• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

低盐腌制对脆肉鲩冻融后品质的影响

庄晓琪, 刘巧瑜, 林泽钳, 姚彦延, 钱敏, 李湘銮, 白卫东, 董浩

庄晓琪,刘巧瑜,林泽钳,等. 低盐腌制对脆肉鲩冻融后品质的影响[J]. 食品工业科技,2025,46(8):1−9. doi: 10.13386/j.issn1002-0306.2024050062.
引用本文: 庄晓琪,刘巧瑜,林泽钳,等. 低盐腌制对脆肉鲩冻融后品质的影响[J]. 食品工业科技,2025,46(8):1−9. doi: 10.13386/j.issn1002-0306.2024050062.
ZHUANG Xiaoqi, LIU Qiaoyu, LIN Zeqian, et al. Effect of Low-salt Curing on the Quality of Crisp Grass Carp after Freeze-thaw Treatment[J]. Science and Technology of Food Industry, 2025, 46(8): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050062.
Citation: ZHUANG Xiaoqi, LIU Qiaoyu, LIN Zeqian, et al. Effect of Low-salt Curing on the Quality of Crisp Grass Carp after Freeze-thaw Treatment[J]. Science and Technology of Food Industry, 2025, 46(8): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050062.

低盐腌制对脆肉鲩冻融后品质的影响

基金项目: 广东省重点建设学科科研能力提升项目(2022ZDJS022);广东省普通高校重点领域专项(2022ZDZX4016)。
详细信息
    作者简介:

    庄晓琪(1998−),女,硕士研究生,研究方向:水产品加工,E-mail:chonghokei@foxmail.com

    通讯作者:

    刘巧瑜(1977−)(ORCID:0000−0002−1719−6252),女,博士,副教授,研究方向:中式传统肉制品加工、保鲜及呈味机理研究,E-mail:qiaoyuliu123@163.com

  • 中图分类号: TS254.4

Effect of Low-salt Curing on the Quality of Crisp Grass Carp after Freeze-thaw Treatment

  • 摘要: 为探究盐浓度对冻融前后脆肉鲩鱼片品质和肌原纤维蛋白的影响,将脆肉鲩分别用0.25、0.5、0.75、1.0、1.5和2.0 mol/L的NaCl溶液于4 ℃腌制2 h,冻藏24 h后,测定脆肉鲩鱼片持水性、色泽、脂肪氧化、羰基、总巯基、SDS-PAGE、组织结构及肌原纤维蛋白结构等。结果表明:盐浓度为0.5~0.75 mol/L,冻融前后鱼片的持水性保持较好。盐浓度<1.00 mol/L,冻融前后鱼片的组织结构较为紧密。随着盐溶液浓度的增加,冻融后鱼片的L*值比冻融前较高,冻融前后鱼片的脂质氧化和蛋白质氧化程度加剧。SDS-PAGE图谱显示,盐浓度>1.5 mol/L,冻融前鱼片的肌原纤维蛋白降解程度增加。盐浓度为<0.75 mol/L,冻融后鱼片的肌原纤维蛋白降解程度保持稳定。拉曼光谱显示,盐浓度>0.75 mol/L,冻融前后鱼片的α-螺旋含量显著减少,蛋白降解程度加剧。综上,盐浓度≤0.75 mol/L时,冻融前后脆肉鲩鱼片的品质变化较小,能够延缓蛋白氧化降解。
    Abstract: To investigate the impact of salt concentration on the quality and myofibrillar protein of crisp grass carp fillets before and after a single freeze-thaw cycle, fillets were marinated in 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 mol/L NaCl solutions at 4 ℃ for 2 h. Following a 24 h freezing period, water-holding capacity, color, lipid oxidation, carbonyl content, total sulfhydryl content, SDS-PAGE profiles, microstructure, and myofibrillar protein structure were evaluated. It was found that fillets retained water better when the salt concentration ranged from 0.5 to 0.75 mol/L. The fillets exhibited a relatively tight tissue structure before and after freezing and thawing when the salt concentration was less than 1.00 mol/L. With increasing salt solution concentration, the L* value of fish fillets after freeze-thawing was higher than before freeze-thawing. Lipid oxidation and protein oxidation of fish fillets increased after freezing and thawing. SDS-PAGE analysis revealed that myofibrillar protein degradation increased before freezing and thawing with salt concentrations >1.5 mol/L. The degree of myofibrillar protein degradation remained stable after freezing and thawing when the salt concentration was <0.75 mol/L. Raman spectra showed that the α-helix content of fish fillets was significantly reduced, and the degree of protein degradation was intensified before and after freezing and thawing when the salt concentration was >0.75 mol/L. In conclusion, when the salt concentration is ≤0.75 mol/L, the quality of crisp grass carp fillets changes little before and after freezing and thawing, which can delay the oxidative degradation of proteins.
  • 脆肉鲩是我国西南地区新兴的淡水鱼,通过对草鱼进行蚕豆饲养,使肌肉脆性得到提高,故而命名为脆肉鲩[1]。脆肉鲩因肉质爽脆紧密等特点受到消费者青睐。目前,脆肉鲩主要以活鱼或提前处理成鱼片形式售卖,但活鱼销售容易受地区限制,而鱼片在储运过程中鱼肉品质很难得到保障,易发生腐败变质,并且产生食源性危害[2]。因此,深入研究安全可靠的处理方法,以确保脆肉鲩鱼片的品质,对于提升其经济价值具有至关重要的意义。

    腌制是一种传统的食品保存方法,通过将肉品置于含有NaCl或其他调味料的溶液中,以抑制微生物的生长,从而延长其保质期。在保存易腐烂的食材,尤其是鱼类方面,腌制被广泛采用。高盐饮食可能引发高血压、心血管疾病等健康问题[3]。随着人们生活方式的变迁以及对健康和便捷食品的需求增加,低盐腌制的水产品正日益受到青睐。适当添加盐腌制对水产品的特性具有多方面积极影响,例如增强水产品的保水能力并赋予其独特的口感。然而,单一的腌制工艺货架期较短,因此常常需要结合干制、冷藏和冷冻等方法来延长其货架期[4]。冷冻过程中相变是导致冷冻鱼质量劣变的主要原因[5]。腌制后冷冻,可减少不规则冰晶对细胞的破坏,缓解鱼肉中的肌原纤维蛋白溶解并诱导蛋白质展开,降低水产品中蛋白质的生化反应,从而提高储藏的稳定性[6]。但腌制可能会引起肌原纤维蛋白结构的变化,从而影响肌肉在冻融后的保水能力、质地和色泽等特性。这种影响的程度在很大程度上取决于腌制条件,特别是盐浓度。因此,有必要探索适宜的盐浓度,以保持脆肉鲩鱼片的品质。

