of ultrasonic treatment at different temperature on lipid complex ability of corn starch and its mechanism[J]. Food Science,2023,44(23):77−85.] doi: 10.7506/spkx1002-6630-20221108-083

    YU Yingtao, CAO Shaopan, XIAO Liuyang, et al. Effect of ultrasonic treatment at different temperature on lipid complex ability of corn starch and its mechanism[J]. Food Science, 2023, 44(23): 77−85. doi: 10.7506/spkx1002-6630-20221108-083

    [13] 周斌. V型淀粉的结构变化及其对消化性能的影响[J]. 食品工业,2018,39(10):208−212. [ZHOU Bin. Structural changes of V-type starch and their effects on digestive performance[J]. The Food Industry,2018,39(10):208−212.]

    ZHOU Bin. Structural changes of V-type starch and their effects on digestive performance[J]. The Food Industry, 2018, 39(10): 208−212.

    [14] 褚绍言, 孙冰华, 田潇凌, 等. 淀粉-脂质复合物的形成及其性质的研究进展[J]. 食品研究与开发,2021,42(12):206−211. [CHU Shaoyan, SUN Binghua, TIAN Xiaoling, et al. Research progress on the formation and properties of starch-lipid complex[J]. Food Research and Development,2021,42(12):206−211.] doi: 10.12161/j.issn.1005-6521.2021.12.032

    CHU Shaoyan, SUN Binghua, TIAN Xiaoling, et al. Research progress on the formation and properties of starch-lipid complex[J]. Food Research and Development, 2021, 42(12): 206−211. doi: 10.12161/j.issn.1005-6521.2021.12.032

    [15]

    ZHENG M, CHEN C, YU J, et al. Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes[J]. Journal of Agricultural and Food Chemistry,2018,66(8):1872−1880. doi: 10.1021/acs.jafc.7b04779

    [16]

    WANG L L, ZHAO S M, KONG J X, et al. Changing cooking mode can slow the starch digestion of colored brown rice:A view of starch structural changes during cooking[J]. International Journal of Biological Macromolecules,2020,155:226−232. doi: 10.1016/j.ijbiomac.2020.03.203

    [17]

    LIU M Y, WU X N, WANG X Y, et al. Effect of amylose content and crystal type on the structure and digestibility of starch-fatty acid complex nanoparticle[J]. Food Structure,2023,37:1−10.

    [18]

    WANG R, HE Z S, CAO Y J, et al. Impact of crystalline structure on the digestibility of amylopectin-based starch-lipid complexes[J]. International Journal of Biological Macromolecules,2023,242:1−7.

    [19]

    CHI C D, LI X X, HUANG S X, et al. Basic principles in starch multi-scale structuration to mitigate digestibility:A review[J]. Trends in Food Science & Technology,2021,109:154−168.

    [20] 解明昱, 李安平, 毛立波, 等. 3种晶型淀粉与月桂酸复合对其形貌结构和消化特性的影响[J]. 中国粮油学报,2021,36(1):53−60. [XIE Mingyu, LI Anping, MAO Libo, et al. Effects of three crystalline starches combined with lauric acid on their morphology, structure and digestive characteristics[J]. Journal of the Chinese Cereals and Oils Association,2021,36(1):53−60.] doi: 10.3969/j.issn.1003-0174.2021.01.010

    XIE Mingyu, LI Anping, MAO Libo, et al. Effects of three crystalline starches combined with lauric acid on their morphology, structure and digestive characteristics[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(1): 53−60. doi: 10.3969/j.issn.1003-0174.2021.01.010

    [21] 程冰, 林顺顺, 李梦琴, 等. 2种抗性淀粉的结构特征及体外消化性研究[J]. 中国粮油学报,2022,37(2):81−88,96. [CHENG Bing, LIN Shunshun, LI Mengqin, et al. Structural characteristics and in vitro digestibility of two resistant starches[J]. Journal of the Chinese Cereals and Oils Association,2022,37(2):81−88,96.] doi: 10.3969/j.issn.1003-0174.2022.02.014

