• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

不同熟制方式对克氏原螯虾风味的影响

胡传峰, 邱文兴, 刘煊, 王世哲, 乔宇, 涂子仪, 曹锋, 刘双全

胡传峰,邱文兴,刘煊,等. 不同熟制方式对克氏原螯虾风味的影响[J]. 食品工业科技,2025,46(9):1−11. doi: 10.13386/j.issn1002-0306.2024050038.
引用本文: 胡传峰,邱文兴,刘煊,等. 不同熟制方式对克氏原螯虾风味的影响[J]. 食品工业科技,2025,46(9):1−11. doi: 10.13386/j.issn1002-0306.2024050038.
HU Chuanfeng, QIU Wenxing, LIU Xuan, et al. Effect of Different Cooking Methods on the Flavor of Procambarus clarkii[J]. Science and Technology of Food Industry, 2025, 46(9): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050038.
Citation: HU Chuanfeng, QIU Wenxing, LIU Xuan, et al. Effect of Different Cooking Methods on the Flavor of Procambarus clarkii[J]. Science and Technology of Food Industry, 2025, 46(9): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050038.

不同熟制方式对克氏原螯虾风味的影响

基金项目: 湖北省科技创新人才计划-科技人才服务企业项目(2023DJC100)2023年4月—2025年4月;湖北省技术创新专项(重大项目)揭榜制科技项目(2023BEB030);潜江市公益性行业科研计划项目(2023GYX030)2023年3月—2024年9月。
详细信息
    作者简介:

    胡传峰(2001−),男,硕士研究生,研究方向:水产品加工,E-mail:2268050629@qq.com

    通讯作者:

    乔宇(1981−),女,研究员,博士,研究方向:农产品加工与贮藏,E-mail:qiaoyu412@sina.com

  • 中图分类号: TS254.4

Effect of Different Cooking Methods on the Flavor of Procambarus clarkii

  • 摘要: 为探究不同熟制方式对克氏原螯虾风味的影响,采用蒸、水煮、油炸、空气炸、微波加热、烤制对克氏原螯虾进行熟制,并通过对气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Spectroscopy,GC-IMS)采用正交偏最小二乘法(Orthogonal Partial least squares Discriminant Analysis,OPLS-DA)、主成分法(Principal components analysis,PCA)分析挥发性风味物质,通过感官评分、电子舌、游离氨基酸、呈味核苷酸指标评价克氏原螯虾滋味变化。结果表明,6种熟制后的克氏原螯虾中共检测出35种挥发性化合物,其中包括醇类5种、醛类16种、酮类7种、酯类4种、杂环类1种、含硫化合物1种、烃类1种且不同加工方式间存在显著性差异(P<0.05),微波加热、蒸制与油炸能产生更丰富的气味,其中油炸处理后虾肉中检测出了最多的香味物质如2-甲基丁酸甲酯、(E)-2-庚烯醛,能使油炸后克氏原螯虾产生特殊的脂肪香味,感官品质最高;水煮能促进虾肉生成更多鲜味氨基酸、鲜味核苷酸和更少的苦味氨基酸使味精当量(Equivalent Umami Concentration,EUC)最大为23.6 g MSG/100 g;烤制所得游离氨基酸总量最大,但其鲜味氨基酸含量最低,感官品质也相对较低。因此,油炸与水煮熟制克氏原螯虾风味更好。
    Abstract: To investigate the influence of various cooking methods on the flavor profile of Procambarus clarkii (crayfish), a comparative study was conducted employing steaming, boiling, deep-frying, air-frying, microwave irradiation, and roasting as the culinary techniques. The resultant volatile organic compounds (VOCs) were characterized using gas chromatography coupled with ion mobility spectrometry (GC-IMS). Subsequent multivariate statistical analyses were performed, including orthogonal partial least squares discriminant analysis (OPLS-DA) for discriminant modeling and principal component analysis (PCA) for data dimensionality reduction and visualization. The taste attributes of the cooked crayfish were further assessed through the quantification of free amino acids and nucleotides, as well as by employing a sensory evaluation system utilizing an electronic tongue. By quantifying free amino acids and nucleotides, as well as utilizing electronic tongue technology, the subtle changes in the taste profile of Procambarus clarkii were assessed. The findings revealed that across the six distinct cooking methods applied to Procambarus clarkii, a total of 35 volatile compounds were identified, comprising 5 alcohols, 16 aldehydes, 7 ketones, 4 esters, 1 heterocyclic compound, 1 sulfur compound, and 1 hydrocarbon. Significant differences were observed among the culinary methods (P<0.05). Microwave heating, steaming, and frying yielded a more diverse array of aromas, with the fried samples exhibiting the greatest number of aroma-active compounds, such as methyl 2-methylbutanoate and (E)-2-heptenal, which lent a distinctive fatty aroma to the fried Procambarus clarkii, heightening its sensory quality. Boiling, on the other hand, increased umami amino acids and nucleotides while reducing bitter amino acids in the shrimp, reaching a peak equivalents of umami concentration (EUC) of 23.6 g MSG/100 g. The total amount of free amino acids obtained by roasting was the largest, but the content of umami amino acids was the lowest, and the sensory quality was relatively low. Consequently, frying and boiling emerge as the preferred cooking methods for optimizing the flavor profile of Procambarus clarkii.
  • 克氏原螯虾(Procambarus clarkii)俗称小龙虾,是我国淡水水产中的重要经济种类,克氏原螯虾虾肉晶莹剔透、肉质鲜美,富含蛋白质、镁、硒、碘、锌、虾青素等营养成分,具有很高的经济价值。目前国内克氏原螯虾加工方式主要以熟制后冷冻为主,熟制方式主要是煮、蒸和油炸。随着科技的进步衍生出的微波、空气炸、烤制等熟制方式,使肉类熟制方式呈现多元化。不同的熟制方式会对肉类滋味和基本营养成分产生不同程度的影响[1]

    目前国内外对于肉类熟制方式研究较多,主要集中在水煮、蒸制、油炸三种传统熟制方式。但对微波、空气炸、烤箱等加工方式的研究较少。微波加热对水解氨基酸影响较小,但会使虾肉中鲜味物质含量显著降低[2];空气炸与油炸能使肉类产生相似滋味[34];烤制相比于蒸和水煮能使肉类获得更诱人的色泽与气味[5]。Rao等[6]在研究中发现不同方式熟制的兔肉中挥发性成分有较明显差异且油炸后挥发性风味物质最多。肉类在熟制过程中所产生的气味物质主要来源于游离氨基酸、肽、还原糖、维生素、核苷酸和不饱和脂肪酸等非挥发性前体之间的相互作用,其中包括氨基和羰基化合物的美拉德反应、脂质氧化、硫胺素的热降解等途径[5,7]。在对克氏原螯虾[1]、三疣梭子蟹[8]的研究中均发现不同加工方式能显著影响游离氨基酸含量,游离氨基酸一方面因加工过程中蛋白质分解而增加,另一方面能与糖等含羰基物质发生美拉德反应而减少,导致不同熟制后克氏原螯虾虾肉品质和风味存在较大差异。

