Effects of Packaging with Different Oxygen Resistance Materials on the Quality of Fresh Pork
-
摘要: 为评估阻氧性包装材料对生鲜猪肉的保鲜效果。以高阻氧(high oxygen resistance packaging,HORP,1.70 cm3/(m2·24 h·0.1 MPa))、中阻氧(medium oxygen resistance packaging,MORP,23.95 cm3/(m2·24 h·0.1 MPa))、低阻氧(low oxygen resistance packaging,LORP,1631.44 cm3/(m2·24 h·0.1 MPa))和透氧(oxygen permeable packaging,OPP,10600.00 cm3/(m2·24 h·0.1 MPa))4个阻氧等级的包装材料对生鲜猪肉进行包装,在4 ℃贮藏的第0、3、6、9、12、15 d取样,探究菌落总数(total viable count,TVC)、pH、挥发性盐基氮(total volatile basic nitrogen,TVB-N)、保水性、嫩度、蛋白质氧化、挥发性气味及肌纤维微观结构的动态变化规律。结果表明:相比第0 d(3.82 lg CFU/g),HORP、MORP、LORP和OPP组猪肉贮藏15 d的菌落总数分别升高至5.86、5.72、6.90、7.43 lg CFU/g;HORP、MORP组可显著抑制贮藏期内猪肉蛋白质氧化(P<0.05),15 d时两组的TVB-N值和羰基含量显著低于OPP组(P<0.05),两组总巯基含量高于OPP组(P<0.05);肌原纤维微观结果显示HORP、MORP组肌肉组织结构完整紧密,LORP和OPP组肌肉组织状态较松散;电子鼻测定结果表明各组猪肉对传感器W1W(对硫化物敏感)和W5S(对氮氧化物敏感)响应值差异最大,其中HORP、MORP组可显著降低贮藏期间生鲜猪肉中硫化物和氮氧化物等腐败物质的产生。综上所述,生鲜猪肉保鲜包装采用高、中阻氧材料包装(HORP、MORP),可有效保持肉的新鲜度,延长货架期至15 d。Abstract: To evaluate the effect of different resistance oxygen of packaging materials opposite preservation of fresh meat, pork was packaged with 4 kinds of oxygen resistance grade packaging materials, high (HORP, 1.70 cm3/(m2·24 h·0.1 MPa)), medium (MORP, 23.95 cm3/(m2·24 h·0.1 MPa)), low oxygen resistance (LORP, 1631.44 cm3/(m2·24 h·0.1 MPa)) bags along with oxygen permeable packaging (OPP, 10600.00 cm3/(m2·24 h·0.1 MPa)) in this experiment. Samples were stored at 4 ℃ for 0, 3, 6, 9, 12, and 15 d. The total viable count (TVC), pH, total volatile basic nitrogen (TVB-N) value, water holding capacity, tenderness, protein oxidation and volatile odor of fresh pork during storage were measured and investigated. Results showed that TVC of fresh pork in HORP, MORP, LORP and OPP on 15 d increased to 5.86, 5.72, 6.90 and 7.43 lg CFU/g compared with 0 d (3.82 lg CFU/g) respectively. Compared to OPP group, the increase of TVB-N value and carbonyl group content on 15 d were significantly (P<0.05) inhibited by HORP and MORP group, inhibited protein oxidation of pork during the storage period, the content of total sulfhydryl group in HORP and MORP group was higher than that of OPP group. The microstructure of muscles fibers detected by scanning electron microscope in the HORP and MORP group was observed to have the best structural integrity. The results of electronic nose measurement showed that the response values of fresh pork in all groups to W1W (sensitive to sulfide) and W5S (sensitive to nitrogen oxides) exhibited the greatest differences, and the HORP and MORP group could obviously reduce the production of sulfur and nitrogen oxides in fresh pork during storage. In summary, both HORP and MORP were more suitable for storing fresh pork at 4 ℃. In terms of extending the shelf life, 15 days or more could be expected.
-
Keywords:
- fresh pork /
- oxygen resistance /
- packaging /
- freshness /
- shelf life
-
生鲜肉是指畜禽屠宰后未经深加工的肉类,是我国肉类消费市场中的重要品类之一,约占我国肉品消费总量80%[1]。生鲜猪肉约占我国肉类消费总量的60%,由于含有丰富的氨基酸、脂质及微量元素,深受我国消费者的喜爱[2]。在加工、贮藏、流通、销售等过程中,生鲜猪肉易受到微生物污染导致腐败变质并产生不良气味,严重缩短贮藏时间并造成巨大经济损失。随着大众消费结构逐渐向高品质生活消费转变,高品质、高食用安全性的生鲜猪肉关注度越来越高。因此,如何抑制腐败微生物的生长代谢、延长生鲜猪肉货架期是目前亟待解决的关键。