    CHENG Bing, LIN Shunshun, LI Mengqin, et al. Structural characteristics and in vitro digestibility of two resistant starches[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(2): 81−88,96. doi: 10.3969/j.issn.1003-0174.2022.02.014

    [22] 张淑仪, 许祥, 张林华, 等. 高直链玉米淀粉添加对挤压荞麦面条结构、蒸煮品质及消化特性的影响[J]. 食品科学,2023,44(6):116−124. [ZHANG Shuyi, XU Xiang, ZHANG Linhua, et al. Effect of high amylose corn starch addition on structure, cooking quality and digestive characteristics of extruded buckwheat noodles[J]. Food Science,2023,44(6):116−124.] doi: 10.7506/spkx1002-6630-20220505-044

    ZHANG Shuyi, XU Xiang, ZHANG Linhua, et al. Effect of high amylose corn starch addition on structure, cooking quality and digestive characteristics of extruded buckwheat noodles[J]. Food Science, 2023, 44(6): 116−124. doi: 10.7506/spkx1002-6630-20220505-044

    [23] 贾祥泽, 陈秉彦, 赵蓓蓓, 等. 直链淀粉-脂质复合物的形成及其结构性质研究进展[J]. 食品与发酵工业,2017,43(3):276−284. [JIA Xiangze, CHENG Bingyan, ZHAO Beibei, et al. Research progress on the formation and structural properties of amylose lipid complex[J]. Food and Fermentation Industries,2017,43(3):276−284.]

    JIA Xiangze, CHENG Bingyan, ZHAO Beibei, et al. Research progress on the formation and structural properties of amylose lipid complex[J]. Food and Fermentation Industries, 2017, 43(3): 276−284.

    [24]

    WANG H S, WU Y M, WANG N F, et al. Effect of water content of high-amylose corn starch and glutinous rice starch combined with lipids on formation of starch-lipid complexes during deep-fat frying[J]. Food Chemistry,2019,278:515−522. doi: 10.1016/j.foodchem.2018.11.092

    [25] 张昀, 赵迪, 张康逸, 等. 复合酶法改性糯麦A-、B-型淀粉及对其结构和消化特性的影[J]. 食品科学,2022,43(22):74−81. [ZHANG Yun, ZHAO Di, ZHANG Kangyi, et al. Modification of A- and B- type starch of glutinous wheat by compound enzyme method and its effect on its structure and digestive characteristics[J]. Food Science,2022,43(22):74−81.] doi: 10.7506/spkx1002-6630-20210917-205

    ZHANG Yun, ZHAO Di, ZHANG Kangyi, et al. Modification of A- and B- type starch of glutinous wheat by compound enzyme method and its effect on its structure and digestive characteristics[J]. Food Science, 2022, 43(22): 74−81. doi: 10.7506/spkx1002-6630-20210917-205

    [26]

    LIU Q, WANG Y H, YANG Y Y, et al. Effects of extrusion and enzymatic debranching on the structural characteristics and digestibility of corn and potato starches[J]. Food Bioscience,2022,47(8):1−10.

    [27]

    SUN S L, HONG Y, GU Z B, et al. Impacts of fatty acid type on binding state, fine structure, and in vitro digestion of debranched starch-fatty acid complexes with different debranching degrees[J]. Carbohydrate Polymers,2023,318:1−13.

    [28]

    ZHOU X, WANG R, ZHANG Y, et al. Effects of amylose chain length and heat treatment on amylose-glycerol monocaprate complex formation[J]. Carbohydrate Polymers,2013,95(1):227−232. doi: 10.1016/j.carbpol.2013.02.051

    [29] 李若敏, 张焕新, 郑义, 等. 酶法制备玉米慢消化淀粉的研究[J]. 中国粮油学报,2022,37(6):67−74. [LI Ruomin, ZHANG Huanxin, ZHENG Yi, et al. Study on enzymatic preparation of maize slow-digestion starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(6):67−74.]