    因此,本实验以不同方式(水煮、蒸制、油炸、空气炸、烤制、微波)熟制后的克氏原螯虾为对象分析比较虾肉的挥发性风味物质、游离氨基酸、核苷酸、电子舌、感官品质的变化,探究不同熟制方式不同加工方式优劣,以适应不同熟制需求,并为克氏原螯虾加工技术提供理论依据。

    克氏原螯虾(10±2 g) 购于湖北省武汉市白沙洲水产品批发市场;金龙鱼花生调和油 益海嘉里有限公司;三氯乙酸、氢氧化钠、氯化钠 分析纯,国药集团化学试剂有限公司。

    Twin Panda 600高压均质机 GEA Niro Soavi;FlavourSpec®风味分析仪 德国GAS公司;7890 A高效液相色谱 安捷伦科技(中国)有限公司;MXT-5色谱柱 美国RESTEK公司;TS-5000 Z 味觉分析系统 日本Insent公司;LA8080氨基酸自动分析仪 日本日立集团;P70D20TL-D4微波炉 格兰氏集团;PT3540烤箱、KZE5004空气炸锅、RT22E0103电磁炉 美的集团。

    热处理试验将克氏原螯虾洗净在进行熟制处理(以中心温度至75 ℃确定加热时间)。烤箱加热处理(Oven)即为O:烤箱预热至160 ℃后将虾烤制20 min;水煮加热处理(Poach)即为P:将虾沸水下锅煮制2.5 min;空气炸锅加热处理(Air fryer)即为A:将虾置于油纸上在空气炸锅中180 ℃加热10 min;微波炉加热处理(Microwave)即为M:将虾置于油纸上在微波炉中用中高火加热5 min;油炸加热处理(Fryer)即为F:油加热至165 ℃将虾油炸2 min;清蒸加热处理(Steaming)即为S:水煮沸后蒸制10 min。

    参考程荣等[9]的方法略作修改。感官评价小组由男女比例为1:1的8位无饮食偏见和过敏反应、经验丰富的学生组成,参与评价的同学年龄处于20~24岁,感官评价小组成员根据克氏原螯虾的形态、色泽、香味、口感对克氏原螯虾进行综合评分,总分100分,分值越大,特征越强。感官评价总分按加权评分计算,具体评分标准如表1所示。

    表  1  虾肉感官评定标准
    Table  1.  Sensory evaluation criteria of shrimp meat
    项目评价标准分数
    形态(30)虾肉完整无破碎24~30
    虾肉较完整,有少量形状残缺17~23
    虾肉不太完整,虾仁形状残缺9~16
    虾肉不完整0~8
    色泽(20)金黄色或色泽透亮有光泽,色泽均匀,无油炸过焦或热处理过度的色泽16~20
    淡黄色或乳白色,色泽较均匀,无油炸过焦或热处理过度的色泽11~15
    黄褐色,色泽一般,有轻微的油炸过焦色泽或热处理过度不自然的白色6~10
    黄色,色泽不均匀,较重的油炸过焦或热处理过久的色泽0~5
    香味(20)具有虾仁热处理后特有香气,香气浓郁,持续时间长,无腥味16~20
    具有虾仁热处理后的香气,香气较浓郁,无明显腥味11~15
    具有虾仁热处理后的香气,香气一般,无明显异味6~10
    无虾仁热处理后的香气,异味明显0~5
    滋味(30)口感致密紧实,肉质细腻或焦脆可口无油腻感,无生腥味或哈喇味24~30
    口感整体较好,无油腻感,无生腥味和哈喇味17~23
    口感一般,略有绵软或焦糊感,有油腻感,有生腥味或哈喇味9~16
    口感差,口感过于松散或干硬,油腻感重,有焦生腥和哈喇味0~8
    下载: 导出CSV 
    | 显示表格

    参考Huang等[10]的方法略作修改,准确称取经前处理的各组试样1 g置于20 mL顶空瓶中,加入5 mL 0.2 g/mL NaCl,以35 ℃ 500 r/min振荡加热孵育15 min;自动顶空进量200 µL;分析时间20 min;载气/漂移气为N2;进样口温度为85 ℃;色谱柱类型:MXT-5,柱长15 m,内径0.53 mm,膜厚1.0 μm;柱温60 ℃。初始流速为2 mL/min,保持2 min后,在10 min内增至10 mL/min,在20 min内线性增至100 mL/min。为保证实验准确性,每组试样制备3个平行样。

    定性分析:利用仪器内置VOCal软件中NIST数据库和IMS数据库对物质进行定性分析;定量分析:通过峰体积计算气味物质的相对含量。

    参考杜柳等[11]的方法略作修改。称取经过前处理的各组试样5 g,于干燥洁净的50 mL刻度烧杯中。加入20 mL超纯水,均质10 min,沉淀1 h后,取其上清液与离心管中,用离心机3000 r/min离心10 min,静置,待两相明显分离,取出上清液倒至放有滤纸的漏斗中过滤,滤液即为待测样品溶液。检测参数为:传感器自检时间30 s,20次;样品测试时间30 s;测回味时间30 s,每次测定结束使用清洗液对负极和正极进行彻底清洁,平行试验3次。

    参考付娜等[12]的方法准确称取各处理组试样0.2 g,分别加入5%三氯乙酸(TCA)15 mL,匀浆后静置2 h,取上清液10 mL用冷冻离心机离心(15000 r/min,10 min),离心结束后取上清液5 mL用6 mol/L NaOH调pH至2.0,然后用去离子水定容至10 mL,用0.45 μm的水相滤膜过滤,最后用氨基酸自动分析仪检测试样中游离氨基酸的种类和含量,每组样品做3组平行试验。

    参考SC/T 3048-2014《鱼类鲜度指标K值的测定 高效液相色谱法》进行测定。

    计算各游离氨基酸与呈味核苷酸滋味活性值(taste activity value,TAV)[38],公式(1)如下:

    TAV=CiTi
    (1)

    式中:Ci代表化合物的浓度(mg/g);Ti是在水中测量的呈味物质检测阈值(mg/g)。

    计算个处理组味精当量值EUC[41],公式(2)如下:

    EUC=aibi+1218×(aibi)×(ajbj)

    式中:ai为鲜味氨基酸含量,g/100 g;bi为鲜味氨基酸相对系数(Asp为0.077,Glu为1);aj为呈鲜味核苷酸含量,g/100 g;bj为呈鲜味核苷酸相对系数(AMP为0.18,IMP为1,GMP为2.3);EUC值单位为g MSG/100 g。

    采用SPSS对实验所得数据进行方差齐性分析,采用Origin 2022、TB tools和SIMCA 14.1进行PCA、OPLS-DA分析和作图。

    表2可知,O、M、A样品口感偏干使得滋味得分较低,O组虾肉样品经过较长时间与较高的温度烘烤使得虾肉整体水分散失较多,肉质偏干;空气炸锅是采用热空气对流加热,熟制过程中热空气会带走A组虾肉中水分使虾肉有较多失水[43];微波炉加热是由内而外,水分也由内向外迁移散失导致M组肉质偏干。F、S、P在感官评分中总分显著高于O、M、A(P<0.05),F样品在感官评分中得分最高,油炸有较高的温度,初始在虾肉与油的巨大温差下虾肉表面水分快速气化逸出,使得虾肉硬度增大表现出更好的形态并经过美拉德、脂肪氧化等反应产生了较好的色泽和特殊的气味。感官反映了6种加热方式的整体差异,产生差异的原因还需进一步分析。