    低盐腌制作为脆肉鲩鱼片短期储藏的有效手段,能有效提高其储藏时间及销售半径,但目前缺乏低盐腌制脆肉鲩冻融前后品质变化的研究,不能为其提供相应的技术支撑。本文研究了不同盐浓度和腌制后冻融对脆肉鲩鱼片理化及肌原纤维蛋白的稳定性的影响,为提高冷冻低盐腌制脆肉鲩鱼片的安全储藏提供理论参考。

    脆肉鲩 购自广州市蟠龙市场。

    JYL-C022E绞肉机 九阳股份有限公司;H2050R冷冻离心机 湖南湘仪实验室仪器开发有限公司;UV-1780分光光度仪 岛津仪器(苏州)有限公司;ST50色差仪 深圳市三恩时科技有限公司;JY04S-3C凝胶成像分析系统 北京君意东方电泳设备有限公司;M2e酶标仪 美国MD公司;XPLORA PLUS共焦拉曼光谱仪 日本HORIBA公司。

    新鲜鱼宰杀加工成鱼片(6.0 cm×6.0 cm×1.0 cm),并采用无菌水清洗干净。随机分成7组。分别采用0.25、0.5、0.75、1.0、1.5和2 mol/L浓度的NaCl溶液,4 ℃静腌2 h(分别记为0 M、0.25 M、0.5 M、0.75 M、1 M、1.5 M和2 M)。腌制完成后,取出用吸水纸拭去表面水分,单独包装后−20 ℃下冷冻24 h。使用前,4 ℃下解冻3 h,备用。

    称量鱼片腌制后和解冻后的重量,分别记为W1(g)和W2(g),并根据公式(1)计算解冻损失:

    (1)

    鱼片切片(2.0 cm×1.0 cm×0.5 cm)后称重记为W3(g),将其置于底部放有吸水纸的50 mL离心管中,3000 r/min离心20 min,离心后鱼片的重量记为W4(g),并根据公式(2)计算离心损失:

    (2)

    参考夏雨婷等[7]的方法并稍作修改。配制10%中性甲醛固定液,用滤纸将解冻的鱼片表面水分吸干后修整为3.0 mm×3.0 mm×1.0 mm的大小,放入配好的固定液中持续固定48~72 h。将固定好的样品取出依次进行脱水、包埋、切片等操作,最终制得切片样品。将其脱蜡,使用苏木精染色后冲洗,再用盐酸乙醇分化液分化,再次冲洗后放入50 ℃的温水中或弱碱性水溶液,直到出现蓝色为止。取出用自来水冲洗后放入体积分数85%乙醇溶液中,伊红染色,水洗后梯度乙醇溶液脱水,后使用中性树胶封固。数字切片扫描仪对切片进行图像采集,选择要观察的区域放大至100倍,观察脆肉鲩鱼片的肌纤维情况。

    将鱼片切成3.0 cm×3.0 cm×1.0 cm的块状,用色差仪测定其亮度值(L*)、红度值(a*)和黄度值(b*),测定前用标准黑白板校准。

    参考游云等[8]方法进行测定,称取5 g搅碎鱼肉,加入20 mL 10%的三氯乙酸,均质1 min,4 ℃下4000 r/min离心10 min,上清液过滤后取5 mL,加入5 mL 0.02 mol/L的2-硫代巴比妥酸,混匀,沸水中加热20 min后迅速冷却20 min。532 nm下测定吸光值,空白用5 mL三氯乙酸代替滤液。TBA值用丙二醛(MDA)质量分数表示。每组样品平行测定3次。

    取5.00 g鱼肉,加入40 mL洗涤缓冲液(0.1 mmol/L KCl、20 mol/L Tris-HCl,pH7.0),低温条件下10000 r/min速度匀浆30 s,重复3次。将匀浆液在4 ℃、10000 r/min条件下离心10 min,弃上清液保留沉淀。收集所有的沉淀,即为肌原纤维蛋白。

    参考庄小妹等[9]的方法测定总巯基含量。根据公式(3)计算巯基含量:

    (3)

    式中:A为样品组在412 nm波长处的吸光度;A0为空白组在412 nm波长处的吸光度;C为蛋白溶液质量浓度(mg/mL);11为稀释倍数。

    参考梁诗惠等[10]方法并稍作修改。用10 mmol/L Tris-HCl(含0.6 mol/L NaCl,pH7.2)将肌原纤维蛋白稀释至2 mg/mL。取1 mL蛋白液放入塑料离心管并加入1 mL 10 mmol/L DNPH溶液(含2 mol/L HCl),室温条件下避光静置1 h(每隔15 min振荡一次),添加3 mL 20% TCA后以10000 r/min离心5 min,弃上清液,用1 mL乙酸乙酯-乙醇体积比1:1洗沉淀3次,加5 mL 6 mol/L盐酸胍溶液,37 ℃保温30 min溶解沉淀,以10000 r/min离心5 min,最后在370 nm波长处测定吸光度。根据公式(4)计算羰基含量:

    (4)

    式中:A370为370 nm处吸光度;N为稀释倍数;ε为摩尔吸光系数,取22000 mol/(L·cm);ρ为蛋白质质量浓度,mg/mL。

    参考林泽钳等[11]方法进行测定,蛋白质电泳分析采用十二烷基磺酸钠聚丙烯酰胺凝胶电泳法。取鱼肉5 g,加入5% SDS溶液(50 g/L)45 mL,在8000 r/min条件下均质7 min,每次均质30 s。均质后的溶液,85 ℃水浴1 h,离心10 min(10000 r/min,4 ℃),取上清液备用。配置质量分数为12%分离胶及质量分数为4%浓缩胶。配制溶解液(内含4% SDS,20%甘油,0.02%溴酚蓝,0.125 mol/L Tris-HCl缓冲液,pH6.8),蛋白质量浓度为1 mg/mL。电泳采用1 mm凝胶板。上样量为10 µL,开始电压为80 V,当样品进入分离胶后将电压调大至120 V;电泳结束后取出胶片并用考马斯亮蓝染色2 h,最终用甲醇/冰醋酸脱色液脱色至胶片背景清晰。

    参考梁诗惠等[10]的方法并稍作修改。采用共焦拉曼光谱仪对肌原纤维蛋白质样品进行扫描。设置532 nm离子化氩激光器,功率为10 mW,分离率为1 cm−1,每个样品的扫描时间为20 s,获取7个400~3000 cm−1波段的扫描光谱。拉曼光谱波段的平滑处理、傅立叶解卷积和曲线拟合均由Peakfit 4.12软件完成。

    不同处理组之间的差异采用多重比较法分析(Duncan法,P<0.05)。采用IBM SPSS Statistics 25处理数据,Origin 2023制图,结果表示为平均值±标准偏差。