包装可有效隔绝外界环境,是保持食品品质、质量和感官属性的一种有效手段[3−4]。阻隔性能是包装材料重要性能指标之一,不同食品和包装方法对包装材料阻隔性能的要求不同[5]。目前阻氧材料中由尼龙树脂和乙烯-乙烯醇共聚物合成的材料最为常见,是高阻隔包装中最典型包材。此外,聚乙烯、聚丙烯和聚酯塑料薄膜可作为阻隔材料的基材,通过多层共挤等复合膜制备工艺加工成具备多层结构的阻隔性材料。根据透氧量的不同,GB/T 21302-2007《包装用复合膜、袋通则》将阻氧性包装划分为6级,其中氧气透过量为2、3、5级包装材料在冷/冻藏肉品中已有应用。研究表明,在一定贮藏时间内,气体阻隔性越高,生鲜肉的菌落总数增长速度越慢、挥发性盐基氮(total volatile basic nitrogen,TVB-N)值越小,其对生鲜肉的保鲜效果越好[6]。李升升等[7]采用氧气透过率为10.65 cm3/(m2·24 h·0.1 MPa)的高阻隔材料对牛肉真空包装,结果发现高阻隔组持水性高于中阻隔和低阻隔组,有效延缓牛肉贮藏期间品质劣变;路立立等[8]研究表明高阻隔真空包装(氧气透过率为10.65 cm3/(m2·24 h·0.1 MPa))可有效提高猪肉贮藏期间品质,延长货架期;此外,高阻氧(氧气透过率为1381.49 cm3/(m2·24 h·0.1 MPa))包装冻藏猪肉的TVB-N值和硫代巴比妥酸值在360 d时仍在二级鲜度范围内,货架期可达一年以上[9];不透氧包装材料(透氧率≤5 cm3/(m2·24 h·0.1 MPa))结合真空包装可提高脆肉鲩的保鲜性能[10]。DANILOSKI等[11]制备的高阻氧率复合膜与真空包装结合可有效保持猪肉良好的品质和感官特性,货架期达14 d。SONG等[12]研究发现,基于乳清分离蛋白的高阻气食品包装材料有效延缓冷冻虾炒饭中的氧渗透和脂质氧化。包装材料的透氧率与肉品质变化及货架期呈现显著相关性,但目前不同等级阻氧率包装材料对生鲜猪肉贮藏期间品质变化及货架期的影响尚不清楚,用于生鲜肉保鲜包装材料的最适氧气透过量等级尚不明确。
为明确不同阻氧性包装材料对生鲜肉的保鲜效果,本研究以生鲜猪肉为研究对象,选用4种不同透氧量等级的包装材料对生鲜猪肉进行真空包装,探究包装材料阻氧性对猪肉品质变化的影响规律,旨在为生鲜猪肉保鲜提供理论指导。
1. 材料与方法
1.1 材料与仪器
试验样品为6头6.5月龄、胴体重在85~90 kg杜长大去势公猪,屠宰后经24 h冷却的背最长肌 北京二商肉类食品集团有限公司提供;不同阻氧性包装袋 升辉新材料股份有限公司提供;透氧膜 上海诺邦塑胶有限公司生产。不同阻氧性包装材料参数由厂家提供,见表1;脲(尿素) 国药集团化学试剂有限公司;三氯乙酸(MW:163.39) 分析纯,上海阿拉丁生化科技股份有限公司;2% SDS缓冲液、5,5′-二硫双-2-硝基苯甲酸(DTNB)(MW:396.35) 北京酷来博科技有限公司;BCA蛋白试剂盒 赛默飞世尔科技有限公司;0.01 mol/L 2,4二硝基苯肼盐酸缓冲液、0.02 mol/L磷酸盐缓冲液(加6 mol/L盐酸胍)、8 mol/L三羟甲基氨基甲烷-甘氨酸尿素缓冲液(Tris-Gly,pH8.0) 北京启研生物科技有限公司;乙酸乙酯 分析纯,北京市通广精细化公司;无水乙醇 分析纯,天津市致远化学试剂有限公司。
表 1 不同阻氧性包装材料参数Table 1. Parameters of packaging materials with different oxygen resistance rates分类 材质 厚度(μm) 氧气透过量(cm3/
(m2·24 h·0.1 MPa))等级 高阻氧 聚酰胺/乙烯-乙烯醇
共聚物/聚乙烯150 1.70 2 中阻氧 聚酰胺/聚乙烯 150 23.95 3 低阻氧 聚丙乙烯 175 1631.44 5 透氧 聚乙烯 10 10600.00 6 TA-XT plus®质构分析仪 英国Stable Micro system公司;闪谱SuperMax 3000FA型多功能酶标仪 上海闪谱生物科技有限公司;KjeltecTM 8200凯氏定氮仪 丹麦FOSS公司;PEN 3.5电子鼻 德国Airsense公司;Neofuge 15R台式高效冷冻离心机 上海力康生物医疗科技控股有限公司;SU8010扫描电镜 日本日立有限公司。
1.2 实验方法
1.2.1 样品处理
新鲜猪背最长肌在0~4 ℃条件下运回实验室后,双侧背最长肌在无菌条件下立即均分为22块,每块约80 g,并用4种不同透氧量材料包装(high oxygen resistance packaging,HORP;middle oxygen resistance packaging,MORP;low oxygen resistance packaging,LORP;oxygen permeable packaging,OPP),每个处理组设置6个生物学重复,于4 ℃、80%相对湿度的恒温恒湿培养箱贮藏0、3、6、9、12、15 d并取样测定pH、菌落总数、蒸煮损失、剪切力、微观结构,剩余肉样液氮速冻后于−80 ℃保存,待测TVB-N、总巯基含量、羰基含量和挥发性气味。
1.2.2 菌落总数测定
参照GB 4789.2-2022《食品微生物学检验 菌落总数测定》[13]中的方法测定。准确称取5.00 g肉样置于45 mL无菌生理盐水,均质2 min,吸取1 mL样液加入到9 mL无菌生理盐水10倍稀释,稀释后选取3个适宜梯度吸取100 μL在平板上涂布,每个梯度2个平行,37 ℃恒温培养箱倒置培养48 h。
1.2.3 pH
打开包装取出肉样,将手持便携式pH计直接插入样品约1.5 cm深,待读数稳定记录pH。每个样品测定2次,结果取平均值。
1.2.4 挥发性盐基氮测定
参照GB 5009.228-2016《食品安全国家标准 食品中挥发性盐基氮的测定》[14]中的全自动凯氏定氮法测定。称取搅碎肉样5.00 g加入25 mL超纯水,均质后冰上浸渍30 min,滤纸过滤后得滤液,吸取5 mL滤液和5 mL氧化镁悬浊液于蒸馏管中(空白为5 mL蒸馏水加5 mL氧化镁悬浊液),程序2上机蒸馏5 min,结束后用0.01 mol/L盐酸对含有3滴复合指示剂锥形瓶中的液体滴定,读取并记录消耗盐酸的体积。
1.2.5 蒸煮损失率测定
测试前将称取20.00~30.00 g肉样质量记为m1,置于蒸煮袋中,于80 ℃恒温数显水浴锅中蒸煮20 min,多路温度巡检仪显示肉样中心温度达到71 ℃左右时将肉样取出,在冷流水下冷却30 min,用滤纸轻拭肉样表面水分后称重,记为m2。
蒸煮损失率(%)=m1−m2m1×100 (1) 1.2.6 剪切力测定
将测定蒸煮损失的肉样在4 ℃冰箱过夜后取出,切分为1.0 cm×1.0 cm×1.5 cm小块,用质构分析仪测定肉样的剪切力值,选用HDP/BSW探头。测定时肉样肌纤维方向与切面垂直,每个样品平行测定6次。测定参数:测前速度2 mm/s,测中速度5 mm/s,测后速度2 mm/s,测定时间5 s,触发力5 g,探头回升高度为30 cm。
1.2.7 蛋白质氧化测定
参照高子武[15]的方法,对总巯基、羰基含量进行测定,具体如下。
1.2.7.1 总巯基含量
称取1.00 g样品,加入10 mL的2%(w/v)SDS缓冲液在10000 r/min的均质机下均质3次,每次30 s,然后在4 ℃下以4000×g离心20 min以获得上清液。蛋白调整浓度为2 mg/mL。蛋白浓度通过BCA蛋白试剂盒测定。
将0.5 mL蛋白溶液与2.5 mL 8 mol/L三羟甲基氨基甲烷-甘氨酸(Tris-Gly,pH8.0)尿素缓冲液和0.02 mL的4 mg/mL 5,5′-二硫双-2-硝基苯甲酸(DTNB)混合。在25 ℃下孵育30 min后,记录412 nm(A412)处的吸光度。