    LI Ruomin, ZHANG Huanxin, ZHENG Yi, et al. Study on enzymatic preparation of maize slow-digestion starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(6): 67−74.

    [30]

    MARTINEZ M M, LI C, OKONIEWSKA M, et al. Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths[J]. Carbohydrate Polymers,2018,197:531−539. doi: 10.1016/j.carbpol.2018.06.021

    [31]

    ZHANG H, WANG R, CHEN Z X, et al. Amylopectin-sodium palmitate complexes as sustainable nanohydrogels with tunable size and fractal dimensions[J]. Journal of Agricultural and Food Chemistry,2020,68(12):3796−3805.

    [32]

    HA RAM K, SEUNG JUN C, HEE-DON C, et al. Amylosucrase-modified waxy potato starches recrystallized with amylose:The role of amylopectin chain length in formation of low-digestible fractions[J]. Food Chemistry,2020,318:1−36.

    [33]

    ZHANG H, WANG H Y, ZHANG Q C, et al. Fabrication and characterization of starch-lipid complexes using chain-elongated waxy corn starches as substrates[J]. Food Chemistry,2023,398:1−9.

    [34]

    JOO HEE L, HA RAM K, SEUNG JUN C, et al. Complexation of amylosucrase-modified waxy corn starch with fatty acids:Determination of their physicochemical properties and digestibilities[J]. Journal of Food Science,2019,84(6):1362−1370. doi: 10.1111/1750-3841.14647

    [35]

    CHEN C, HUANG S Q, YU J L, et al. Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing:A dynamic structural analysis[J]. Carbohydrate Polymers,2020,244:1−7.

    [36]

    LUO S J, ZENG Z L, MEI Y X, et al. Improving ordered arrangement of the short-chain amylose-lipid complex by narrowing molecular weight distribution of short-chain amylose[J]. Carbohydrate Polymers,2020,240:1−5.

    [37]

    LIU P F, GAO W, ZHANG X L, et al. Physicochemical properties of pea starch-lauric acid complex modified by maltogenic amylase and pullulanase[J]. Carbohydrate Polymers,2020,242:1−33.

    [38]

    WU X N, CHEN H R, WANG X Y, et al. Effect of fatty acids with different chain lengths and degrees of unsaturation on film properties of potato starch-fatty acids films for chicken packaging[J]. Food Biophysics,2023,18(3):457−469. doi: 10.1007/s11483-023-09788-5

    [39] 杨玥熹, 童姝, 顾振宇, 等. 不同链长单甘酯-籼米淀粉复合物结构及体外消化特性[J]. 中国粮油学报,2020,35(7):42−49. [YANG Yuexi, TONG Shu, GU Zhenyu, et al. Structure and in vitro digestion characteristics of monoglycate-indica rice starch complexes with different chain lengths[J]. Journal of the Chinese Cereals and Oils Association,2020,35(7):42−49.]

    YANG Yuexi, TONG Shu, GU Zhenyu, et al. Structure and in vitro digestion characteristics of monoglycate-indica rice starch complexes with different chain lengths[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(7): 42−49.

    [40] 张昀, 张康逸, 赵迪, 等. 糯麦淀粉-脂质复合物的结构及体外消化特性[J]. 食品工业科技,2022,43(20):97−106. [ZHANG Yun, ZHANG Kangyi, ZHAO Di, et al. Structure and digestive properties of amyloid-lipid complex in glutinous wheat[J]. Science and Technology of Food Industry,2022,43(20):97−106.]

    ZHANG Yun, ZHANG Kangyi, ZHAO Di, et al. Structure and digestive properties of amyloid-lipid complex in glutinous wheat[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106.

    [41]

    Qin R B, ZHU J M, LI G L, et al. Effects of fatty acid chain length on structure and in vitro enzymatic digestibility of type 5 resistant starch[J]. International Journal of Food Science & Technology,2023,58(11):5829−5837.