    冷冻鱼肉的保水性可通过解冻损失和离心损失来表示。水分含量影响肉制品的品质,是肉制品的重要品质特性之一[12]。由图1可知,未低盐处理的鱼片在冻融后的离心损失率高于冻融前。冻融前鱼片的离心损失随着盐浓度的增加呈下降趋势,盐浓度越大,鱼肉中的水分含量越低(P<0.05)。盐浓度0.5 mol/L时,鱼片的离心损失最低,为3.59%。低盐使肌原纤维蛋白发生增溶和肌丝晶格膨胀,在冷冻时约束冰晶生长,减缓汁液流失[13]。随着盐浓度增加,持水性下降,可能是盐引起鱼肉渗透程度发生变化。冻融后的离心损失显著高于冻融前(P<0.05)。鱼片在融化过程中不能从冰晶中重新吸收融化的水。当施加外力进行离心时,组织内不能保持水分,从而降低了鱼片的保水能力。可能与肌原纤维蛋白稳定性下降有关。当盐浓度≤0.5 mol/L时,缓解了冻融过程中冰晶对脆肉鲩鱼片组织结构的破坏,降低解冻时汁液的渗出。

    图  1  不同盐浓度对脆肉鲩冻融前后离心损失的影响
    注:小写字母表示不同盐浓度的差异显著(P<0.05),图2图4~图6同。
    Figure  1.  Effect of different salt concentrations on centrifugation loss of crisp grass carp fillets before and after a single freeze-thaw cycle

    图2可知,低盐处理的鱼片在冻融后的解冻损失显著低于未处理的鱼片(P<0.05),可能是冰晶在冷冻过程中形成和增大体积对鱼肉肌纤维造成了较严重的机械损伤,解冻后水分不能被肌肉完全吸收[14]。盐浓度为0.25 mol/L时,解冻损失率最高(0.10%)。随着盐浓度的增加,鱼片的解冻损失逐渐下降趋于稳定。低盐处理能够有效缩小肌肉组织内冰晶的形状,减少对细胞的机械损伤[15]。适量盐浓度可使鱼片在冷冻后保持较高的保水性,降低鱼片在冻融过程中因冰晶生成造成的破坏。

    图  2  不同盐浓度对脆肉鲩冻融后解冻损失的影响
    Figure  2.  Effect of different salt concentrations on thawing loss of crisp grass carp after a single freeze-thaw cycle

    肌肉的组织结构影响肉品的重要因素,肌纤维与肌束膜的间隙决定肌纤维结构的松散程度[16]。如图3(A)所示,冻融前新鲜鱼肉肌纤维边界完整、清晰,呈不规则多边形有序排列,组织结构间仅有少量的空隙。由图3(B)可知,冻融后的鱼片肌纤维胞间隙变大,肌丝变细并伴有轻微断裂。冰晶破环细胞膜,造成肌肉纤维和肌束膜间隙增大[17]。随着盐浓度增加,在盐浓度为2.0 mol/L时,肌纤维间隙明显增大。Jiang等[18]用浓度为3 mol/L的NaCl溶液腌制金枪鱼,鱼肉的结缔组织结构发生降解。因此推断,冻融前后盐浓度≤1.0 mol/L时,鱼片组织结构较为稳定,保持鱼片本身的品质,满足消费者的消费需求。

    图  3  脆肉鲩组织结构冻融前(A)和冻融后(B)的变化
    Figure  3.  Changes in the tissue structure of crisp grass carp before (A) and after (B) a single freeze-thaw treatment

    色泽是衡量肉制品品质的直观指标,也是消费者筛选和评判鱼肉好坏的标准之一[19]。如表1所示,鱼片的L*值随着盐浓度的增加而增加,随后的冻融过程中,L*值的增加则随着盐浓度的增加而减少。Kristin等[20]发现鳕鱼腌制过程鳕鱼表面形成一层膜,影响鱼肉的色泽,导致鱼肉的L*值降低。冻融后,0.5 mol/L和0.75 mol/L时脆肉鲩鱼片与未低盐处理的鱼片没有显著性差异(P>0.05)。冻融后,a*值明显增加。虽然盐浓度对肉类变色的影响机理尚未完全清楚,色泽变化可能与肉类系统抗氧化能力下降或盐离子对肌红蛋白构象及其稳定性的影响有关[21]。鱼肉的a*值的变化可归因于高铁血红蛋白形成而发生变化。

    表  1  不同盐浓度对脆肉鲩冻融前后肌肉色泽的影响
    Table  1.  Effect of different salt concentrations on the muscle color of crisp grass carp before and after a single freeze-thaw treatment
    腌制浓度 0 mol/L 0.25 mol/L 0.5 mol/L 0.75 mol/L 1 mol/L 1.5 mol/L 2 mol/L
    L* 冻融前 47.29±0.85e 45.73±0.58g 46.32±1.13f 47.94±0.31d 49.94±0.43c 53.17±0.50b 56.26±0.55a
    冻融后 58.82±1.25ab 57.98±0.26b 54.10±0.46d 54.83±2.73d 56.32±1.13c 59.73±0.58a 58.26±0.55b
    a* 冻融前 −3.85±0.16b −3.47±0.12b −3.34±0.18b −3.30±0.14b −2.68±0.32ab −2.55±0.57ab −1.93±0.18a
    冻融后 −1.12±0.13d −0.07±0.08bc 1.04±1.13a 1.16±0.25a 1.29±0.07a 0.22±0.08b −0.66±0.14cd
    b* 冻融前 1.48±0.50a 0.71±0.47b 0.90±0.45b 0.57±0.60bc −0.43±0.76d −0.53±0.23d 0.20±0.42c
    冻融后 0.93±0.09bc 1.08±0.25b 1.98±0.27a 2.40±0.18a 0.54±0.42c −0.01±0.15d −2.18±0.17e
    注:小写字母表示不同盐浓度的差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    TBARS值是反映肉品脂质氧化的重要指标,脂肪氧化程度越大其TBARS含量越高[22]。鱼肉中的不饱和脂肪酸占比较高,容易受到外界因素影响从而导致氧化。如图4所示,随着盐浓度的增加,冻融前TBARS含量呈上升趋势。Jiang等[23]用1 mol/L NaCl溶液腌制金枪鱼,在冻藏过程中TBARS含量的变化趋势与本研究结果一致。冻融前盐浓度≤0.5 mol/L时,TBARS值低于未低盐处理的鱼片(P<0.05),其中盐浓度为2 mol/L时,TBARS含量最高(1.34 mg/100 g)。冻融后TBARS值呈上升趋势。冻融过程中,细胞结构发生破坏,氧化产生的自由基具有促氧化作用[24]。冻融后盐浓度为0.25 mol/L时的TBARS含量显著低于其他浓度(P<0.05)。与陈实等[25]发现不同盐浓度处理的青鱼随着盐浓度增加TBARS含量先下降后上升的趋势结果一致。