    表  2  不同熟制方式克氏原螯虾感官分析
    Table  2.  Sensory analysis of crayfish in different cooking methods
    处理
    方式
    指标总分
    形态色泽香味滋味
    P22.7±0.42b15.75±0.35b16.25±0.35a26.25±0.35a80.95±0.07abc
    S26.75±1.06a17.75±0.35a15.75±0.35a26.75±0.35a87±2.12ab
    F27.5±0.71a18.65±0.50a17.5±0.71a27.5±0.71a91.15±2.62a
    O20.5±0.71c13.5±0.71cd14.75±0.35a23.8±0.28b72.55±0.78bcd
    M17.9±1.27d14.5±0.71bc7.25±3.72b22.25±0.35c61.9±2.80d
    A23.75±0.35b12.75±0.35d13.75±0.35a23.5±0.71b73.75±1.77bcd
    注:同行不同字母表示差异显著(P<0.05);表3表4表6同。
    下载: 导出CSV 
    | 显示表格

    利用GC×IMS Library Search软件内置的NIST数据库和IMS数据库对6种熟制后克氏原螯虾样品进行定性分析得到如图1A的指纹图谱。根据保留指数、保留时间、离子迁移时间进行定性分析,如表3所示,加热处理后虾肉中明确定性的挥发性化合物有35种,包括醇类5种、醛类16种、酮类7种、酯类4种、杂环类1种、含硫化合物1种、烃类1种,包括提高待分析物浓度时,出现2个分子时共用一个质子或电子,形成二聚体的现象。不同热处理后克氏原螯虾中各类挥发性风味物质占比出现明显差异如图1B,6种样品中挥发性物质以醛类物质为主,热处理引发糖和氨基酸之间的相互作用,诱导硫胺素的脂质氧化和热降解,碳水化合物降解,美拉德反应、Strecker反应均能产生较多的醛类物质导致挥发性风味物质释放[26]。醇类物质在总挥发性风味物质中也占有较大比重,但由于醇类具有较高的香气阈值,因此对风味的贡献较小,但醇类物质可以作为酯、醛、酮等物质的前体或风味载体仍在克氏原螯虾特殊风味的形成中发挥着较大作用[27]

    图  1  不同熟制方式下克氏原螯虾GC-IMS指纹图谱(A)、各类挥发性物质占比(B)
    Figure  1.  GC-IMS fingerprints of crayfish with different cooking methods (A) and the percentage of each type of volatile substances (B)
    表  3  GC-IMS分析不同熟制方式的克氏原螯虾
    Table  3.  GC-IMS analysis of crayfish with different cooking methods
    种类 化合物 分子式 保留指数 保留时间(s) 迁移时间(ms) 相对含量(%) 气味描述
    M A P S F O
    醇类 1-己醇 C6H14O 878.8 357.119 1.32019 1.17±0.04b 1.17±0.04b 1.36±0.01a 0.89±0.02c 0.81±0.05c 1.40±0.11a 松香、花香、青草香[13]
    1-辛烯-3-醇 C8H16O 980.2 524.038 1.1503 3.41±0.22a 2.27±0.12c 2.30±0.15c 2.62±0.11b 2.76±0.06b 1.91±0.01d 蘑菇味、土腥味[14]
    1-戊醇 C5H12O 776.1 244.063 1.25391 1.50±0.10c 2.18±0.19b 1.29±0.07c 1.29±0.11c 1.21±0.03c 3.85±0.50a 脂肪香[13]
    3-辛醇 C8H18O 990 543.807 1.41781 1.28±0.08b 1.77±0.11b 1.66±0.15b 1.30±0.03b 1.87±0.07b 5.54±1.25a 土壤、蘑菇气味、水果味[15]
    乙醇 C2H6O 507.4 104.476 1.05113 13.1±0.77d 22.05±1.21a 21.16±0.60a 17.12±0.98b 14.76±0.45c 22.21±1.52a
    醛类 (E)-2-庚烯醛 C7H12O 961.7 488.378 1.25621 0.32±0.01b 0.44±0.07b 0.45±0.04b 0.36±0.05b 0.73±0.09a 0.44±0.05b 脂肪香[16]
    1-己醛(D) C6H12O 795 262.15 1.55886 8.54±0.45a 3.89±0.17c 3.40±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 油脂味、青草味[17]
    1-己醛(M) C6H12O 797.4 264.509 1.26332 8.54±0.45a 3.89±0.17c 3.4±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 油脂味、青草味[17]
    2-己烯醛 C6H10O 853.1 324.8 1.18342 0.49±0.01c 0.74±0.09ab 0.8±0.13ab 0.6±0.03bc 0.64±0.04bc 0.85±0.10a 果香味[18]
    2-甲基戊醛 C6H12O 753.6 223.331 1.21618 8.54±0.45a 3.89±0.17c 3.4±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 果香味[18]
    3-甲硫基丙醛 C4H8OS 903.2 391.171 1.09065 0.61±0.12a 0.87±0.21a 0.78±0.07a 0.58±0.07a 0.84±0.20a 1.08±0.54a 洋葱、肉类香气[19]
    3-甲基丁醛 C5H10O 660.5 159.44 1.18244 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 巧克力、脂肪味[13]
    苯甲醛 C7H6O 961.2 487.465 1.14816 0.66±0.24a 0.81±0.36a 0.69±0.08a 0.58±0.14a 0.7±0.040a 0.69±0.35a 坚果味、
    苦味[13]
    庚醛(D) C7H14O 900.5 387.185 1.68874 0.71±0.05c 0.96±0.07b 0.99±0.07b 0.70±0.04c 0.72±0.04c 1.19±0.13a 水果香[13]
    庚醛(M) C7H14O 901.6 388.758 1.3405 0.71±0.05c 0.96±0.07b 0.99±0.07b 0.7±0.040c 0.72±0.04c 1.19±0.13a 水果香[13]
    正壬醛(D) C9H18O 1103 770.165 1.93927 0.66±0.08d 0.96±0.10c 1.43±0.06a 0.84±0.05c 0.64±0.04d 1.13±0.10b 油脂、甜橙[13]
    正壬醛(M) C9H18O 1104 772.448 1.47196 0.66±0.08d 0.96±0.10c 1.43±0.06a 0.84±0.05c 0.64±0.04d 1.13±0.10b 油脂、甜橙[13]
    辛醛(D) C8H16O 1011.3 582.996 1.82051 3.41±0.22a 2.27±0.12c 2.30±0.15c 2.62±0.11b 2.76±0.06b 1.91±0.01d 肥皂、柠檬、青草[13]
    辛醛(M) C8H16O 1013.5 586.928 1.41203 3.41±0.22a 2.27±0.12c 2.30±0.15c 2.62±0.11b 2.76±0.06b 1.91±0.01d 肥皂、柠檬、青草[13]
    戊醛(D) C5H10O 700.5 181.152 1.41956 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 杏仁、麦芽、辛辣味[13]
    戊醛(M) C5H10O 700.5 181.152 1.19556 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 杏仁、麦芽、辛辣味[13]
    酮类 1-辛烯-3-酮 C8H14O 980.2 523.925 1.28798 0.54±0.04a 0.49±0.01a 0.44±0.03a 0.48±0.08a 0.54±0.05a 0.49±0.11a 泥土、蘑菇
    [20]
    2-庚酮 C7H14O 889.8 371.897 1.26354 0.71±0.05c 0.96±0.07b 0.99±0.07b 0.70±0.04c 0.72±0.04c 1.19±0.13a 蓝莓味[21]
    2-己酮 C6H12O 784.2 251.927 1.19179 8.54±0.45a 3.89±0.17c 3.40±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 水果、肉香、黄油味[13]
    2-壬酮 C9H18O 1094.6 750.767 1.40882 0.66±0.08d 0.96±0.10c 1.43±0.06a 0.84±0.05c 0.64±0.04d 1.13±0.10b 清香、青草香、土腥味[14]
    2-丙酮 C3H6O 510.6 105.371 1.11175 6.32±0.75d 10.44±1.96a 9.14±0.11abc 7.85±1.08bcd 7.06±0.44cd 9.97±1.64ab 辛辣甜味[22]
    3-戊酮 C5H10O 693.3 176.035 1.12001 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 令人愉快的芳香气味[23]
    环己酮 C6H10O 898.4 384.104 1.15312 0.49±0.01c 0.74±0.09ab 0.80±0.13ab 0.60±0.03bc 0.64±0.04bc 0.85±0.10a 青草香、花瓣、胡桃[13]
    酯类 3-甲基丁酸丁酯 C9H18O2 1057 669.75 1.40701 0.59±0.01d 0.83±0.13a 0.94±0.18a 0.57±0.05d 0.63±0.05bc 0.79±0.02ab
    2-甲基丁酸甲酯 C6H12O2 768.9 237.151 1.1897 0.25±0.01e 0.36±0.02cd 0.46±0.03ab 0.33±0.02d 0.41±0.05bc 0.49±0.05a 脂肪香味[16]
    乙酸丙酯(D) C5H10O2 714.7 191.553 1.4772 0.35±0.03b 0.48±0.02a 0.54±0.08a 0.36±0.04b 0.32±0.01b 0.52±0.03a 菠萝香气[24]
    乙酸丙酯(M) C5H10O2 714.7 191.553 1.16258 0.35±0.03b 0.48±0.02a 0.54±0.08a 0.36±0.04b 0.32±0.01b 0.52±0.03a 菠萝香气[24]
    其它 2-戊基呋喃 C9H14O 995.2 554.651 1.25091 0.34±0.08b 0.32±0.01b 0.39±0.06b 0.34±0.06b 0.33±0.05b 0.79±0.05a 水果、青草、豆腥味[13]
    烯丙基硫醚 C6H10S 855.3 327.456 1.11905 0.27±0.03c 0.36±0.05ab 0.38±0.06a 0.30±0.01bc 0.39±0.05a 0.42±0.03a 硫磺味、洋葱味和蒜味[25]
    2-甲氧基-2-甲基丙烷 C5H12O 569.9 123.473 1.13004 1.50±0.10c 2.18±0.19b 1.29±0.07c 1.29±0.11c 1.21±0.03c 3.85±0.50a
    注:“D”表示二聚体“M”表示单体。
    下载: 导出CSV 
    | 显示表格