总巯基含量(μmol/g蛋白)=73.53×A412×DC (2) 式中:D为稀释系数(6.04);C为测试样品中的蛋白质浓度(mg/mL)。
1.2.7.2 羰基含量
取2 mg/mL全蛋白溶液200 μL,加入1 mL三氯乙酸(TCA,10%,m/v)溶液沉淀蛋白,并于4 ℃离心(12000 r/min,5 min),离心后去上清液。然后,向蛋白沉淀中加入1 mL 2,4-二硝基苯肼(DNPH溶于2 mol/L HCl中,10 mmol/L)混合,涡旋振荡后置于避光处反应(37 ℃,30 min)。溶液在4 ℃下离心(12000 r/min,5 min),弃去上清液。加入1 mL TCA(20%,m/v)沉淀蛋白。离心后(12000 r/min,5 min)的沉淀用1 mL乙醇-乙酸乙酯混合溶液(1:1,v/v)洗涤4次,直到没有观察到泛黄。沉淀挥发干有机溶剂后,将沉淀溶解于1.5 mL含6 mol/L盐酸胍的磷酸盐缓冲液(20 mmol/L,pH6.5),于4 ℃以5000 r/min离心2 min除去不溶性物质,37 ℃条件下放置15 min。在280 nm和370 nm处测量上清液吸光度,分别记录为A280和A370。
羰基含量用22000 L/mol·cm的蛋白质羰基摩尔吸光系数计算,蛋白质羰基结果表示为:nmol/mg蛋白。
羰基含量(nmol/mg蛋白)=A37022000×(A280−A370×0.43)×106 (3) 1.2.8 电子鼻分析
称取搅碎后的肉样2.00 g于风味瓶中,密封,室温静置30 min后进行测定,电子鼻传感器洗脱时间为180 s,采样时间为60 s,测定样品挥发性气味对电子鼻十个传感器阵列的响应程度,选取48~52 s的数据进行分析。电子鼻传感器阵列及其性能特点见表2。
表 2 电子鼻传感器阵列及其性能特点Table 2. Electronic nose sensor array and its performance characteristics传感器序号 传感器型号 高灵敏度气体类型 1 W1C 对苯类芳香成分敏感 2 W5S 对氮氧化合物敏感 3 W3C 对氨类、芳香成分敏感 4 W6S 对氢化物敏感 5 W5C 对短链烷烃芳香成分敏感 6 W1S 对甲基类敏感 7 W1W 对硫化物敏感 8 W2S 对醇类、醛酮类敏感 9 W2W 对有机硫化物、芳香成分敏感 10 W3S 对长链烷烃敏感 1.2.9 扫描电镜观察
参考王静帆[16]的方法并稍作修改。沿着肌纤维方向将待测样品切成大小为5 mm×2 mm×2 mm的小条,用2.5%戊二醛溶液于4 ℃条件下固定48 h后,再用pH7.3的0.1 mol/L的PBS冲洗3次,25 ℃放置2 h。之后用1%的锇酸在通风橱中固定液固定样本2 h,然后用梯度乙醇(30%、50%、70%、80%、90%、95%和无水乙醇)脱水,每个梯度脱水15 min,其中无水乙醇脱水步骤重复操作4次,以保证样品充分脱水。再对样品进行冷冻干燥,随后对样品进行离子溅射喷金处理。扫描电镜观察拍照。
1.3 数据处理
试验结果通过SPSS Statistics 27进行数据处理,Origin 2021软件绘图。采用双因素方差分析中Duncans法进行多重比较分析,结果以平均值±标准差表示,以P<0.05作为差异显著性判断标准。
2. 结果与分析
2.1 菌落总数的变化
微生物污染及生长繁殖是引起生鲜肉发生腐败的重要因素[17]。贮藏期间各处理组猪肉菌落总数变化趋势如图1所示,菌落总数随时间延长呈现上升趋势。贮藏0 d时,初始菌落总数为3.82 lg CFU/g。贮藏6 d时,HORP、MORP和LORP组猪肉菌落总数分别为4.74、4.77、6.15 lg CFU/g,显著低于OPP组6.87 lg CFU/g(P<0.05)。NY/T 632-2002《冷却猪肉》规定冷却猪肉微生物应不超过6 lg CFU/g[18],说明OPP组生鲜猪肉货架期短于6 d;相比HORP和MORP组(5.86、5.72 lg CFU/g),LORP和OPP组在15 d的菌落总数显著上升至6.90、7.43 lg CFU/g(P<0.05),说明包装材料阻氧性能越高,微生物生长繁殖受抑制程度越大,货架期越长。这可能是因为包装内较低浓度的氧气浓度抑制了假单胞杆菌、热杀索丝菌等需氧微生物的生长,在贮藏后期延缓了生鲜猪肉腐败[19]。还有研究报道,荧光假单胞菌和热杀索丝菌分别是有氧和低氧条件下导致肉和肉制品腐败的主要优势菌[20],这说明不同阻氧性包装组的生鲜肉中腐败微生物种类不同,从而导致货架期存在差异。
2.2 pH变化
pH是反映肉品新鲜度的一项重要指标。贮藏期间各处理组猪肉pH变化趋势如图2所示。贮藏期间,HORP组pH先上升后下降,其他组pH呈上升趋势。贮藏0 d时,猪肉的初始pH为5.55。贮藏9 d时,OPP组猪肉pH为5.87,显著高于HORP和MORP组(P<0.05),这可能是由于高氧气透过率使得OPP组猪肉蛋白氧化分解和微生物代谢程度过快,致使碱性物质积累所致[21]。贮藏12~15 d,MORP和LORP组pH变化不显著(P>0.05)。贮藏15 d时,OPP组pH升高至6.14,肉样表面粘度增大;HORP组pH显著降低(P<0.05),这可能是由于高阻氧率使得包装内氧气含量较少,促使厌氧微生物数量增加、代谢产生大量酸性物质。有研究表明,厌氧菌(乳酸菌等)是真空包装畜禽肉的主要优势腐败菌,其无氧呼吸的代谢产物丁酸、乙酸等被认为是真空包装牛肉腐败的潜在特征挥发性有机物[22−23],这说明包装内部环境缺氧有利于乳酸菌生长,促进酸性物质积累从而导致贮藏后期HORP、MORP和LORP组pH变化缓慢。
2.3 TVB-N值的变化
TVB-N是反映肉品鲜度的重要指标,与微生物增殖和蛋白水解酶的活性呈正相关[24]。各处理组猪肉TVB-N值变化趋势如图3所示。猪肉的初始TVB-N值为2.42 mg/100 g。贮藏期间,各处理组猪肉TVB-N值随时间延长呈逐步上升趋势。贮藏6~9 d,HORP组显著低于其他三组(P<0.05);贮藏15 d时,HORP、MORP、LORP和OPP组猪肉的TVB-N值达到最大值,分别为4.59、4.72、5.35、6.83 mg/100 g,低于GB 2707-2016《鲜(冻)畜、禽产品》[25]中规定的TVB-N值限量15 mg/100 g。包装透氧量等级的差异改变了需氧微生物腐败降解蛋白质生成的能力,表现为透氧率越低产生胺及氨类等盐基氮类物质越少。LORP组猪肉在贮藏15 d时出现汁液变绿现象。研究表明,含氧包装中相对丰度含量高的环丝菌属使羊肉在贮藏期间渗出绿色液体并伴随恶臭气味产生[26];有学者经分析发现热死环丝菌主要通过糖代谢、核酸代谢引起牛肉腐败,属于好氧和兼性厌氧菌[27]。低阻氧率包装材料(氧气透过率为1631.44 cm3/(m2·24 h·0.1 MPa))具备形成适宜环丝菌属生长繁殖的有氧条件,这可能是贮藏期间LORP组菌落总数显著高于HORP和MORP组,但TVB-N值在组间差异不显著的原因。
2.4 蒸煮损失率的变化
持水性是肉品重要的品质特性,会极大程度影响肉品食用品质[28]。蒸煮损失是指肉在蒸煮的过程中造成的水分损失,与肉实际的生产加工性能相关,是反映肉品保水性的一项指标。不同处理组猪肉蒸煮损失率变化趋势如图4所示。猪肉初始蒸煮损失率为25.62%。前人研究发现,宰后0和14 d的猪背最长肌80 ℃条件下的蒸煮损失率分别为27%、20%左右[29]。贮藏期间,各组蒸煮损失率呈现下降趋势变化。贮藏15 d时,HORP组蒸煮损失率最低为22.75%,持水性最好,组间差异不显著(P>0.05)。这可能是因为外界环境氧气透过包装使得肌原纤维蛋白发生氧化,其三级网状结构被破坏导致肉品蒸煮损失率随透氧率的增大而增大,导致保水性变差[30−31]。