    图  4  不同盐浓度对脆肉鲩冻融前后脂肪氧化程度的影响
    Figure  4.  Effect of different salt concentrations on the degree of fat oxidation in crisp grass carp before and after a single freeze-thaw treatment

    蛋白质羰基化是指氨基酸残基侧链中的氨基或亚氨基受到氧自由基攻击,转变成羰基,并释放NH3+的过程。羰基含量可作为判定蛋白质氧化损伤的一项重要指标[26]。如图5所示,冻融前鱼片的羰基含量均小于3.00 nmol/mg。冻融后随着盐浓度的增加,羰基含量呈上升趋势,鱼片的蛋白氧化程度显著降低(P<0.05)。冻融处理生成和消融冰晶,破坏了肌原纤维蛋白的结构稳定性,促进氧化成分生成,导致羰基化合物大量产生。其中,盐浓度为0.25 mol/L时,羰基含量最低,延缓冻融过程中蛋白质的氧化。低盐腌制缓解冰晶对组织的破坏和蛋白质稳定性,减少埋藏的反应基团暴露,降低蛋白的溶解速度,减少蛋白质的结合和聚集[27]

    图  5  不同盐浓度对脆肉鲩冻融前后羰基含量的影响
    Figure  5.  Effect of different salt concentrations on the carbonyl content in crisp grass carp before and after a single freeze-thaw treatment

    巯基是鱼肉蛋白活性基团中最活跃的基团之一,在稳定肌原纤维蛋白空间结构和保持蛋白质生物活性方面发挥着积极作用[28]。如图6所示,冻融前,总巯基含量呈下降趋势,随盐浓度增加显著下降(P<0.05)。韦丽娜等[29]发现腌制会破坏罗非鱼蛋白结构,盐渗透导致细胞间水分流失,离子键和氢键断裂,使巯基含量降低。盐浓度为2.0 mol/L时鱼片的总巯基含量显著增加(P<0.05),过高盐浓度容易导致肌原纤维蛋白产生盐溶现象,肌原纤维蛋白结构展开,暴露出埋藏于蛋白质内部的巯基[30]。冻融后鱼片总巯基含量显著下降(P<0.05)。由于冰晶的生成对鱼片组织细胞的挤压刺穿,使得原来鱼片中的肌原纤维蛋白空间结构发生改变,把埋藏在分子内部的巯基暴露出来,进而被氧化成二硫键。与劳梦甜等[31]发现一致,冷冻产生的冰晶对肉组织细胞的挤压刺穿,蛙肉的总巯基含量下降,二硫键增加。

    图  6  不同盐浓度对脆肉鲩冻融前后总巯基含量的影响
    Figure  6.  Effect of different salt concentrations on the total sulfhydryl content in crisp grass carp before and after a single freeze-thaw treatment

    SDS-PAGE可以直观获得各处理后的肌纤维蛋白分子变化情况。SDS-PAGE显示肌肉蛋白的主要是肌球蛋白重链(MHC)、肌钙蛋白、肌动蛋白(Actin)、原肌球蛋白和肌球蛋白轻链[32]图7为不同盐浓度腌制脆肉鲩的SDS-PAGE电泳图谱。冻融前盐浓度低于0.5 mol/L时,鱼片的总蛋白质及肌原纤维蛋白质中的原肌球蛋白条带无显著影响(P>0.05)。随着盐浓度的增加,完整肌球蛋白重链、肌动蛋白、原肌球蛋白和肌钙蛋白带明显缺失。冻融后,随着盐浓度增加,肌球蛋白重链和肌动蛋白条带逐渐降解,蛋白发生了不同程度的交联,肌球蛋白重链和原肌球蛋白两条带周围产生的蛋白条带明显增多,66~95 kDa区间下产生了新的蛋白条带,可能是在经过冻融后,肌球蛋白失去了外在基团或组织的保护而发生降解。陈钰等[33]发现冷冻条件下,南美白对虾的肌球蛋白完整性被破坏,失去了外在基团或组织的保护而发生降解,冷冻对蛋白空间结构稳定性的破坏和蛋白分子之间的重新交联,导致蛋白条带变浅。冻融前低盐腌制的肌纤维蛋白降解不明显,冻融后低浓度腌制的肌球蛋白重链、肌动蛋白和原肌球蛋白的降解程度均小于未低盐处理的鱼片。与Sun等[34]研究结果一致,肌球蛋白轻链及其衍生链条,在低盐的作用下的条带强度并无显著的变化。

    图  7  脆肉鲩肌原纤维蛋白冻融前(A)和冻融后(B)的SDS-PAGE图谱的变化
    Figure  7.  Changes in the SDS-PAGE patterns of myofibrillar proteins in crisp grass carp before (A) and after (B) a single freeze-thaw treatment

    图8A可知,未低盐处理的MP的酰胺III带位于1229~1305 cm−1中心,其中α-螺旋的相对含量接近1270 cm−1和1300 cm−1。由图9A所示,其酰胺I带的中心为1600~1700 cm−1α-螺旋结构和β-片状结构的相对含量分别为62.22%和15.33%(见图10A)。随着盐浓度的增加,蛋白质二级结构发生了变化,酰胺Ⅲ带(α-螺旋)的峰逐渐平滑(见图8A)。

    图  8  经盐浓度处理的脆肉鲩冻融前(A)和冻融后(B)MP的400~2000 cm−1波段的解卷积和曲线拟合拉曼谱带
    Figure  8.  Deconvolution and curve fitting of the Raman spectra bands in the 400~2000 cm−1 range for myofibrillar proteins (MP) in crisp grass carp treated with different salt concentrations before (A) and after (B) a single freeze-thaw treatment
    注:0 mol/L (a); 0.25 mol/L(b); 0.5 mol/L (c); 0.75mol/L (d); 1 mol/L (e); 1.5 mol/L (f); 2 mol/L (g).
    图  9  经不同盐浓度处理的脆肉鲩冻融前和冻融后MP的酰胺I去卷积和曲线拟合拉曼条带
    Figure  9.  Deconvolution and curve fitting of the amide I Raman bands for myofibrillar proteins (MP) in crisp grass carp treated with different salt concentrations before and after a single freeze-thaw treatment
    注:0 mol/L (A); 0.25 mol/L(B); 0.5 mol/L (C); 0.75mol/L (D); 1 mol/L (E); 1.5 mol/L (F); 2 mol/L (G); 大写字母为冻融前拉曼条带;小写字母为冻融后拉曼条带。
    图  10  经不同盐浓度处理的脆肉鲩冻融前(A)和冻融后(B)MP的蛋白二级结构的相对含量
    Figure  10.  Relative content of protein secondary structure in myofibrillar proteins (MP) of crisp grass carp treated with different salt concentrations before (A) and after (B) a single freeze-thaw treatment