    图1A,乙酸丙酯、2-甲氧基-2-甲基丙烷、3-甲基丁酸丁酯、2-己酮、2-庚酮、2-甲基戊醛、2-己烯醛、环己酮在6组样品中含量都较高,是几种熟制后虾肉中共有的挥发性成分,乙酸丙酯、3-甲基丁酸丁酯主要呈现愉悦的果香味,可能是由氨基酸脱氨、脱羧而氧化形成酸和醇,最后经过酯合成酶作用生成[28],也可能是游离脂肪酸和醇的酯化反应或甘油三脂和乙醇中的醇降解反应合成。2-庚酮具有蓝莓味是亚油酸的一种氧化产物[21],2-甲基戊醛、2-己烯醛具有果香味,一般来自于脂肪氧化或蛋白质降解[18]。Ⅰ区域和Ⅳ区域物质在M、S和F三种样品中浓度较高,主要物质有:3-甲硫基丙醛、苯甲醛、2-甲基戊醛、2-己烯醛、环己酮、1-辛烯-3-酮、3-甲基丁醛、戊醛、己醛、1-辛烯-3-醇、庚醛、壬醛和辛醛,以醛类物质为主,醛、酮类化合物一般源于氨基酸的降解、醇类的氧化及不饱和脂肪酸的降解[29],这意味着M、S和F三种样品蛋白质氧化降解程度可能更大,且醛类物质阈值较低使虾肉气味更丰富;图中Ⅱ区域物质在P中浓度最高,主要物质是2-壬酮,具有果香味[30]但酮类物质香气阈值较高对气味贡献不大[3132];图中Ⅲ区域物质在F中浓度最高,主要物质有:烯丙基硫醚、2-甲基丁酸甲酯和(E)-2-庚烯醛等,其中(E)-2-庚烯醛主要来源于脂肪氧化,能提供特殊的脂肪香味[16],这可能是F组在感官评分中香味得分最高的原因之一。酯类物质主要产生于加热过程中酸类和醇类物质的酯化反应,油炸过程中克氏原螯虾更多与油脂接触,烯丙基硫醚在F组中含量最高,含硫化合物多来自于含硫氨基酸的降解[33],这可能是因为油炸过程中产生的自由基[34],促进了蛋氨酸、胱氨酸和半胱氨酸等含硫氨基酸的氧化,导致烯丙基硫醚含量升高。通过对各处理组的对比发现F组相比于其他处理组挥发性物质更丰富且脂肪味挥发性风味物质含量较高,这可能是由于油温较高,且油对温度的传导速度较快使得虾表面水分快速蒸发而使虾肉更易暴露在空气中,加速了蛋白质与脂质的氧化产生更多挥发性风味物质。

    为进一步评价通过指纹图谱的含量差异初步筛选的六种加工方式的特征挥发性有机物的准确性确定特异性标志物,以检出的35种挥发性化合物峰面积为变量用SIMCA 14.1软件进行无指导的PCA分析和有指导的OPLS-DA分析。通过PCA得分图(图2A)发现六种处理方式所得克氏原螯虾挥发性风味物质存在较明显差异,前两个主成分贡献率为42.7%和19.2%,累计贡献率为61.9%,模型的预测性能是0.701,说明模型的预测性能良好[35]。在PCA分析的基础上建立有指导的OPLS-DA模型进行分析(图2B),自变量拟合指数(R2x)为0.9,因变量拟合指数(R2y)为0.967,模型预测指数Q2为0.922,说明模型具有极好的分类效果。经过200次置换检验(Permutation test),如图2DQ2回归线与纵轴的相交点小于零,说明模型不存在过拟合,模型验证有效[35],认为该模型能够用于不同加工方式下克氏原螯虾虾肉中挥发性成分的鉴别分析。