2.5 剪切力的变化
剪切力是衡量肌肉嫩度的重要指标,也可间接反映肉类内部结构。贮藏期间,不同处理组猪肉剪切力变化趋势如图5所示。猪肉的初始剪切力值为8.32 kg,随贮藏时间延长各组猪肉剪切力呈现显著下降的趋势(P<0.05),这是由于在内源酶和微生物的共同作用下,猪肉组织结构因蛋白质的不断降解被破坏。贮藏0~3 d,HORP、MORP、LORP和OPP组剪切力值分别显著下降至5.91、5.75、5.46、5.83 kg(P<0.05),这可能是因为猪肉正处于解僵成熟阶段,解僵过程中由于肌原纤维蛋白降解和肌肉超微结构被破坏,Z线溶解使得肌肉张力下降[32]。薛盼盼等[33]研究表明,猪肉在宰后24~36 h成熟期间剪切力显著下降(P<0.05);有氧包装猪肉因蛋白质氧化程度和汁液损失增加比真空包装肉品具有更低的嫩度[34]。相比OPP组,HORP、MORP组在贮藏3~15 d期间可显著延缓猪肉剪切力下降,研究表明μ-钙蛋白酶通过自溶发挥其活性,在鲜肉贮藏过程中,随着时间的延长,μ-钙蛋白酶活性上升,肌肉嫩度增大,肌原纤维小片化指数上升,剪切力下降[35]。在本研究中发现HORP、MORP两组剪切力较高,说明氧气透过率低的包装材料可能通过抑制μ-钙蛋白酶活性,延缓猪肉嫩度下降速率,维持肌原纤维结构的完整性,提高猪肉新鲜度。
2.6 总巯基含量的变化
巯基含量的变化是评价蛋白质在贮藏期间氧化程度的重要指标之一,肉类蛋白质的氧化会引起蛋白质的巯基交联生成二硫键,蛋白质氧化程度越高,肉样中的巯基含量越低[36−37]。不同处理组猪肉总巯基含量的变化如图6所示。贮藏初期,猪肉全蛋白溶液中总巯基含量为80.08 μmol/g蛋白。随着贮藏时间延长,各组猪肉总巯基含量呈波浪下降趋势,这是由于蛋白质在羟自由基的诱导下会使巯基氧化成二硫键,导致蛋白质巯基含量下降[38]。贮藏0~6 d,HORP组总巯基含量显著高于OPP组,与MORP和LORP组相比差异不显著(P>0.05);贮藏15 d时,HORP、MORP组总巯基含量明显高于LORP组,原因可能是高透氧率材料促进外部环境中的氧气透过包装与肉品接触,增大了猪肉蛋白质氧化程度[39]。透氧包装冻藏肉及其制品表面与氧气接触并形成自由基和过氧化物等,相较于真空包装具有更高的蛋白质氧化程度[40]。
2.7 羰基含量的变化
羰基含量可用于判断蛋白质的氧化程度,肉品中羰基含量越多蛋白质的氧化程度越严重[41]。不同处理组猪肉羰基含量的变化如图7所示。贮藏0 d,猪肉全蛋白溶液中巯基含量为2.04 nmol/mg蛋白。随着贮藏时间延长,各处理组猪肉全蛋白羰基含量呈上升趋势。贮藏期间,OPP组羰基含量上升速率最快且数值最高,这可能是因为OPP组透氧率最高导致猪肉的蛋白质氧化程度最大。0~6 d贮藏期间,MORP、LORP组羰基含量缓慢上升;6~12 d贮藏期间,HORP、MORP组猪肉羰基含量显著低于LORP组(P<0.05);贮藏15 d时,HORP、MORP组羰基含量分别为2.28、2.25 nmol/mg蛋白。这是由于包装材料透氧量等级的不同导致包装内部氧气含量的差异,HORP、MORP组在贮藏期间羰基含量增幅最小,蛋白氧化程度最低,与呼红梅等[42]研究的结果一致。HORP、MORP在贮藏期间能够显著延缓羰基含量升高,这一结果与总巯基含量变化趋势相一致。
2.8 挥发性气味的变化
电子鼻技术常用于检测不同品种肉类挥发性气味,实现对肉品新鲜度及品质的识别和调控[43]。不同处理组猪肉挥发性气味的变化如图8所示,传感器W5S、W1W、W1S、W2S响应值随贮藏时间延长而增大,传感器W2W、W3S、W6S、W5C、W1C、W3C对各组样品响应值基本不变。贮藏12 d,传感器W1W和W5S对各组样品的响应值差异明显,说明包装材料阻氧性的差异导致蛋白质的氧化程度不同,表现为氮氧化物、硫化物类挥发性物质的含量随氧气透过量的升高而增大。其中,各处理组关于W1W的响应值从低到高依次为HORP、MORP、LORP和OPP组,说明HORP组能明显抑制硫化物的产生。这些物质可能是肉在成熟过程中,游离氨基酸、核苷酸等风味前体物质随脂肪、蛋白氧化和蛋白降解过程的进行产生的[44−45]。有研究表明W1W(对含硫化合物,吡嗪类,萜烯类敏感)、W1S(对甲烷等敏感)传感器对异味猪肉的响应值高于正常猪肉[46]。硫化氢、甲硫醇、二甲基三硫醚和二甲基二硫醚等有机硫化物会通过产生腐臭的气味导致肉类变质[47]。这些研究结果证实了传感器W5S、W1W、W1S、W2S响应值升高是因为肉品发生腐败产生腐败标志物。
2.9 微观结构的变化
不同处理组对4 ℃贮藏猪肉肌纤维横切面微观结构的扫描电子显微镜(scanning electron microscope,SEM)结果如图9(200×)所示。贮藏0 d,新鲜猪肉肌纤维排列整齐紧密,结构完整;6~15 d贮藏期间,HORP和MORP组猪肉肌纤维之间空隙增大,但与0 d相比变化差异不明显;LORP和OPP组猪肉大结缔组织鞘周肌撕裂程度加深,肌纤维间隙变化明显[48]。这可能是因为高透氧量促进了需氧菌腐败微生物的繁殖并产生大量胞外酶,促进肌原纤维蛋白及肌纤维间的结合脂类及构成肌丝的蛋白质的降解,表现为肌肉微观结构松弛崩解[49−50]。综上所述,HORP和MORP组能有效延缓肌肉组织结构松散,保持生鲜猪肉品质。
2.10 相关性分析
为验证生鲜猪肉品质和包装材料阻氧性之间的关系,以不同贮藏时间猪背最长肌为试验材料,测定其pH、TVC、TVB-N值剪切力、总巯基含量和羰基含量,不同包装材料阻氧性能与猪肉品质指标相关性分析结果如图10所示。贮藏期间,不同阻氧性包装材料与猪肉pH、TVC、TVB-N值和羰基含量相关系数呈强正相关(P<0.01);与总巯基含量和剪切力值相关系数呈强负相关(P<0.01),相关系数r均大于0.50。其中,不同阻氧性包装材料与pH、TVC和羰基含量相关系数较高(r>0.70)。相关性分析结果进一步表明,包装材料的氧气透过率越低,猪肉pH、TVC和羰基含量值越低,可能原因是随着宰后贮藏时间的延长,较低的氧气透过率减少蛋白质氧化降解,减少微生物对肌肉中碳源的消耗,抑制微生物生长,使肌肉组织结构相对稳定,呈现出较好的保鲜效果。这与贮藏期间pH、TVC、TVB-N和羰基含量值与包装阻氧等级呈正相关的结果一致。
3. 结论
本试验选用了4种阻氧性包装材料,探究了不同透氧率包装材料对生鲜猪肉的保鲜效果。贮藏期间,氧气透过量为10600 cm3/(m2·24 h· 0.1 MPa)的透氧包装(OPP)猪肉的品质下降最快,货架期不足6 d;氧气透过量为1.70和23.95 cm3/(m2·24 h·0.1 MPa)的包装材料(HORP和MORP)包装可抑制微生物生长,延缓猪肉TVB-N值上升和蛋白质氧化,减少腐臭异味产生,更好地维持组织结构的完整,提高猪肉保鲜效果;氧气透过率为1.70 cm3/(m2·24 h·0.1 MPa)的高阻氧包装(HORP)材料和氧气透过率为23.95 cm3/(m2·24 h·0.1 MPa)的中阻氧包装(MORP)材料结合真空包装在4 ℃贮藏期间对生鲜猪肉进行包装,在贮藏末期(第15 d)时可显著延缓生鲜猪肉菌落总数和TVB-N值的升高(P<0.05),抑制猪肉中蛋白质氧化,并维持较完整的组织微观结构,货架期长达15 d。在下一步的研究中,探究不同阻氧性包装材料对冷藏贮藏期间生鲜肉的营养品质变化的影响,解析不同阻氧性包装材料对冷藏期间生鲜肉微生物、色泽变化及挥发性气味差异结果的影响机制,为阻氧性包装材料在生鲜肉保鲜领域应用提供理论参考依据。