    [42] 陈雪华, 陈山, 陈旭, 等. 玉米淀粉-脂质复合物对曲奇饼干体外消化和血糖生成指数的影响[J]. 食品安全质量检测学报,2022,13(8):2680−2686. [CHEN Xuehua, CHEN Shan, CHEN Xu, et al. Effects of corn starch lipid complex on digestion and glycemic index of cookies in vitro[J]. Journal of Food Safety & Quality,2022,13(8):2680−2686.] doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040

    CHEN Xuehua, CHEN Shan, CHEN Xu, et al. Effects of corn starch lipid complex on digestion and glycemic index of cookies in vitro[J]. Journal of Food Safety & Quality, 2022, 13(8): 2680−2686. doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040

    [43]

    SUN S L, JIN Y Z, HONG Y, et al. Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes[J]. Food Hydrocolloids,2021,110:1−52.

    [44] 郭宏伟, 赵城彬, 吴玉柱, 等. 红豆淀粉-脂质复合物结构及体外消化性质[J]. 食品科学,2019,40(21):21−27. [GUO Hongwei, ZHAO Chengbin, WU Yuzhu, et al. Structure and digestion properties of starch-lipid complex in red bean[J]. Food Science,2019,40(21):21−27.]

    GUO Hongwei, ZHAO Chengbin, WU Yuzhu, et al. Structure and digestion properties of starch-lipid complex in red bean[J]. Food Science, 2019, 40(21): 21−27.

    [45]

    CAI C X, TIAN Y Q, SUN C R, et al. Resistant structure of extruded starch:Effects of fatty acids with different chain lengths and degree of unsaturation[J]. Food Chemistry,2022,374:1−10.

    [46]

    BYUNG-HOO L, HYUN-WOOK C. Improved rheological properties and shelf-life of wheat starch-lipid complex produced by the homogenization process[J]. Food Science and Biotechnology,2021,30(4):541−544. doi: 10.1007/s10068-021-00889-w

    [47]

    ZHENG Y X, OU Y J, ZHANG Y, et al. Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization[J]. International Journal of Biological Macromolecules,2020,156:196−203. doi: 10.1016/j.ijbiomac.2020.04.032

    [48]

    ZHU F. Structure and physicochemical properties of starch affected by dynamic pressure treatments:A review[J]. Trends in Food Science & Technology,2021,116:639−654.

    [49] 邓慧清, 吴卫国, 廖卢艳, 等. 挤压杂粮重组米体外消化特性研究[J]. 中国粮油学报,2022,37(6):10−17. [DENG Huiqin, WU Weiguo, LIAO Luyan, et al. Study on digestive characteristics of extrusion-mixed grain recombination rice in vitro[J]. Journal of the Chinese Cereals and Oils Association,2022,37(6):10−17.] doi: 10.3969/j.issn.1003-0174.2022.06.003

    DENG Huiqin, WU Weiguo, LIAO Luyan, et al. Study on digestive characteristics of extrusion-mixed grain recombination rice in vitro[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(6): 10−17. doi: 10.3969/j.issn.1003-0174.2022.06.003

    [50] 戚明明, 任志尚, 张光耀, 等. 挤压处理对豌豆淀粉的流变特性和体外消化率的影响[J]. 食品科学,2021,42(9):55−63. [QI Mingming, REN Zhishang, ZHANG Guangyao, et al. Effect of extrusion treatment on rheological properties and in vitro digestibility of pea starch[J]. Food Science,2021,42(9):55−63.] doi: 10.7506/spkx1002-6630-20200417-227

    QI Mingming, REN Zhishang, ZHANG Guangyao, et al. Effect of extrusion treatment on rheological properties and in vitro digestibility of pea starch[J]. Food Science, 2021, 42(9): 55−63. doi: 10.7506/spkx1002-6630-20200417-227

    [51]

    ZHANG G P, XUAN Y, YU F, et al. Microstructural, physicochemical properties and starch digestibility of brown rice flour treated with extrusion and heat moisture[J]. International Journal of Biological Macromolecules,2023,242:1−9.