    图  2  基于GC-IMS的不同熟制方式下克氏原螯虾OPLS-DA分析(A)、PCA分析(B)、VIP预测值(C)、随机置换检验(D)、差异风味物质峰面积(E)
    Figure  2.  GC-IMS-based OPLS-DA analysis (A), PCA analysis (B), predicted value of VIP (C), random replacement test (D), and differential flavor substance peak area (E) of crayfish under different maturation methods

    虾肉中挥发性成分OPLS-DA模型的VIP(Variable Importance for the Projection)值见图2C,VIP值越大对样品分类贡献越大,VIP>1的12种挥发性物质是不同处理方式克氏原螯虾特征风味物质,按VIP值由大到小为2-壬酮、2-丙酮、1-戊醇、乙醇、2-戊基呋喃、2-甲基戊醛、3-甲基丁酸丁酯、戊醛二聚体、3-辛醇、正壬醛二聚体、(E)-2-庚烯醛、3-戊酮。由图3E可知,1-戊醇、2-戊基呋喃、3-辛醇在烤箱加热过程中产生的最多;(E)-2-庚烯醛在克氏原螯虾油炸过程中生成产生的最多;戊醛二聚体在F、S、M三组中含量远高于A、O、P。

    图  3  不同熟制方式克氏原螯虾电子舌分析
    Figure  3.  Electronic tongue analysis of crayfish with different cooking methods

    6种熟制处理克氏原螯虾电子舌滋味轮廓如图3所示,6种样品有相似的风味轮廓,在丰富度、涩味、涩味回味上差异较小说明6个处理组在这3种滋味上具有一定相似性。S组样品酸味明显高于其他处理组;P组苦味较高;S组鲜味较低;F组与S组咸味较低;A组的苦味回味略低于其他处理组。但F组感官评分中滋味评分最高,这可能是因为虾肉的味道由多种因素(虾肉中离子浓度、游离氨基酸、核苷酸、呈味肽等)共同决定,电子舌只能检测部分呈味物质,虾肉具体味道差异还应结合其他呈味物质具体分析。

    蛋白质降解是肉制品在熟制过程中的重要化学变化之一,蛋白质热降解产物的是虾肉中重要的风味物质[37],按呈味特征可分为三种,其中鲜味氨基酸(Asp、Glu)、甜味氨基酸(Ser、Gly、Thr、Ala)、苦味氨基酸(Tyr、Ile、Leu、Phe、His、Lys、Val、Met、Cys、Arg)[38]。由表4图4可知,P样品虾肉中鲜味氨基酸含量显著高于其他组别为2.53 mg/g(P<0.05),苦味氨基酸含量显著低于其他组别为14.91 mg/g(P<0.05)。A与O样品拥有较高游离氨基酸含量,这说明空气炸与烤制会使虾肉中蛋白质充分降解产生更多呈味氨基酸,但两种方法产生的苦味氨基酸含量较大对虾肉滋味有更大的负面影响。

    表  4  不同熟制方式克氏原螯虾游离氨基酸分析
    Table  4.  Free amino acids analysis of crayfish with different cooking methods
    游离氨基酸(mg/g)处理方式
    OPAMFS
    Asp0.32±0.01d0.80±0.04a0.26±0.01e0.43±0.01b0.37±0.01c0.33±0.01d
    Glu1.12±0.01f1.73±0.02a1.40±0.01d1.51±0.01b1.47±0.01c1.19±0.01e
    鲜味氨基酸1.44±0.01f2.53±0.06a1.66±0.01d1.94±0.02b1.84±0.01c1.52±0.01e
    Ser1.68±0.01abc1.55±0.04c1.74±0.07ab1.81±0.14a1.60±0.05bc1.63±0.08bc
    Gly2.63±0.06a2.45±0.06b2.59±0.06a2.19±0.05c2.40±0.01b2.01±0.08d
    Thr2.45±0.01a1.92±0.01b1.87±0.03c1.22±0.02e1.51±0.01d0.67±0.01f
    Ala4.04±0.01b3.59±0.07d4.40±0.07a3.96±0.10bc3.91±0.01c3.68±0.03d
    甜味氨基酸10.81±0.06a9.50±0.05b10.60±0.23a9.19±0.17c9.43±0.03b8.00±0.13d
    Tyr0.46±0.01a0.36±0.01d0.43±0.01b0.40±0.01c0.36±0.01d0.37±0.01d
    Ile0.786±0.01b0.66±0.01c0.78±0.01b0.83±0.04a0.79±0.01b0.76±0.01b
    Leu1.06±0.01a0.73±0.01f0.98±0.01b0.92±0.01c0.88±0.01d0.86±0.01e
    Phe0.19±0.01a0.13±0.01cd0.17±0.01b0.14±0.01c0.11±0.01e0.12±0.01de
    His1.54±0.01a1.22±0.05d1.44±0.01b1.28±0.01c1.22±0.01d1.19±0.01d
    Lys1.00±0.04a0.69±0.01d0.96±0.01b0.89±0.01c0.70±0.01d0.71±0.01d
    Val0.87±0.01a0.44±0.01f0.83±0.01b0.71±0.03c0.65±0.01d0.62±0.01e
    Met0.88±0.01a0.68±0.01e0.73±0.01d0.85±0.01b0.72±0.01d0.82±0.01c
    Cys0.26±0.01a0.22±0.01d0.27±0.01a0.27±0.01a0.25±0.01b0.24±0.01c
    Arg9.93±0.01a9.77±0.01b9.94±0.01a9.81±0.07b9.94±0.03a9.61±0.05c
    苦味氨基酸16.98±0.05a14.91±0.04f16.51±0.03b16.12±0.10c15.62±0.03d15.30±0.03e
    总游离氨基酸29.23±0.11a26.95±0.03d28.76±0.20b27.25±0.04c26.89±0.01d24.82±0.10e
    下载: 导出CSV 
    | 显示表格
    图  4  不同熟制方式克氏原螯虾呈味氨基酸含量分析
    注:同一填充柱上不同字母表示各组别氨基酸显著性差异(P<0.05)。
    Figure  4.  Flavor presenting amino acid content analysis of crayfish with different cooking methods

    因为呈味物质的含量与阈值存在差异,导致虾肉出现复杂的滋味,通常用滋味活性值TAV来表示呈味物质的滋味强度。其TAV>1才对样品呈味有贡献,且TAV值越大贡献越大。由表5可知,虾肉中主要呈鲜味氨基酸为Glu,主要苦味氨基酸为Cys、His。P样品Glu的TAV值最大,Cys的TVA值最小。精氨酸(Arg)属于苦味氨基酸,其占总游离氨基酸含量的30%以上,但其呈味受到NaCl、谷氨酸(Glu)的影响而呈现甜味[39],滋味分析还应结合核苷酸进一步分析。

    表  5  不同熟制方式克氏原螯虾游离氨基酸TAV分析
    Table  5.  TAV analysis of free amino acids in crayfish with different cooking methods
    TAV处理方式
    OPAMFS
    Asp0.320.800.260.430.370.33
    Glu3.755.764.655.034.923.97
    Ser1.121.031.161.211.071.09
    Gly2.031.881.991.681.841.55
    Thr0.940.740.720.470.580.26
    Ala6.745.987.346.606.526.14
    Tyr0.180.140.160.160.140.14
    Ile0.870.730.860.930.870.85
    Leu0.560.380.520.480.460.45
    Phe0.210.150.180.160.120.14
    His7.726.107.186.426.115.97
    Lys2.001.381.911.791.411.42
    Val2.171.102.081.781.631.55
    Met2.922.282.422.842.402.72
    Cys13.2011.1813.3813.3512.4011.95
    Arg6.626.526.626.546.626.41
    下载: 导出CSV 
    | 显示表格