    图10所示,对酰胺I带的解卷积显示,脆肉鲩鱼片的肌原纤维蛋白二级结构中,α-螺旋结构占比最大,其次是β-折叠结构,β-转角结构的占比最低。随着盐浓度增加,α-螺旋结构占比逐渐降低,β-折叠结构占比增加。α-螺旋结构的减少与β-折叠结构、β-转角结构和无规卷曲结构的增加表明蛋白质在腌制后发生了解析。冻融后α-螺旋结构减少表明MPs聚集,而α-螺旋含量增加的蛋白质结构重组可能同时发生。图10A和图10B相比,对照组冷冻后的α-螺旋含量明显减少,盐浓度为0.5 mol/L的α-螺旋含量高于0.75 mol/L。腌制浓度为0.75 mol/L时,冻融后的α-螺旋含量没有显著性变化。

    图11显示了脆肉鲩MP经不同盐浓度处理后再冻融的I755/1005、I850/830和I134/1005三条带的强度比。755和1341 cm−1附近的条带属于色氨酸残基,该条带的变化可提供极性信息[35]。色氨酸残基通常埋藏在疏水的微环境中,一旦暴露在极性水溶剂中,其归一化强度可能会降低[36]。然而,未低盐处理和盐浓度为0.25 mol/L的鱼片,在I755随后的冻融过程中显著降低(P<0.05),其他组色氨酸残基的强度则无差异,表明低盐处理对冻融过程提供重要作用。位于830和850 cm−1附近的双色带属于酪氨酸残基的费米共振环。图11的结果表明,酪氨酸双线带(I850/I830)的比值随盐度的增加而增加,小于1.0,但在随后的冻融过程中均大于1.0(图11),表明酪氨酸残基被埋藏在蛋白质网络中,趋于暴露,但在随后的冻融过程中暴露出来。

    图  11  经不同盐浓度处理的脆肉鲩冻融前(A)和冻融后(B)MP条带归一化强度的变化
    Figure  11.  Changes in the normalized intensity of the bands for myofibrillar proteins (MP) in crisp grass carp treated with different salt concentrations before (A) and after (B) a single freeze-thaw treatment

    研究发现,不同盐浓度处理的脆肉鲩鱼片在冻融前后,持水性、色泽、脂肪氧化、羰基含量、总巯基含量、组织结构及肌原纤维蛋白均有影响。低盐处理对脆肉鲩鱼片持水性有明显改善,冻融后鱼片的L*值比冻融前较高,同时降低鱼片脂肪和蛋白质氧化程度,具体表现在TBARS值和羰基含量的上升,以及总巯基含量的降低。低盐有利于延缓冻融前后鱼片蛋白质的降解,过高浓度则会影响鱼片的组织结构稳定。此外,盐浓度(>0.75 mol/L)增加会影响冻融后蛋白质二级结构的变化。综上,使用盐浓度<0.75 mol/L有利于脆肉鲩鱼片在冻融前后肉片的稳定。在后续研究中,可以考虑其他影响因素或添加其他保鲜剂,以提高脆肉鲩鱼片在冷链运输过程中的品质,进而提升其经济效益。

  • 图  1   不同盐浓度对脆肉鲩冻融前后离心损失的影响

    注:小写字母表示不同盐浓度的差异显著(P<0.05),图2图4~图6同。

    Figure  1.   Effect of different salt concentrations on centrifugation loss of crisp grass carp fillets before and after a single freeze-thaw cycle

    图  2   不同盐浓度对脆肉鲩冻融后解冻损失的影响

    Figure  2.   Effect of different salt concentrations on thawing loss of crisp grass carp after a single freeze-thaw cycle

    图  3   脆肉鲩组织结构冻融前(A)和冻融后(B)的变化

    Figure  3.   Changes in the tissue structure of crisp grass carp before (A) and after (B) a single freeze-thaw treatment

    图  4   不同盐浓度对脆肉鲩冻融前后脂肪氧化程度的影响

    Figure  4.   Effect of different salt concentrations on the degree of fat oxidation in crisp grass carp before and after a single freeze-thaw treatment

    图  5   不同盐浓度对脆肉鲩冻融前后羰基含量的影响

    Figure  5.   Effect of different salt concentrations on the carbonyl content in crisp grass carp before and after a single freeze-thaw treatment

    图  6   不同盐浓度对脆肉鲩冻融前后总巯基含量的影响

    Figure  6.   Effect of different salt concentrations on the total sulfhydryl content in crisp grass carp before and after a single freeze-thaw treatment

    图  7   脆肉鲩肌原纤维蛋白冻融前(A)和冻融后(B)的SDS-PAGE图谱的变化

    Figure  7.   Changes in the SDS-PAGE patterns of myofibrillar proteins in crisp grass carp before (A) and after (B) a single freeze-thaw treatment

    图  8   经盐浓度处理的脆肉鲩冻融前(A)和冻融后(B)MP的400~2000 cm−1波段的解卷积和曲线拟合拉曼谱带

    Figure  8.   Deconvolution and curve fitting of the Raman spectra bands in the 400~2000 cm−1 range for myofibrillar proteins (MP) in crisp grass carp treated with different salt concentrations before (A) and after (B) a single freeze-thaw treatment

    注:0 mol/L (a); 0.25 mol/L(b); 0.5 mol/L (c); 0.75mol/L (d); 1 mol/L (e); 1.5 mol/L (f); 2 mol/L (g).

    图  9   经不同盐浓度处理的脆肉鲩冻融前和冻融后MP的酰胺I去卷积和曲线拟合拉曼条带

    Figure  9.   Deconvolution and curve fitting of the amide I Raman bands for myofibrillar proteins (MP) in crisp grass carp treated with different salt concentrations before and after a single freeze-thaw treatment

    注:0 mol/L (A); 0.25 mol/L(B); 0.5 mol/L (C); 0.75mol/L (D); 1 mol/L (E); 1.5 mol/L (F); 2 mol/L (G); 大写字母为冻融前拉曼条带;小写字母为冻融后拉曼条带。

    图  10   经不同盐浓度处理的脆肉鲩冻融前(A)和冻融后(B)MP的蛋白二级结构的相对含量

    Figure  10.   Relative content of protein secondary structure in myofibrillar proteins (MP) of crisp grass carp treated with different salt concentrations before (A) and after (B) a single freeze-thaw treatment

    图  11   经不同盐浓度处理的脆肉鲩冻融前(A)和冻融后(B)MP条带归一化强度的变化

    Figure  11.   Changes in the normalized intensity of the bands for myofibrillar proteins (MP) in crisp grass carp treated with different salt concentrations before (A) and after (B) a single freeze-thaw treatment

    表  1   不同盐浓度对脆肉鲩冻融前后肌肉色泽的影响

    Table  1   Effect of different salt concentrations on the muscle color of crisp grass carp before and after a single freeze-thaw treatment