-
表 1 不同阻氧性包装材料参数
Table 1 Parameters of packaging materials with different oxygen resistance rates
分类 材质 厚度(μm) 氧气透过量(cm3/
(m2·24 h·0.1 MPa))等级 高阻氧 聚酰胺/乙烯-乙烯醇
共聚物/聚乙烯150 1.70 2 中阻氧 聚酰胺/聚乙烯 150 23.95 3 低阻氧 聚丙乙烯 175 1631.44 5 透氧 聚乙烯 10 10600.00 6 表 2 电子鼻传感器阵列及其性能特点
Table 2 Electronic nose sensor array and its performance characteristics
传感器序号 传感器型号 高灵敏度气体类型 1 W1C 对苯类芳香成分敏感 2 W5S 对氮氧化合物敏感 3 W3C 对氨类、芳香成分敏感 4 W6S 对氢化物敏感 5 W5C 对短链烷烃芳香成分敏感 6 W1S 对甲基类敏感 7 W1W 对硫化物敏感 8 W2S 对醇类、醛酮类敏感 9 W2W 对有机硫化物、芳香成分敏感 10 W3S 对长链烷烃敏感 -
[1] 张德权, 侯成立. 热鲜肉与冷却肉品质差异之管见[J]. 肉类研究,2020,34(5):83−90. [ZHANG Dequan, HOU Chengli. Humble opinion on the quality difference between hot meat and chilled meat[J]. Meat Research,2020,34(5):83−90.] doi: 10.7506/rlyj1001-8123-20200220-041 ZHANG Dequan, HOU Chengli. Humble opinion on the quality difference between hot meat and chilled meat[J]. Meat Research, 2020, 34(5): 83−90. doi: 10.7506/rlyj1001-8123-20200220-041
[2] 雷少斐. 猪肉消费进入稳定平台期 我国猪肉需求量将维持在5500万至5600万吨之间[J]. 猪业观察,2023(1):18. [LEI Shaofei. Pork consumption has entered a stable plateau period, and China's pork demand will remain between 55 million and 56 million tons[J]. Swine Industry Outlook,2023(1):18.] LEI Shaofei. Pork consumption has entered a stable plateau period, and China's pork demand will remain between 55 million and 56 million tons[J]. Swine Industry Outlook, 2023(1): 18.
[3] UR RAHMAN U, SAHAR A, ISHAQ A, et al. Advanced meat preservation methods:A mini review[J]. Journal of Food Safety,2018,38(4):e12467. doi: 10.1111/jfs.12467
[4] V A K, HASAN M, MANGARAJ S, et al. Trends in edible packaging films and its prospective future in food:A review[J]. Applied Food Research,2022,2(1):100118. doi: 10.1016/j.afres.2022.100118
[5] 刘容宏, 王微山, 宋亚光. 不同材质食品包装用塑料膜、袋透氧性研究[J]. 塑料包装,2011,21(1):41−43,40. [LIU Ronghong, WANG Weishan, SONG Yaguang. Study on oxygen permeability of plastic film and bag for food packaging of different materials[J]. Plastics Packaging,2011,21(1):41−43,40.] doi: 10.3969/j.issn.1006-9828.2011.01.011 LIU Ronghong, WANG Weishan, SONG Yaguang. Study on oxygen permeability of plastic film and bag for food packaging of different materials[J]. Plastics Packaging, 2011, 21(1): 41−43,40. doi: 10.3969/j.issn.1006-9828.2011.01.011
[6] 姜楠楠, 陈小亮, 王建清. 包装材料对天然抑菌剂保鲜鲜肉效果的影响[J]. 河南机电高等专科学校学报,2016,24(2):9−12. [JIANG Nannan, CHEN Xiaoliang, WANG Jianqing. Influence of packing material on pork fresh-keeping effect of natural[J]. Henan Mechanical and Electrical Engineering College,2016,24(2):9−12.] JIANG Nannan, CHEN Xiaoliang, WANG Jianqing. Influence of packing material on pork fresh-keeping effect of natural[J]. Henan Mechanical and Electrical Engineering College, 2016, 24(2): 9−12.
[7] 李升升, 靳义超, 谢鹏. 包装材料阻隔性对牛肉冷藏保鲜效果的影响[J]. 食品工业科技,2015,36(15):256−260. [LI Shengsheng, JIN Yichao, XIE Peng. Effect of barrier property of packaging material on the quality of beef during chilling storage[J]. Science and Technology of Food Industry,2015,36(15):256−260.] LI Shengsheng, JIN Yichao, XIE Peng. Effect of barrier property of packaging material on the quality of beef during chilling storage[J]. Science and Technology of Food Industry, 2015, 36(15): 256−260.