    AMP、GMP、IMP具有很强的增鲜作用,是肉类中主要的鲜味来源之一,水产品中的IMP主要来源于ATP的降解,除了本身具有鲜味特性外,IMP还可与丝氨酸、甘氨酸和丙氨酸形成协同增效作用[40]。由表6可知,在不同的热处理后克氏原螯虾虾肉中呈味核苷酸含量出现明显差异,S、P、F中IMP含量远高于其他处理组。由表7可知,GMP、AMP含量均小于其阈值50 mg/100 g、25 mg/100 g使TAV<1,而S、P、F中IMP的TAV值分别为2.31、6.04、2.91远高于其他组别这说明克氏原螯虾中主要鲜味贡献核苷酸为IMP。

    表  6  不同熟制方式克氏原螯虾核苷酸分析
    Table  6.  Nucleotide analysis of crayfish with different cooking methods
    核苷酸含量(mg/g)
    ASPFOM
    IMP0.0475±0.0007d0.2891±0.0171c0.7545±0.0574a0.3641±0.0475b0.0715±0.0043d0.0292±0.0001d
    GMP0.0542±0.0008d0.0223±0.0012e0.0266±0.0009e0.0689±0.0113c0.1097±0.0099a0.0905±0.0057b
    AMP0.0098±0.0001c0.0096±0.0001c0.0103±0.0001b0.0103±0.0002b0.0155±0.0004a0.0093±0.0001c
    下载: 导出CSV 
    | 显示表格
    表  7  不同熟制方式克氏原螯虾核苷酸TAV和EUC分析
    Table  7.  Nucleotide TAV and EUC analysis of crayfish with different cooking methods
    组别TAVEUC(g MSG/100 g)
    IMPGMPAMP
    A0.380.220.023.54
    S2.310.090.026.16
    P6.040.110.0223.6
    F2.910.280.0211.38
    O0.570.440.035.57
    M0.230.360.025.54
    下载: 导出CSV 
    | 显示表格

    全面地评价不同热处理方式下克氏原螯虾虾肉鲜味变化可以采用EUC值进行分析,EUC值是根据呈鲜味的游离氨基酸(Asp、Glu)、呈鲜味的核苷酸(GMP、IMP、AMP)的含量及其相对鲜味系数计算得出[41]。由表7可知,P与F的EUC值分别为23.6、11.38 g MSG/100 g,明显高于其他处理组,在感官分析中P与F也表现出较高的分数。A组的EUC值小于O组、M组,但A组含有较高的甜味氨基酸含量使得A组在感官评分中得分高于O组、M组,这是因为甜味氨基酸的含量不仅代表可以提供甜味,也能平衡一定程度的苦味[42]。S组EUC值为6.16 g MSG/100 g略高于A组、O组和M组,且S组苦味氨基酸含量较低,这使得P组、S组、F组感官评分中滋味得分远高于A组、O组和M组。但在感官评分中F组滋味得分要高于P组,这可能是人体对滋味的感受受气味物质的影响[44],油炸后虾肉气味远好于其他组,从而影响了对滋味的感知。

    本研究以6种不同熟制方式(蒸、水煮、油炸、空气炸、微波加热、烤制)处理克氏原螯虾,探究不同方式熟制对虾肉影响。6种不同熟制处理后的克氏原鳌虾虾肉中共检测出35种挥发性物质,经过OPLS-DA分析后得出VIP>1的挥发性物质有12种,分别是2-壬酮、2-丙酮、1-戊醇、乙醇、2-戊基呋喃、2-甲基戊醛、3-甲基丁酸丁酯、戊醛二聚体、3-辛醇、正壬醛二聚体、(E)-2-庚烯醛、3-戊酮。综合比较不同熟制的虾肉,发现6种熟后的虾肉存在较明显差异,油炸的高温能加速食用油与虾肉中油脂发生氧化而生成2-甲基丁酸甲酯、(E)–2-庚醛等物质,使油炸后的克氏原螯虾气味更好,且油炸后虾肉更紧实、滋味也更好,使油炸后克氏原螯虾获得最高的感官得分;水煮克氏原螯虾鲜味游离氨基酸与鲜味核苷酸的TAV值较大且EUC值高达23.6 g MSG/100 g,且水煮后苦味游离氨基酸含量较低使水煮后克氏原鳌虾感官评分较高。综合分析油炸方式处理虾肉风味最好,其次是水煮方式。

  • 图  1   不同熟制方式下克氏原螯虾GC-IMS指纹图谱(A)、各类挥发性物质占比(B)

    Figure  1.   GC-IMS fingerprints of crayfish with different cooking methods (A) and the percentage of each type of volatile substances (B)

    图  2   基于GC-IMS的不同熟制方式下克氏原螯虾OPLS-DA分析(A)、PCA分析(B)、VIP预测值(C)、随机置换检验(D)、差异风味物质峰面积(E)

    Figure  2.   GC-IMS-based OPLS-DA analysis (A), PCA analysis (B), predicted value of VIP (C), random replacement test (D), and differential flavor substance peak area (E) of crayfish under different maturation methods

    图  3   不同熟制方式克氏原螯虾电子舌分析

    Figure  3.   Electronic tongue analysis of crayfish with different cooking methods

    图  4   不同熟制方式克氏原螯虾呈味氨基酸含量分析

    注:同一填充柱上不同字母表示各组别氨基酸显著性差异(P<0.05)。

    Figure  4.   Flavor presenting amino acid content analysis of crayfish with different cooking methods

    表  1   虾肉感官评定标准

    Table  1   Sensory evaluation criteria of shrimp meat

    项目评价标准分数
    形态(30)虾肉完整无破碎24~30
    虾肉较完整,有少量形状残缺17~23
    虾肉不太完整,虾仁形状残缺9~16
    虾肉不完整0~8
    色泽(20)金黄色或色泽透亮有光泽,色泽均匀,无油炸过焦或热处理过度的色泽16~20
    淡黄色或乳白色,色泽较均匀,无油炸过焦或热处理过度的色泽11~15
    黄褐色,色泽一般,有轻微的油炸过焦色泽或热处理过度不自然的白色6~10
    黄色,色泽不均匀,较重的油炸过焦或热处理过久的色泽0~5
    香味(20)具有虾仁热处理后特有香气,香气浓郁,持续时间长,无腥味16~20
    具有虾仁热处理后的香气,香气较浓郁,无明显腥味11~15
    具有虾仁热处理后的香气,香气一般,无明显异味6~10
    无虾仁热处理后的香气,异味明显0~5
    滋味(30)口感致密紧实,肉质细腻或焦脆可口无油腻感,无生腥味或哈喇味24~30
    口感整体较好,无油腻感,无生腥味和哈喇味17~23
    口感一般,略有绵软或焦糊感,有油腻感,有生腥味或哈喇味9~16
    口感差,口感过于松散或干硬,油腻感重,有焦生腥和哈喇味0~8
    下载: 导出CSV