    腌制浓度 0 mol/L 0.25 mol/L 0.5 mol/L 0.75 mol/L 1 mol/L 1.5 mol/L 2 mol/L
    L* 冻融前 47.29±0.85e 45.73±0.58g 46.32±1.13f 47.94±0.31d 49.94±0.43c 53.17±0.50b 56.26±0.55a
    冻融后 58.82±1.25ab 57.98±0.26b 54.10±0.46d 54.83±2.73d 56.32±1.13c 59.73±0.58a 58.26±0.55b
    a* 冻融前 −3.85±0.16b −3.47±0.12b −3.34±0.18b −3.30±0.14b −2.68±0.32ab −2.55±0.57ab −1.93±0.18a
    冻融后 −1.12±0.13d −0.07±0.08bc 1.04±1.13a 1.16±0.25a 1.29±0.07a 0.22±0.08b −0.66±0.14cd
    b* 冻融前 1.48±0.50a 0.71±0.47b 0.90±0.45b 0.57±0.60bc −0.43±0.76d −0.53±0.23d 0.20±0.42c
    冻融后 0.93±0.09bc 1.08±0.25b 1.98±0.27a 2.40±0.18a 0.54±0.42c −0.01±0.15d −2.18±0.17e
    注:小写字母表示不同盐浓度的差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 张玮岚, 杜瑞雪, 叶元土, 等. 脆肉鲩器官组织胶原纤维染色观察[J]. 水产学杂志, 2024, 37(1):16−21,38. [ZHANG Weilan, DU Ruixue, YE Yuantu, et al. Observation of collagen fiber staining in organs of crisped grass carp[J]. Journal of Aquatic Sciences, 2019, 37(1):16−21,38.]

    ZHANG Weilan, DU Ruixue, YE Yuantu, et al. Observation of collagen fiber staining in organs of crisped grass carp[J]. Journal of Aquatic Sciences, 2019, 37(1): 16−21,38.

    [2] 林婉玲, 王瑞旋, 王锦旭, 等. 脆肉鲩不同部位肌肉的质构特征分析[J]. 现代食品科技, 2020, 36(3):211−218. [LIN Wanling, WANG Ruixuan, WANG Jinxu, et al. Texture characteristics of muscle in different parts of Crisped grass carp[J]. Modern Food Science and Technology, 2019, 36(3):211−218.]

    LIN Wanling, WANG Ruixuan, WANG Jinxu, et al. Texture characteristics of muscle in different parts of Crisped grass carp[J]. Modern Food Science and Technology, 2019, 36(3): 211−218.

    [3]

    PETIT G, JURY V, LAMBALLERIE M, et al. Salt intake from processed meat products:benefits, risks and evolving practices[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(5):1453−1473. doi: 10.1111/1541-4337.12478

    [4]

    YAN L I, FANG Y, ZHANG J, et al. Changes in quality and microbial succession of lightly salted and sugar-salted blunt snout bream (Megalobrama amblycephala) fillets stored at 4 ℃[J]. Journal of Food Protection,2018,81(8):1293−1303. doi: 10.4315/0362-028X.JFP-18-072

    [5] 宋玉, 郑健, 黄峰, 等. 不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响[J]. 食品工业科技, 2022, 43(23):103−111. [SONG Yu, ZHENG Jian, HUANG Feng, et al. Effects of different curing methods on quality, tissue morphology and protein structure of cooked pork[J]. Science and Technology of Food Industry, 202, 43(23):103−111.]

    SONG Yu, ZHENG Jian, HUANG Feng, et al. Effects of different curing methods on quality, tissue morphology and protein structure of cooked pork[J]. Science and Technology of Food Industry, 202, 43(23): 103−111.

    [6] 王耀松, 马天怡, 胡荣蓉, 等. L−组氨酸修饰乳清蛋白结构及其热诱导凝胶特性[J]. 食品科学, 2021, 42(6):16−23. [WANG Yaosong, MA Tianyi, HU Rongrong, et al. Structure and heat-induced gel properties of whey protein modified by L-histidine[J]. Food Science, 2019, 42(6):16−23.]

    WANG Yaosong, MA Tianyi, HU Rongrong, et al. Structure and heat-induced gel properties of whey protein modified by L-histidine[J]. Food Science, 2019, 42(6): 16−23.

    [7] 夏雨婷, 吴伟伦, 章蔚, 等. 真空辅助加压腌制对草鱼块品质的影响[J]. 食品科学,2023,44(1):70−77. [XIA Yuting, WU Weilun, ZHANG Wei, et al. Effect of vacuum assisted pressure curing on the quality of grass carp[J]. Food Science,2023,44(1):70−77.] doi: 10.7506/spkx1002-6630-20211115-176

    XIA Yuting, WU Weilun, ZHANG Wei, et al. Effect of vacuum assisted pressure curing on the quality of grass carp[J]. Food Science, 2023, 44(1): 70−77. doi: 10.7506/spkx1002-6630-20211115-176

    [8] 游云, 黄晓霞, 肖斯立, 等. 反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用[J]. 食品科学, 2024, 45(8):228−237. [YOU Yun, HUANG Xiaoxia, XIAO Sili, et al. Application of backpropagation−artificial neural network in the quality prediction of irradiated black pepper beef[J]. Food Science, 2018, 45(8):228−237.]

    YOU Yun, HUANG Xiaoxia, XIAO Sili, et al. Application of backpropagation−artificial neural network in the quality prediction of irradiated black pepper beef[J]. Food Science, 2018, 45(8): 228−237.

    [9] 庄小妹, 郑尧, 马园, 等. 冰藏条件下不同贮存形式养殖大菱鲆品质对比[J]. 食品科学,2024,45(12):243−252. [ZHUANG Xiaomei, ZHENG Yao, MA Yuan, et al. Quality comparison of cultured turbot with different storage forms under ice storage conditions[J]. Food Science,2024,45(12):243−252.] doi: 10.7506/spkx1002-6630-20231208-069

    ZHUANG Xiaomei, ZHENG Yao, MA Yuan, et al. Quality comparison of cultured turbot with different storage forms under ice storage conditions[J]. Food Science, 2024, 45(12): 243−252. doi: 10.7506/spkx1002-6630-20231208-069

    [10] 梁诗惠, 冯钰敏, 邓华荣, 等. 解冻方式对鸡腿肉蛋白氧化特性的影响[J]. 食品与发酵工业,2023,49(5):223−229. [LIANG Shihui, FENG Yumin, DENG Huarong, et al. Effect of thawing method on oxidation characteristics of chicken leg protein[J]. Food and Fermentation Industry,2023,49(5):223−229.]

    LIANG Shihui, FENG Yumin, DENG Huarong, et al. Effect of thawing method on oxidation characteristics of chicken leg protein[J]. Food and Fermentation Industry, 2023, 49(5): 223−229.