[8] 路立立, 胡宏海, 张春江, 等. 真空收缩包装对冷却肉品质的影响[J]. 中国食品学报,2016,16(6):145−152. [LU Lili, HU Honghai, ZHANG Chunjiang, et al. The Effect of vacuum shrink packaging on quality of chilled pork meat[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(6):145−152.] LU Lili, HU Honghai, ZHANG Chunjiang, et al. The Effect of vacuum shrink packaging on quality of chilled pork meat[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(6): 145−152.
[9] 李瑶琪. 不同包装材料对冷、冻藏猪肉在贮藏期间品质的影响[D]. 大连:大连工业大学, 2019:39. [LI Yaoqi. Effect of different packaging materials on quality of chilled and fronzen pork during storage[D]. Dalian:Dalian Polytechnic University, 2019:39.] LI Yaoqi. Effect of different packaging materials on quality of chilled and fronzen pork during storage[D]. Dalian: Dalian Polytechnic University, 2019: 39.
[10] 张方乐, 曾庆孝. 不同包装处理对脆肉鲩颜色和保鲜效果的影响[J]. 现代食品科技,2009,25(11):1262−1264,1268. [ZHANG Fangle, ZENG Qingxiao. Effect of packaging processes on color stability and refreshment of ctenopharyngodon idellus c. et V[J]. Modern Food Science and Technology,2009,25(11):1262−1264,1268.] ZHANG Fangle, ZENG Qingxiao. Effect of packaging processes on color stability and refreshment of ctenopharyngodon idellus c. et V[J]. Modern Food Science and Technology, 2009, 25(11): 1262−1264,1268.
[11] DANILOSKI D, PETKOSKA A T, GALIĆ K, et al. The effect of barrier properties of polymeric films on the shelf-life of vacuum packaged fresh pork meat[J]. Meat Science,2019,158:107880. doi: 10.1016/j.meatsci.2019.107880
[12] SONG H G, CHOI I, LEE J S, et al. Whey protein isolate coating material for high oxygen barrier properties:A scale-up study from laboratory to industrial scale and its application to food packaging[J]. Food Packaging and Shelf Life,2022,31:100765. doi: 10.1016/j.fpsl.2021.100765
[13] 国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 食品微生物学检验 菌落总数测定:GB 4789.2-2022[S]. 北京:中国标准出版社, 2022:1−5. [National Health Commission, State Administration for Market Regulation. National food safety standard of Food microbiological testing determination of total viable counts:GB 4789.2-2022[S]. Beijing:China Standards Press, 2022:1−5.] National Health Commission, State Administration for Market Regulation. National food safety standard of Food microbiological testing determination of total viable counts: GB 4789.2-2022[S]. Beijing: China Standards Press, 2022: 1−5.
[14] 国家卫生和计划生育委员会. 食品安全国家标准 食品中挥发性盐基氮的测定:GB 5009.228-2016[S]. 北京:中国标准出版社, 2016:1-8. [National Health and Family Planning Commission. Determination of volatile basic nitrogen in food under National Standard for Food Safety:GB 5009.228-2016[S]. Beijing:China Standards Press, 2016:1-8.] National Health and Family Planning Commission. Determination of volatile basic nitrogen in food under National Standard for Food Safety: GB 5009.228-2016[S]. Beijing: China Standards Press, 2016: 1-8.
[15] 高子武. 超声波协同低温卤煮对牛肉品质特性的影响及蛋白质氧化作用研究[D]. 扬州:扬州大学, 2023:75−76. [GAO Ziwu. Study on the effect of ultrasound-assisted sous-vide cooking on the quality characteristics and protein oxidation of spiced beef[D]. Yangzhou:Yangzhou University, 2023:75−76.] GAO Ziwu. Study on the effect of ultrasound-assisted sous-vide cooking on the quality characteristics and protein oxidation of spiced beef[D]. Yangzhou: Yangzhou University, 2023: 75−76.
[16] 王静帆. 不同加热方式下猪肉保水性变化研究[D]. 北京:中国农业科学院, 2021:10. [WANG Jingfan. Study on the water holding capacity changes of porkin different cooking methods[J]. Beijing:Chinese Academy of Agricultural Sciences Thesis, 2021:10.] WANG Jingfan. Study on the water holding capacity changes of porkin different cooking methods[J]. Beijing: Chinese Academy of Agricultural Sciences Thesis, 2021: 10.
[17] NETHRA P V, SUNOOJ K V, AALIYA B, et al. Critical factors affecting the shelf life of packaged fresh red meat–A review[J]. Measurement:Food,2023,10:100086.
[18] 中华人民共和国农业部. 冷却猪肉:NY/T 632-2002[S]. 北京:中国标准出版社, 2002:1−4. [Ministry of Agriculture of the People's Republic of China. Chilled pork:NY/T 632-2002[S]. Beijing:Standards Press of China, 2002:1−4.] Ministry of Agriculture of the People's Republic of China. Chilled pork: NY/T 632-2002[S]. Beijing: Standards Press of China, 2002: 1−4.
[19] 陈东杰, 李向阳, 张玉华, 等. 不同包装条件下冷却肉品质变化及腐败菌相研究[J]. 食品工业科技,2017,38(13):281−285,291. [CHEN Dongjie, LI Xiangyang, ZHANG Yuhua, et al. Effect of different packaging on the quality and dominant spoilage bacteria of chill pork during storage[J]. Science and Technology of Food Industry,2017,38(13):281−285,291.] CHEN Dongjie, LI Xiangyang, ZHANG Yuhua, et al. Effect of different packaging on the quality and dominant spoilage bacteria of chill pork during storage[J]. Science and Technology of Food Industry, 2017, 38(13): 281−285,291.
[20] 周彬静, 刘小花, 彭菁, 等. 荧光假单胞菌和热杀索丝菌对低温贮藏期间猪肉品质变化的影响[J]. 食品科学,2022,43(19):208−216. [ZHOU Binjing, LIU Xiaohua, PENG Jing, et al. Effects of pseudomonas fluorescens and Brochothrix thermosphacta on quality changes of pork during low-temperature storage[J]. Food Science,2022,43(19):208−216.] doi: 10.7506/spkx1002-6630-20211010-093 ZHOU Binjing, LIU Xiaohua, PENG Jing, et al. Effects of pseudomonas fluorescens and Brochothrix thermosphacta on quality changes of pork during low-temperature storage[J]. Food Science, 2022, 43(19): 208−216. doi: 10.7506/spkx1002-6630-20211010-093
[21] 王素, 张德权, 王卫, 等. 超快速冷却结合不同包装贮藏对冷鲜猪肉品质的影响[J]. 中国食品学报,2023,23(10):238−248. [WANG Su, ZHANG Dequan, WANG Wei, et al. Effects of very fast chilling combined with different packaging on the quality of fresh pork[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(10):238−248.] WANG Su, ZHANG Dequan, WANG Wei, et al. Effects of very fast chilling combined with different packaging on the quality of fresh pork[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(10): 238−248.