    表  2   不同熟制方式克氏原螯虾感官分析

    Table  2   Sensory analysis of crayfish in different cooking methods

    处理
    方式
    指标总分
    形态色泽香味滋味
    P22.7±0.42b15.75±0.35b16.25±0.35a26.25±0.35a80.95±0.07abc
    S26.75±1.06a17.75±0.35a15.75±0.35a26.75±0.35a87±2.12ab
    F27.5±0.71a18.65±0.50a17.5±0.71a27.5±0.71a91.15±2.62a
    O20.5±0.71c13.5±0.71cd14.75±0.35a23.8±0.28b72.55±0.78bcd
    M17.9±1.27d14.5±0.71bc7.25±3.72b22.25±0.35c61.9±2.80d
    A23.75±0.35b12.75±0.35d13.75±0.35a23.5±0.71b73.75±1.77bcd
    注:同行不同字母表示差异显著(P<0.05);表3表4表6同。
    下载: 导出CSV

    表  3   GC-IMS分析不同熟制方式的克氏原螯虾

    Table  3   GC-IMS analysis of crayfish with different cooking methods

    种类 化合物 分子式 保留指数 保留时间(s) 迁移时间(ms) 相对含量(%) 气味描述
    M A P S F O
    醇类 1-己醇 C6H14O 878.8 357.119 1.32019 1.17±0.04b 1.17±0.04b 1.36±0.01a 0.89±0.02c 0.81±0.05c 1.40±0.11a 松香、花香、青草香[13]
    1-辛烯-3-醇 C8H16O 980.2 524.038 1.1503 3.41±0.22a 2.27±0.12c 2.30±0.15c 2.62±0.11b 2.76±0.06b 1.91±0.01d 蘑菇味、土腥味[14]
    1-戊醇 C5H12O 776.1 244.063 1.25391 1.50±0.10c 2.18±0.19b 1.29±0.07c 1.29±0.11c 1.21±0.03c 3.85±0.50a 脂肪香[13]
    3-辛醇 C8H18O 990 543.807 1.41781 1.28±0.08b 1.77±0.11b 1.66±0.15b 1.30±0.03b 1.87±0.07b 5.54±1.25a 土壤、蘑菇气味、水果味[15]
    乙醇 C2H6O 507.4 104.476 1.05113 13.1±0.77d 22.05±1.21a 21.16±0.60a 17.12±0.98b 14.76±0.45c 22.21±1.52a
    醛类 (E)-2-庚烯醛 C7H12O 961.7 488.378 1.25621 0.32±0.01b 0.44±0.07b 0.45±0.04b 0.36±0.05b 0.73±0.09a 0.44±0.05b 脂肪香[16]
    1-己醛(D) C6H12O 795 262.15 1.55886 8.54±0.45a 3.89±0.17c 3.40±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 油脂味、青草味[17]
    1-己醛(M) C6H12O 797.4 264.509 1.26332 8.54±0.45a 3.89±0.17c 3.4±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 油脂味、青草味[17]
    2-己烯醛 C6H10O 853.1 324.8 1.18342 0.49±0.01c 0.74±0.09ab 0.8±0.13ab 0.6±0.03bc 0.64±0.04bc 0.85±0.10a 果香味[18]
    2-甲基戊醛 C6H12O 753.6 223.331 1.21618 8.54±0.45a 3.89±0.17c 3.4±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 果香味[18]
    3-甲硫基丙醛 C4H8OS 903.2 391.171 1.09065 0.61±0.12a 0.87±0.21a 0.78±0.07a 0.58±0.07a 0.84±0.20a 1.08±0.54a 洋葱、肉类香气[19]
    3-甲基丁醛 C5H10O 660.5 159.44 1.18244 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 巧克力、脂肪味[13]
    苯甲醛 C7H6O 961.2 487.465 1.14816 0.66±0.24a 0.81±0.36a 0.69±0.08a 0.58±0.14a 0.7±0.040a 0.69±0.35a 坚果味、
    苦味[13]
    庚醛(D) C7H14O 900.5 387.185 1.68874 0.71±0.05c 0.96±0.07b 0.99±0.07b 0.70±0.04c 0.72±0.04c 1.19±0.13a 水果香[13]
    庚醛(M) C7H14O 901.6 388.758 1.3405 0.71±0.05c 0.96±0.07b 0.99±0.07b 0.7±0.040c 0.72±0.04c 1.19±0.13a 水果香[13]
    正壬醛(D) C9H18O 1103 770.165 1.93927 0.66±0.08d 0.96±0.10c 1.43±0.06a 0.84±0.05c 0.64±0.04d 1.13±0.10b 油脂、甜橙[13]
    正壬醛(M) C9H18O 1104 772.448 1.47196 0.66±0.08d 0.96±0.10c 1.43±0.06a 0.84±0.05c 0.64±0.04d 1.13±0.10b 油脂、甜橙[13]
    辛醛(D) C8H16O 1011.3 582.996 1.82051 3.41±0.22a 2.27±0.12c 2.30±0.15c 2.62±0.11b 2.76±0.06b 1.91±0.01d 肥皂、柠檬、青草[13]
    辛醛(M) C8H16O 1013.5 586.928 1.41203 3.41±0.22a 2.27±0.12c 2.30±0.15c 2.62±0.11b 2.76±0.06b 1.91±0.01d 肥皂、柠檬、青草[13]
    戊醛(D) C5H10O 700.5 181.152 1.41956 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 杏仁、麦芽、辛辣味[13]
    戊醛(M) C5H10O 700.5 181.152 1.19556 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 杏仁、麦芽、辛辣味[13]
    酮类 1-辛烯-3-酮 C8H14O 980.2 523.925 1.28798 0.54±0.04a 0.49±0.01a 0.44±0.03a 0.48±0.08a 0.54±0.05a 0.49±0.11a 泥土、蘑菇
    [20]
    2-庚酮 C7H14O 889.8 371.897 1.26354 0.71±0.05c 0.96±0.07b 0.99±0.07b 0.70±0.04c 0.72±0.04c 1.19±0.13a 蓝莓味[21]
    2-己酮 C6H12O 784.2 251.927 1.19179 8.54±0.45a 3.89±0.17c 3.40±0.55cd 6.83±0.27b 8.75±0.30a 2.94±0.39d 水果、肉香、黄油味[13]
    2-壬酮 C9H18O 1094.6 750.767 1.40882 0.66±0.08d 0.96±0.10c 1.43±0.06a 0.84±0.05c 0.64±0.04d 1.13±0.10b 清香、青草香、土腥味[14]
    2-丙酮 C3H6O 510.6 105.371 1.11175 6.32±0.75d 10.44±1.96a 9.14±0.11abc 7.85±1.08bcd 7.06±0.44cd 9.97±1.64ab 辛辣甜味[22]
    3-戊酮 C5H10O 693.3 176.035 1.12001 4.43±0.31bc 4.16±0.27c 3.67±0.16d 4.55±0.09b 5.11±0.21a 3.01±0.01e 令人愉快的芳香气味[23]
    环己酮 C6H10O 898.4 384.104 1.15312 0.49±0.01c 0.74±0.09ab 0.80±0.13ab 0.60±0.03bc 0.64±0.04bc 0.85±0.10a 青草香、花瓣、胡桃[13]
    酯类 3-甲基丁酸丁酯 C9H18O2 1057 669.75 1.40701 0.59±0.01d 0.83±0.13a 0.94±0.18a 0.57±0.05d 0.63±0.05bc 0.79±0.02ab
    2-甲基丁酸甲酯 C6H12O2 768.9 237.151 1.1897 0.25±0.01e 0.36±0.02cd 0.46±0.03ab 0.33±0.02d 0.41±0.05bc 0.49±0.05a 脂肪香味[16]
    乙酸丙酯(D) C5H10O2 714.7 191.553 1.4772 0.35±0.03b 0.48±0.02a 0.54±0.08a 0.36±0.04b 0.32±0.01b 0.52±0.03a 菠萝香气[24]
    乙酸丙酯(M) C5H10O2 714.7 191.553 1.16258 0.35±0.03b 0.48±0.02a 0.54±0.08a 0.36±0.04b 0.32±0.01b 0.52±0.03a 菠萝香气[24]
    其它 2-戊基呋喃 C9H14O 995.2 554.651 1.25091 0.34±0.08b 0.32±0.01b 0.39±0.06b 0.34±0.06b 0.33±0.05b 0.79±0.05a 水果、青草、豆腥味[13]
    烯丙基硫醚 C6H10S 855.3 327.456 1.11905 0.27±0.03c 0.36±0.05ab 0.38±0.06a 0.30±0.01bc 0.39±0.05a 0.42±0.03a 硫磺味、洋葱味和蒜味[25]
    2-甲氧基-2-甲基丙烷 C5H12O 569.9 123.473 1.13004 1.50±0.10c 2.18±0.19b 1.29±0.07c 1.29±0.11c 1.21±0.03c 3.85±0.50a
    注:“D”表示二聚体“M”表示单体。
    下载: 导出CSV