    [11] 林泽钳, 白卫东, 刘巧瑜, 等. 罗非鱼肌纤维蛋白糖基化工艺优化[J]. 食品与机械,2023,39(5):173−181. [LIN Zeqian, BAI Weidong, LIU Qiaoyu, et al. Optimization of glycosylation process of tilapia muscle fiber protein[J]. Food and Machinery,2023,39(5):173−181.]

    LIN Zeqian, BAI Weidong, LIU Qiaoyu, et al. Optimization of glycosylation process of tilapia muscle fiber protein[J]. Food and Machinery, 2023, 39(5): 173−181.

    [12] 曹珠, 沈鑫杰, 施文正. 不同解冻方式对金枪鱼肉品质的影响[J]. 包装工程,2023,44(21):169−175. [CAO Zhu, SHEN Xinjie, SHI Wenzheng. Effects of different thawing methods on the quality of tuna meat[J]. Packaging Engineering,2023,44(21):169−175.]

    CAO Zhu, SHEN Xinjie, SHI Wenzheng. Effects of different thawing methods on the quality of tuna meat[J]. Packaging Engineering, 2023, 44(21): 169−175.

    [13]

    JIANG Q, JIA R, NAKAZAWA N, et al. Changes in protein properties and tissue histology of tuna meat as affected by salting and subsequent freezing[J]. Food Chemistry,2019,271(JAN.15):550−560.

    [14] 罗翌元, 陈梁, 齐贺, 等. 不同添加物结合真空渗透处理对冻藏虾仁肌原纤维蛋白稳定性的影响[J]. 食品科学, 2024, 45(4):35−41. [LUO Yiyuan, CHEN Liang, QI He, et al. Effect of different additives combined with vacuum osmosis treatment on the stability of frozen preserved shrimp myofibrillar protein[J]. Food Science, 2018, 45(4):35−41.]

    LUO Yiyuan, CHEN Liang, QI He, et al. Effect of different additives combined with vacuum osmosis treatment on the stability of frozen preserved shrimp myofibrillar protein[J]. Food Science, 2018, 45(4): 35−41.

    [15]

    BLIKRA M, JESSEN F, FEYISSA A, et al. Low-concentration salting of cod loins:The effect on biochemical properties and predicted water retention during heating[J]. LWT,2020,118:108702. doi: 10.1016/j.lwt.2019.108702

    [16] 徐若瑗, 薛纪元, 王敏, 等. 不同热处理方式对牛肉嫩度和挥发性风味物质的影响[J]. 食品工业科技,2023,44(4):77−87. [XU Ruoyuan, XUE Jiyuan, WANG Min, et al. Effects of different heat treatment methods on tenderness and volatile flavor substances of beef[J]. Science and Technology of Food Industry,2023,44(4):77−87.]

    XU Ruoyuan, XUE Jiyuan, WANG Min, et al. Effects of different heat treatment methods on tenderness and volatile flavor substances of beef[J]. Science and Technology of Food Industry, 2023, 44(4): 77−87.

    [17] 廖锦晗, 陈季旺, 谭玲, 等. 冻结方式对中华鲟脂质氧化和肌纤维微观结构的影响[J]. 食品科学,2023,44(15):113−120. [LIAO Jinhan, CHEN Jiwang, TAN Ling, et al. Effects of freezing mode on lipid oxidation and muscle fiber microstructure of Acipenser sinensis[J]. Food Science,2023,44(15):113−120.] doi: 10.7506/spkx1002-6630-20220930-344

    LIAO Jinhan, CHEN Jiwang, TAN Ling, et al. Effects of freezing mode on lipid oxidation and muscle fiber microstructure of Acipenser sinensis[J]. Food Science, 2023, 44(15): 113−120. doi: 10.7506/spkx1002-6630-20220930-344

    [18]

    JIANG Q, NAKAZAWA N, HU Y, et al. Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles[J]. Food Chemistry,2019,293(SEP.30):178−186.

    [19] 王源渊, 尚珊, 丁若松, 等. 不同复热方式对预制烤鱼品质的影响[J]. 食品与发酵工业, 2024, 50(1):248−255. [WANG Yuanyuan, SHANG Shan, DING Ruosong, et al. Effects of different reheating methods on the quality of prepared grilled fish[J]. Food and Fermentation Industry, 2019, 50(1):248−255.]

    WANG Yuanyuan, SHANG Shan, DING Ruosong, et al. Effects of different reheating methods on the quality of prepared grilled fish[J]. Food and Fermentation Industry, 2019, 50(1): 248−255.

    [20]

    KRISTIN A T, ARASON S, SJOFN S, et al. "Effects of different pre-salting methods on protein aggregation during heavy salting of cod fillets. "[J]. Food Chemistry,2011,124(1):7−14.

    [21] 杜曼婷, 游紫燕, 黄俐, 等. 介质阻挡放电低温等离子体处理对宰后羊肉色泽和氧化稳定性的影响[J]. 食品科学,2024,45(13):190−197. [DU Manting, YOU Ziyan, HUANG Li, et al. Effect of low temperature plasma treatment with dielectric barrier discharge on color and oxidation stability of mutton after slaughter[J]. Food Science,2024,45(13):190−197.] doi: 10.7506/spkx1002-6630-20231013-104

    DU Manting, YOU Ziyan, HUANG Li, et al. Effect of low temperature plasma treatment with dielectric barrier discharge on color and oxidation stability of mutton after slaughter[J]. Food Science, 2024, 45(13): 190−197. doi: 10.7506/spkx1002-6630-20231013-104

    [22] 张雨婷, 董笑溦, 张伯雅, 等. 复配香辛料精油对鲶鱼肉风干肠品质及安全性的影响[J]. 食品科学,2024,45(2):24−31. [ZHANG Yuting, DONG Xiaowei, ZHANG Boya, et al. Effects of compound spice essential oils on the quality and safety of air-dried catfish sausages[J]. Food Science,2024,45(2):24−31.] doi: 10.7506/spkx1002-6630-20230428-272

    ZHANG Yuting, DONG Xiaowei, ZHANG Boya, et al. Effects of compound spice essential oils on the quality and safety of air-dried catfish sausages[J]. Food Science, 2024, 45(2): 24−31. doi: 10.7506/spkx1002-6630-20230428-272

    [23]

    JIANG Q Q, NAKAZAWA N, HU Y Q, et al. Evolution of tissue microstructure, protein properties, and oxidative stability of salted bigeye tuna (Thunnus obesus) meat during frozen storage[J]. LWT,2021,149:111848. doi: 10.1016/j.lwt.2021.111848

    [24] 桑燕菲, 杨立, 钱鑫萍, 等. 小龙虾冻藏期间的品质变化[J]. 现代食品科技, 2023, 39(2):243−252. [SANG Yanfei, YANG Li, QIAN Xinping, et al. Quality changes of crayfish during frozen storage[J]. Modern Food Science and Technology, 2019, 39(2):243−252.]