    [52]

    CERVANTES-RAMÍREZ J E, CABRERA-RAAMÍREZ A H, MORALES-SÁNCHEZ, et al. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids[J]. Carbohydrate Polymers,2020,246:1−10.

    [53]

    ABDOLKHALEGH G, JAFAR MOHAMMADZADEH M, ALI M, et al. Physicochemical, structural, and rheological characteristics of corn starch after thermal-ultrasound processing[J]. Food Science and Technology International,2021,29(2):168−180.

    [54]

    KANG X M, LIU P F, GAO W, et al. Preparation of starch-lipid complex by ultrasonication and its film forming capacity[J]. Food Hydrocolloids,2020,99:1−8.

    [55]

    XIAO L Y, YU Y T, YANG X F, et al. Physicochemical properties of ultrasound-pretreated pea starch and its inclusion complexes with lauric acid[J]. Food Chemistry,2023,20:1−8.

    [56]

    TANG J L, LIANG Q F, REN X F, et al. Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions[J]. International Journal of Biological Macromolecules,2022,222:950−960. doi: 10.1016/j.ijbiomac.2022.09.242

    [57]

    HUSNAIN R, LIANG Q F, KASHIF A, et al. Dual-frequency power ultrasound effects on the complexing index, physicochemical properties, and digestion mechanism of arrowhead starch-lipid complexes[J]. Ultrasonics Sonochemistry,2022,84:1−10.

    [58]

    HUSNAIN R, KASHIF A, REN X F, et al. Physicochemical properties and digestion mechanism of starch-linoleic acid complex induced by multi-frequency power ultrasound[J]. Food Chemistry,2021,364:1−11.

    [59]

    ZHANG X, MI T, GAO W, et al. Ultrasonication effects on physicochemical properties of starch-lipid complex[J]. Food Chemistry,2022,388:1−9.

    [60]

    HAO Z W, XU H J, YU Y Y, et al. Preparation of the starch-lipid complexes by ultrasound treatment:Exploring the interactions using molecular docking[J]. International Journal of Biological Macromolecules,2023,237:1−11.

    [61]

    LI J, WANG M T, LIU G X, et al. Effects of microwave and conventional heating on physicochemical, digestive, and structural properties of debranched quinoa starch‐oleic acid complexes with different water addition[J]. Journal of the Science of Food and Agriculture,2023,103(4):2146−2154. doi: 10.1002/jsfa.12415

    [62] 黄雅萍, 刘霞, 杨书捷, 等. 莲子抗性淀粉体外消化的结构变化对短双歧杆菌增殖的影响[J]. 中国食品学报,2022,22(8):69−79. [HUANG Yaping, LIU Xia, YANG Shujie, et al. Effect of structural changes of resistant starch in lotus seed on the proliferation of Bifidobacterium brevis[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(8):69−79.]

    HUANG Yaping, LIU Xia, YANG Shujie, et al. Effect of structural changes of resistant starch in lotus seed on the proliferation of Bifidobacterium brevis[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(8): 69−79.

    [63]

    TAO Y, YAN B W, FAN D M, et al. Structural changes of starch subjected to microwave heating:A review from the perspective of dielectric properties[J]. Trends in Food Science & Technology,2020,99:593−607.

    [64]

    KANG X M, JIA S Q, GAO W, et al. The formation of starch-lipid complexes by microwave heating[J]. Food Chemistry,2022,382:1−11.

    [65]

    LI Q, SHI S X, DONG Y Y, et al. Characterisation of amylose and amylopectin with various moisture contents after frying process:Effect of starch-lipid complex formation[J]. International Journal of Food Science & Technology,2020,56(2):639−647.

    [66]

    ZHANG J J, YU X S, DUAN Y M, et al. Influences of feed moisture on the structure and physicochemical properties of high amylose corn starch-flax oil complexes during extrusion[J]. Journal of Cereal Science,2022,107:1−7.

    [67] 闫喜梅, 胡新中, 李俊俊, 等. 水分含量对燕麦淀粉糊化老化特性影响的研究[J]. 中国粮油学报,2015,30(4):6. [YAN Ximei, HU Xinzhong, LI Junjun, et al. Effects of water content on gelatinizing aging characteristics of oat starch[J]. Journal of the Chinese Cereals and Oils Association,2015,30(4):6.]