[22] 杨啸吟, 张一敏, 梁荣蓉, 等. 包装冷却肉中微生物腐败及其挥发性气味的研究进展[J]. 食品科学,2021,42(1):285−293. [YANG Xiaoyin, ZHANG Yimin, LIANG Rongrong, et al. Microbial spoilage and formation and detection of volatile odor compounds in packaged chilled meat:A review[J]. Food Science,2021,42(1):285−293.] doi: 10.7506/spkx1002-6630-20200207-046 YANG Xiaoyin, ZHANG Yimin, LIANG Rongrong, et al. Microbial spoilage and formation and detection of volatile odor compounds in packaged chilled meat: A review[J]. Food Science, 2021, 42(1): 285−293. doi: 10.7506/spkx1002-6630-20200207-046
[23] MANSUR A R, SONG E J, CHO Y S, et al. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging[J]. Food Microbiology,2019,77:166−172. doi: 10.1016/j.fm.2018.09.006
[24] HOLMAN B W B, BEKHIT A E D A, WALLER M, et al. The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef[J]. Meat Science,2021,179:108551. doi: 10.1016/j.meatsci.2021.108551
[25] 周立. 羊肉低温气调包装保鲜技术及腐败机制研究[D]. 成都:成都大学, 2023:54. [ZHOU Li. Research on freshness preservation technologyand spoilage mechanism of mutton in low-temperature air conditioning packaging[D]. Chengdu:Chengdu University, 2023:54.] ZHOU Li. Research on freshness preservation technologyand spoilage mechanism of mutton in low-temperature air conditioning packaging[D]. Chengdu: Chengdu University, 2023: 54.
[26] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局, 食品安全国家标准鲜(冻)畜、禽产品:GB 2707-2016[S]. 北京:中国标准出版社, 2016:1−4. [State Health and Family Planning Commision of the People's Republic of China, State Food and Drug Administraion. Natonal food safety standard of fresh (frozen) livestock and poultry product:GB 2707-2016[S]. Beiing:China Standards Press, 2016:1−4.] State Health and Family Planning Commision of the People's Republic of China, State Food and Drug Administraion. Natonal food safety standard of fresh (frozen) livestock and poultry product: GB 2707-2016[S]. Beiing: China Standards Press, 2016: 1−4.
[27] 方金玉. 冷鲜牛肉中假单胞菌和热死环丝菌致腐机制及其光动力杀菌控制研究[D]. 杭州:浙江工商大学, 2023:63−65. [FANG Jinyu. Spoilage mechanisms of Pseudomonas and Brochothrix thermosphacta in chilled beef and photodynamic inactivation control[D]. Hangzhou:Zhejiang Gongshang University, 2023:63−65.] FANG Jinyu. Spoilage mechanisms of Pseudomonas and Brochothrix thermosphacta in chilled beef and photodynamic inactivation control[D]. Hangzhou: Zhejiang Gongshang University, 2023: 63−65.
[28] ZHANG D, LI H J, EMARA A M, et al. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles[J]. Food Chemistry,2020,315:126226. doi: 10.1016/j.foodchem.2020.126226
[29] LEMASTER M N, HA M, DUNSHEA F R, et al. Impact of cooking temperature on pork longissimus, and muscle fibre type, on quality traits and protein denaturation of four pork muscles[J]. Meat Science, 2023:109395.
[30] 常海军, 石源伟, 伯朝英, 等. 氧化条件下姜黄素对猪肉肌原纤维蛋白理化和凝胶特性的影响[J]. 食品科学,2024,345(8):63−71. [CHANG Haijun, SHI Yuanwei, BO Zhaoying, et al. Effect of curcumin on physicochemical and gel properties of pork myofibrillar proteins under oxidative condition[J]. Food Sciencce,2024,345(8):63−71.] doi: 10.7506/spkx1002-6630-20230709-083 CHANG Haijun, SHI Yuanwei, BO Zhaoying, et al. Effect of curcumin on physicochemical and gel properties of pork myofibrillar proteins under oxidative condition[J]. Food Sciencce, 2024, 345(8): 63−71. doi: 10.7506/spkx1002-6630-20230709-083
[31] CAO J X, ZHOU C Y, WANG Y, et al. The effect of oxidation on the structure of G-actin and its binding ability with aroma compounds in carp grass skeletal muscle[J]. Food Chemistry,2018,240:346−353. doi: 10.1016/j.foodchem.2017.07.068
[32] 郭锋, 刘风民. 宰后畜禽肌肉组织生化变化及其对肉质的影响[J]. 中国家禽,2003(2):50−51. [GUO Feng, LIU Fengmin. Biochemical changes of muscle tissue of livestock and poultry after slaughter and their effects on meat quality[J]. China Poultry,2003(2):50−51.] doi: 10.3969/j.issn.1004-6364.2003.02.029 GUO Feng, LIU Fengmin. Biochemical changes of muscle tissue of livestock and poultry after slaughter and their effects on meat quality[J]. China Poultry, 2003(2): 50−51. doi: 10.3969/j.issn.1004-6364.2003.02.029
[33] 薛盼盼, 周晓燕, 王秋玉, 等. 宰后成熟过程中猪肉保水性的变化[J]. 现代食品科技,2020,36(11):212−216,295. [XUE Panpan, ZHOU Xiaoyan, WANG Qiuyu, et al. Changes in the water-holding capacity of pork during post-mortem aging[J]. Modern Food Science and Technology,2020,36(11):212−216,295.] XUE Panpan, ZHOU Xiaoyan, WANG Qiuyu, et al. Changes in the water-holding capacity of pork during post-mortem aging[J]. Modern Food Science and Technology, 2020, 36(11): 212−216,295.
[34] 蒋兆景, 马汉军, 康壮丽, 等. 包装方式对冷鲜猪肉贮藏品质的影响[J]. 河南工业大学学报(自然科学版),2019,40(4):71−76. [JlANG Zhaojing, MA Hanjun, KANG Zhuangli, et al. Effect of packaging methods on storage quality of chilled pork[J]. Journal of Henan University of Technology(Natural Science Edition),2019,40(4):71−76.] doi: 10.3969/j.issn.1673-2383.2019.04.014 JlANG Zhaojing, MA Hanjun, KANG Zhuangli, et al. Effect of packaging methods on storage quality of chilled pork[J]. Journal of Henan University of Technology(Natural Science Edition), 2019, 40(4): 71−76. doi: 10.3969/j.issn.1673-2383.2019.04.014
[35] 扶庆权. 不同包装方式下蛋白质氧化对牛肉嫩度的影响及其机理研究[D]. 南京:南京农业大学, 2019:51−52. [FU Qingquan. Studies of effects of protein oxidation on beef tenderness under different packing methods[D]. Nanjing:Nanjing Agricultural University, 2019:51−52.] FU Qingquan. Studies of effects of protein oxidation on beef tenderness under different packing methods[D]. Nanjing: Nanjing Agricultural University, 2019: 51−52.
[36] WANG Y S, XIONG Y L, RENTFROW G K, et al, Oxidation promotes cross-linking but impairs film-forming properties of whey proteins[J]. Journal of Food Engineering, 2013, 115(1):11−19.