    SANG Yanfei, YANG Li, QIAN Xinping, et al. Quality changes of crayfish during frozen storage[J]. Modern Food Science and Technology, 2019, 39(2): 243−252.

    [25] 陈实, 柳琳, 王逸鑫, 等. 不同盐度腌制下青鱼品质变化[J]. 上海海洋大学学报,2021,30(6):1153−1163. [CHEN Shi, LIU Lin, WANG Yixin, et al. Quality changes of black carp under different salines[J]. Journal of Shanghai Ocean University,2021,30(6):1153−1163.] doi: 10.12024/jsou.20200102915

    CHEN Shi, LIU Lin, WANG Yixin, et al. Quality changes of black carp under different salines[J]. Journal of Shanghai Ocean University, 2021, 30(6): 1153−1163. doi: 10.12024/jsou.20200102915

    [26] 周敏. 冷冻及烹调方式对脆肉鲩鱼肉品质的影响[D]. 南昌:江西科技师范大学, 2018. [ZHOU M. Effect of freezing and cooking methods on the quality of crispy grass carp (Mylopharyngodon idellus) flesh[D]. Nanchang:Jiangxi Normal University of Science and Technology, 2018.]

    ZHOU M. Effect of freezing and cooking methods on the quality of crispy grass carp (Mylopharyngodon idellus) flesh[D]. Nanchang: Jiangxi Normal University of Science and Technology, 2018.

    [27] 杜宇凡. 低盐腌制对冷冻罗非鱼肉品质的影响研究[D]. 上海:上海海洋大学, 2022. [DU Y F. Study on the effect of low-salt curing on the meat quality of frozen tilapia (Oreochromis mossambicus)[D]. Shanghai:Shanghai Ocean University, 2022.]

    DU Y F. Study on the effect of low-salt curing on the meat quality of frozen tilapia (Oreochromis mossambicus)[D]. Shanghai: Shanghai Ocean University, 2022.

    [28] 刘芳芳, 林婉玲, 李来好, 等. 金鲳肌球蛋白在不同处理条件下的理化性质变化[J]. 食品与发酵工业, 2020, 46(12):37−43. [LIU Fangfang, LIN Wanling, LI Laihao, et al. Changes of physicochemical properties of pomphin under different treatment conditions[J]. Food and Fermentation Industry, 2019, 46(12):37−43.]

    LIU Fangfang, LIN Wanling, LI Laihao, et al. Changes of physicochemical properties of pomphin under different treatment conditions[J]. Food and Fermentation Industry, 2019, 46(12): 37−43.

    [29] 韦丽娜, 李来好, 郝淑贤, 等. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响[J]. 南方水产科学,2023,19(2):133−141. [WEI Lina, LI Laihao, HAO Shuxian, et al. Effects of osmotic treatment on fish quality and myofibrillatory protein of freeze-dried tilapia[J]. Southern Fisheries Science,2023,19(2):133−141.] doi: 10.12131/20220256

    WEI Lina, LI Laihao, HAO Shuxian, et al. Effects of osmotic treatment on fish quality and myofibrillatory protein of freeze-dried tilapia[J]. Southern Fisheries Science, 2023, 19(2): 133−141. doi: 10.12131/20220256

    [30] 王子凌, 张子豪, 曾璐瑶, 等. 不同卤制加工阶段中食盐添加量对小龙虾尾品质及挥发性风味的影响[J]. 食品科学,2024,45(11):52−60. [WANG Ziling, ZHANG Zihao, ZENG Luyao, et al. Effects of salt addition on quality and volatile flavor of crayfish tail in different brine processing stages[J]. Food Science,2024,45(11):52−60.] doi: 10.7506/spkx1002-6630-20231009-058

    WANG Ziling, ZHANG Zihao, ZENG Luyao, et al. Effects of salt addition on quality and volatile flavor of crayfish tail in different brine processing stages[J]. Food Science, 2024, 45(11): 52−60. doi: 10.7506/spkx1002-6630-20231009-058

    [31] 劳梦甜, 曾璐瑶, 吴孟钊, 等. 冻结方式对黑斑蛙后腿肌肉持水性及肌原纤维蛋白结构特性的影响[J]. 食品科学,2024,45(13):264−274. [LAO Mengtian, ZENG Luyao, WU Mengzhao, et al. Effects of freezing mode on water retention and structural properties of myofibrillar protein in hindleg muscle of Rana nigromaculata[J]. Food Science,2024,45(13):264−274.] doi: 10.7506/spkx1002-6630-20230916-148

    LAO Mengtian, ZENG Luyao, WU Mengzhao, et al. Effects of freezing mode on water retention and structural properties of myofibrillar protein in hindleg muscle of Rana nigromaculata[J]. Food Science, 2024, 45(13): 264−274. doi: 10.7506/spkx1002-6630-20230916-148

    [32] 王浩, 李苓, 杨明柳, 等. pH对鳜鱼肌原纤维蛋白凝胶特性的影响[J]. 食品与发酵工业,2024,50(22):67−75. [WANG Hao, LI Ling, YANG Mingliu, et al. Effect of pH on the properties of myofibrillar protein gel of Mandarin fish[J]. Food and Fermentation Industry,2024,50(22):67−75.]

    WANG Hao, LI Ling, YANG Mingliu, et al. Effect of pH on the properties of myofibrillar protein gel of Mandarin fish[J]. Food and Fermentation Industry, 2024, 50(22): 67−75.

    [33] 陈钰, 庞文媛, 周三女, 等. 不同贮藏温度对南美白对虾品质的影响[J]. 粮食与油脂, 2024, 37(2):85−89. [CHEN Yu, PANG Wenyuan, ZHOU Sannü, et al. Effects of different storage temperatures on quality of penaeus alba[J]. Food and Oil, 2019, 37(2):85−89.]

    CHEN Yu, PANG Wenyuan, ZHOU Sannü, et al. Effects of different storage temperatures on quality of penaeus alba[J]. Food and Oil, 2019, 37(2): 85−89.

    [34]

    SUN Q, SUN F, XIA X, et al. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage[J]. Ultrasonics− Sonochemistry, 2019:51281−291.

    [35]

    NIKKI K, SANCHITA S, SIVA U. Potential of Raman spectroscopic techniques to study proteins[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,258:119712. doi: 10.1016/j.saa.2021.119712

    [36]

    CHEN H, HAN M. Raman spectroscopic study of the effects of microbial transglutaminase on heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristics[J]. Food Research International,2011,44(5):1514−1520. doi: 10.1016/j.foodres.2011.03.052

图(11)  /  表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 网络出版日期:  2025-02-13

目录

/

返回文章
返回
x 关闭 永久关闭