    YAN Ximei, HU Xinzhong, LI Junjun, et al. Effects of water content on gelatinizing aging characteristics of oat starch[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(4): 6.

    [68]

    LIU X, HUANG S Q, CHEN C, et al. Changes of starch during thermal processing of foods:Current status and future directions[J]. Trends in Food Science & Technology,2022,119:320−337.

    [69] 曹旭, 辛明航, 刘婷婷, 等. 湿热处理对油莎豆淀粉理化性质、结构及体外消化特性的影响[J]. 中国粮油学报,2022,37(10):131−137. [CAO Xu, XIN Minghang, LIU Tingting, et al. Effects of moisture and heat treatment on physicochemical properties, structure and in vitro digestive characteristics of soybean starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(10):131−137.]

    CAO Xu, XIN Minghang, LIU Tingting, et al. Effects of moisture and heat treatment on physicochemical properties, structure and in vitro digestive characteristics of soybean starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(10): 131−137.

    [70]

    NIU B, CHEN C, CAI J J, et al. Effects of cooling rate and complexing temperature on the formation of starch-lauric acid-β-lactoglobulin complexes[J]. Carbohydrate Polymers,2021,253:1−7.

    [71]

    OSKAYBAŞ-EMLEK B, ÖZBEY A, AYDEMIR L Y, et al. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra[J]. International Journal of Biological Macromolecules,2022,207:978−989. doi: 10.1016/j.ijbiomac.2022.03.189

    [72]

    SUN S L, HONG Y, GU Z B, et al. An investigation into the structure and digestibility of starch-oleic acid complexes prepared under various complexing temperatures[J]. International Journal of Biological Macromolecules,2019,138:966−974. doi: 10.1016/j.ijbiomac.2019.07.166

    [73]

    LI Q, SHI S X, DU S K, et al. Starch-palmitic acid complex formation and characterization at different frying temperature and treatment time[J]. LWT-Food Science and Technology,2021,136:1−9.

    [74]

    WANG S, COPEFAND L. Effect of acid hydrolysis on starch structure and functionality:A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(8):1081−1097. doi: 10.1080/10408398.2012.684551

    [75]

    NIU B, CHEN C, CAI J, et al. Effect of pH on formation of starch complexes with lauric acid and β-lactoglobulin[J]. LWT-Food Science and Technology,2020,132:1−35.

    [76] 任欣, 张一, 方圆, 等. 影响淀粉消化的内外因素[J]. 中国食品学报,2021,21(12):283−292. [REN Xin, ZHANG Yi, FANG Yuan, et al. Internal and external factors affecting starch digestion[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):283−292.]

    REN Xin, ZHANG Yi, FANG Yuan, et al. Internal and external factors affecting starch digestion[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 283−292.

    [77] 石少侠, 董瑶瑶, 李琪, 等. 淀粉-脂质复合物功能及营养特性研究进展[J]. 食品科学,2020,41(9):238−245. [SHI Shaoxia, DONG Yaoyao, LI Qi, et al. Advances in functional and nutritional properties of starch-lipid complexes[J]. Food Science,2020,41(9):238−245.] doi: 10.7506/spkx1002-6630-20190427-371

    SHI Shaoxia, DONG Yaoyao, LI Qi, et al. Advances in functional and nutritional properties of starch-lipid complexes[J]. Food Science, 2020, 41(9): 238−245. doi: 10.7506/spkx1002-6630-20190427-371

    [78] 赵小云, 黄琪琳, 张宾, 等. 淀粉-脂质/脂肪酸复合物研究进展[J]. 食品科学,2020,41(15):338−347. [ZHAO Xiaoyun, HUANG Qilin, ZHANG Bin, et al. Research progress of starch-lipid/fatty acid complexes[J]. Food Science,2020,41(15):338−347.] doi: 10.7506/spkx1002-6630-20190729-398