[37] ZHANG W, XIAO S, AHN D U. Protein oxidation:Basic principles and implications for meat quality[J]. Critical Reviews in Food Science and Nutrition,2013,53(11):1191−1201. doi: 10.1080/10408398.2011.577540
[38] 胡婷, 屈莎, 唐善虎, 等. 低盐环境下蛋白质氧化对牦牛肌肉结构及持水性的影响[J]. 食品科学,2023,44(10):38−45. [HU Ting, QU Sha, TANG Shanhu, et al. Effect of protein oxidation on the structure and water-holding capacity of yak muscle under low salinity environment[J]. Food Science,2023,44(10):38−45.] doi: 10.7506/spkx1002-6630-20220919-171 HU Ting, QU Sha, TANG Shanhu, et al. Effect of protein oxidation on the structure and water-holding capacity of yak muscle under low salinity environment[J]. Food Science, 2023, 44(10): 38−45. doi: 10.7506/spkx1002-6630-20220919-171
[39] 向斌, 刘扬眉. 包装阻氧性能对肉制品货架寿命影响研究[J]. 绿色包装,2020(12):33−36. [XIANG Bin, LIU Yangmei. Effect of packaging oxygen resistance on shelf life of meat products[J]. Green Pacaking,2020(12):33−36.] XIANG Bin, LIU Yangmei. Effect of packaging oxygen resistance on shelf life of meat products[J]. Green Pacaking, 2020(12): 33−36.
[40] 郑尧, 邱泽慧, 王锡昌. 冻藏肉及其制品中蛋白氧化的研究进展[J]. 中国食品学报,2021,21(6):331−341. [ZHENG Yao, QIU Zehui, WANG Xichang. Progress on protein oxidation in meat and meat products during frozen storage[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):331−341.] ZHENG Yao, QIU Zehui, WANG Xichang. Progress on protein oxidation in meat and meat products during frozen storage[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 331−341.
[41] 刘海升. 二氧化碳在有氧和无氧气调包装下对冷鲜猪排货架期和品质的影响研究[D]. 泰安:山东农业大学, 2023. [LIU Haisheng. Effect of CO2 on shelf life and quality of chilled pork chops under aerobic and anaerobic modified atmosphere packaging[D]. Taian:Shandong Agricultural University, 2023.] LIU Haisheng. Effect of CO2 on shelf life and quality of chilled pork chops under aerobic and anaerobic modified atmosphere packaging[D]. Taian: Shandong Agricultural University, 2023.
[42] 呼红梅, 王彦平, 张印, 等. 不同贮藏温度对真空包装冷鲜肉蛋白质氧化和微生物菌相的影响[J]. 家畜生态学报,2015,36(12):48−52. [HU Hongmei, WANG Yanping, ZHANG Yin, et al. Effect of storage temperature on changes of protein oxidation and microbial community composition in thermal shrinkage vacuum-packed cooled pork[J]. Journal of Domestic Animal Ecology,2015,36(12):48−52.] doi: 10.3969/j.issn.1673-1182.2015.12.009 HU Hongmei, WANG Yanping, ZHANG Yin, et al. Effect of storage temperature on changes of protein oxidation and microbial community composition in thermal shrinkage vacuum-packed cooled pork[J]. Journal of Domestic Animal Ecology, 2015, 36(12): 48−52. doi: 10.3969/j.issn.1673-1182.2015.12.009
[43] 杜春林, 赵春萍, 谭娅. 肉类风味物质检测技术研究进展[J]. 肉类研究,2023,37(8):46−51. [DU Chunlin, ZHAO Chunping, TAN Ya. Research progress on analytical techniques for detection of meat flavor substances[J]. Meat Research,2023,37(8):46−51.] DU Chunlin, ZHAO Chunping, TAN Ya. Research progress on analytical techniques for detection of meat flavor substances[J]. Meat Research, 2023, 37(8): 46−51.
[44] 赵莹鑫, 张德权, 葛岳, 等. 包装方式和宰后不同时间包装对羊肉品质的影响[J]. 食品科学,2022,43(15):199−208. [ZHAO Yingxin, ZHANG Dequan, GE Yue, et al. Effects of packaging methods and packaging at different postmortem times on the quality of lamb meat[J]. Food Science,2022,43(15):199−208.] doi: 10.7506/spkx1002-6630-20210530-353 ZHAO Yingxin, ZHANG Dequan, GE Yue, et al. Effects of packaging methods and packaging at different postmortem times on the quality of lamb meat[J]. Food Science, 2022, 43(15): 199−208. doi: 10.7506/spkx1002-6630-20210530-353
[45] 肖雄, 张德权, 李铮, 等. 宰后僵直和解僵过程羊肉风味品质分析[J]. 现代食品科技,2019,35(6):287−294. [XIAO Xiong, ZHANG Dequan, LI Zheng, et al. Analysis of flavor quality of pre-and post-rigor lamb[J]. Modern Food Science and Technology,2019,35(6):287−294.] XIAO Xiong, ZHANG Dequan, LI Zheng, et al. Analysis of flavor quality of pre-and post-rigor lamb[J]. Modern Food Science and Technology, 2019, 35(6): 287−294.
[46] 李思懿, 粘颖群, 谭建庄, 等. 基于电子鼻快速检测生鲜猪肉的异味[J]. 食品工业科技,2023,44(20):338−348. [LI Siyi, NIAN Yingqun, TAN Jianzhuang, et al. Application of electronic nose for rapid detection of off-flavour of raw pork[J]. Science and Technology of Food Industry,2023,44(20):338−348.] LI Siyi, NIAN Yingqun, TAN Jianzhuang, et al. Application of electronic nose for rapid detection of off-flavour of raw pork[J]. Science and Technology of Food Industry, 2023, 44(20): 338−348.
[47] VARLET V. Review. Sulfur-containing volatile compounds in seafood:Occurrence, odorant properties and mechanisms of formation[J]. Food Science and Technology International,2010,16(6):463−503. doi: 10.1177/1082013210379688
[48] QIAN S Y, LI X, WANG H, et al. Contribution of calpain to protein degradation, variation in myowater properties and the water-holding capacity of pork during postmortem ageing[J]. Food Chemistry,2020,324:126892. doi: 10.1016/j.foodchem.2020.126892
[49] WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, et al. Transcriptional profiling of biofilms formed on chilled beef by psychrotrophic meat spoilage bacterium, Pseudomonas fragi 1793[J]. Biofilm,2021,3:100045. doi: 10.1016/j.bioflm.2021.100045
[50] 李宗军, 江汉湖, 李罗明, 等. 肉品发酵过程中肌肉纤维组织结构变化[J]. 食品科技,2003(9):33−35. [LI Zongjun, JIANG Hanhu, LI Luoming, et al. Structural changes of myofibrils of fermented meat products during fermentation[J]. Food Science and Technology,2003(9):33−35.] doi: 10.3969/j.issn.1005-9989.2003.09.013 LI Zongjun, JIANG Hanhu, LI Luoming, et al. Structural changes of myofibrils of fermented meat products during fermentation[J]. Food Science and Technology, 2003(9): 33−35. doi: 10.3969/j.issn.1005-9989.2003.09.013