    ZHAO Xiaoyun, HUANG Qilin, ZHANG Bin, et al. Research progress of starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(15): 338−347. doi: 10.7506/spkx1002-6630-20190729-398

    [79]

    WANG J W, YU J L, COPEFAND L, et al. Revisiting the formation of starch-monoglyceride-protein complexes:Effects of octenyl succinic anhydride modification[J]. Journal of Agricultural and Food Chemistry,2023,71(48):19033−19044. doi: 10.1021/acs.jafc.3c07269

    [80] 任顺成, 张丹丹, 刘泽龙. 4种外源植物蛋白对小麦淀粉消化性的影响[J]. 中国食品学报,2023,23(2):91−99. [REN Shuncheng, ZHANG Dandan, LIU Zelong. Effects of four exogenous plant proteins on the digestibility of wheat starch[J]. Journal of the Chinese Cereals and Oils Association,2023,23(2):91−99.]

    REN Shuncheng, ZHANG Dandan, LIU Zelong. Effects of four exogenous plant proteins on the digestibility of wheat starch[J]. Journal of the Chinese Cereals and Oils Association, 2023, 23(2): 91−99.

    [81]

    KANG X M, SUI J, ZHANG X L, et al. The impact of gliadin and glutenin on the formation and structure of starch-lipid complexes[J]. Food Chemistry,2022,371:1−7.

    [82]

    LIN L, YANG H, CHI C D, et al. Effect of protein types on structure and digestibility of starch-protein-lipids complexes[J]. LWT-Food Science and Technology,2020,134:1−6.

    [83]

    CAI J J, CHEN C, NIU B, et al. New insight into the interactions among starch, lipid and protein in model systems with different starches[J]. Food Hydrocolloids,2021,112:1−8.

    [84] 王杰, 何燕, 李洁, 等. 多酚对莲藕淀粉和玉米淀粉理化和消化特性的影响[J/OL]. 中国粮油学报, 2024:1−14. https://doi.org/10.20048/j.cnki.issn.1003-0174.000740. [WANG Jie, HE Yan, LI Jie, et al. Polyphenols of lotus root starch and corn starch physicochemical and digestive characteristics influence[J/OL]. Journal of the Chinese Cereals and Oils Association, 2024: 1−14. https://doi.org/10.20048/j.cnki.issn.1003-0174.000740.]

    WANG Jie, HE Yan, LI Jie, et al. Polyphenols of lotus root starch and corn starch physicochemical and digestive characteristics influence[J/OL]. Journal of the Chinese Cereals and Oils Association, 2024: 1−14. https://doi.org/10.20048/j.cnki.issn.1003-0174.000740.

    [85]

    ZHAO B B, SUN S W, LIN H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry,2019,52:50−61. doi: 10.1016/j.ultsonch.2018.11.001

    [86]

    GUO Z, ZHAO B B, CHAN J, et al. Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure[J]. Food Chemistry,2019,297:1−8.

    [87] 郭晋彪, 曲迎辉, 李欣宇, 等. 淀粉/石榴皮多酚自组装体形成及消化性分析[J]. 食品科学,2023,44(18):9−17. [GUO Jinbiao, QU Yinghui, LI Xinyu, et al. Formation and digestible analysis of starch/pomegranate peel polyphenols self-assembly[J]. Food Science,2023,44(18):9−17.] doi: 10.7506/spkx1002-6630-20221114-159

    GUO Jinbiao, QU Yinghui, LI Xinyu, et al. Formation and digestible analysis of starch/pomegranate peel polyphenols self-assembly[J]. Food Science, 2023, 44(18): 9−17. doi: 10.7506/spkx1002-6630-20221114-159

    [88]

    AMOAKO D B, AWIKA J M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose[J]. Food Chemistry,2019,285:326−333. doi: 10.1016/j.foodchem.2019.01.173

图(2)  /  表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 网络出版日期:  2025-02-28

目录

/

返回文章
返回
x 关闭 永久关闭