    表  4   不同熟制方式克氏原螯虾游离氨基酸分析

    Table  4   Free amino acids analysis of crayfish with different cooking methods

    游离氨基酸(mg/g)处理方式
    OPAMFS
    Asp0.32±0.01d0.80±0.04a0.26±0.01e0.43±0.01b0.37±0.01c0.33±0.01d
    Glu1.12±0.01f1.73±0.02a1.40±0.01d1.51±0.01b1.47±0.01c1.19±0.01e
    鲜味氨基酸1.44±0.01f2.53±0.06a1.66±0.01d1.94±0.02b1.84±0.01c1.52±0.01e
    Ser1.68±0.01abc1.55±0.04c1.74±0.07ab1.81±0.14a1.60±0.05bc1.63±0.08bc
    Gly2.63±0.06a2.45±0.06b2.59±0.06a2.19±0.05c2.40±0.01b2.01±0.08d
    Thr2.45±0.01a1.92±0.01b1.87±0.03c1.22±0.02e1.51±0.01d0.67±0.01f
    Ala4.04±0.01b3.59±0.07d4.40±0.07a3.96±0.10bc3.91±0.01c3.68±0.03d
    甜味氨基酸10.81±0.06a9.50±0.05b10.60±0.23a9.19±0.17c9.43±0.03b8.00±0.13d
    Tyr0.46±0.01a0.36±0.01d0.43±0.01b0.40±0.01c0.36±0.01d0.37±0.01d
    Ile0.786±0.01b0.66±0.01c0.78±0.01b0.83±0.04a0.79±0.01b0.76±0.01b
    Leu1.06±0.01a0.73±0.01f0.98±0.01b0.92±0.01c0.88±0.01d0.86±0.01e
    Phe0.19±0.01a0.13±0.01cd0.17±0.01b0.14±0.01c0.11±0.01e0.12±0.01de
    His1.54±0.01a1.22±0.05d1.44±0.01b1.28±0.01c1.22±0.01d1.19±0.01d
    Lys1.00±0.04a0.69±0.01d0.96±0.01b0.89±0.01c0.70±0.01d0.71±0.01d
    Val0.87±0.01a0.44±0.01f0.83±0.01b0.71±0.03c0.65±0.01d0.62±0.01e
    Met0.88±0.01a0.68±0.01e0.73±0.01d0.85±0.01b0.72±0.01d0.82±0.01c
    Cys0.26±0.01a0.22±0.01d0.27±0.01a0.27±0.01a0.25±0.01b0.24±0.01c
    Arg9.93±0.01a9.77±0.01b9.94±0.01a9.81±0.07b9.94±0.03a9.61±0.05c
    苦味氨基酸16.98±0.05a14.91±0.04f16.51±0.03b16.12±0.10c15.62±0.03d15.30±0.03e
    总游离氨基酸29.23±0.11a26.95±0.03d28.76±0.20b27.25±0.04c26.89±0.01d24.82±0.10e
    下载: 导出CSV

    表  5   不同熟制方式克氏原螯虾游离氨基酸TAV分析

    Table  5   TAV analysis of free amino acids in crayfish with different cooking methods

    TAV处理方式
    OPAMFS
    Asp0.320.800.260.430.370.33
    Glu3.755.764.655.034.923.97
    Ser1.121.031.161.211.071.09
    Gly2.031.881.991.681.841.55
    Thr0.940.740.720.470.580.26
    Ala6.745.987.346.606.526.14
    Tyr0.180.140.160.160.140.14
    Ile0.870.730.860.930.870.85
    Leu0.560.380.520.480.460.45
    Phe0.210.150.180.160.120.14
    His7.726.107.186.426.115.97
    Lys2.001.381.911.791.411.42
    Val2.171.102.081.781.631.55
    Met2.922.282.422.842.402.72
    Cys13.2011.1813.3813.3512.4011.95
    Arg6.626.526.626.546.626.41
    下载: 导出CSV

    表  6   不同熟制方式克氏原螯虾核苷酸分析

    Table  6   Nucleotide analysis of crayfish with different cooking methods

    核苷酸含量(mg/g)
    ASPFOM
    IMP0.0475±0.0007d0.2891±0.0171c0.7545±0.0574a0.3641±0.0475b0.0715±0.0043d0.0292±0.0001d
    GMP0.0542±0.0008d0.0223±0.0012e0.0266±0.0009e0.0689±0.0113c0.1097±0.0099a0.0905±0.0057b
    AMP0.0098±0.0001c0.0096±0.0001c0.0103±0.0001b0.0103±0.0002b0.0155±0.0004a0.0093±0.0001c
    下载: 导出CSV

    表  7   不同熟制方式克氏原螯虾核苷酸TAV和EUC分析

    Table  7   Nucleotide TAV and EUC analysis of crayfish with different cooking methods

    组别TAVEUC(g MSG/100 g)
    IMPGMPAMP
    A0.380.220.023.54
    S2.310.090.026.16
    P6.040.110.0223.6
    F2.910.280.0211.38
    O0.570.440.035.57
    M0.230.360.025.54
    下载: 导出CSV
  • [1] 温丽敏, 诸永志, 罗章, 等. 响应面法优化小龙虾烤箱辅助烤制工艺[J]. 肉类研究,2023,37(5):39−48. [WEN Limin, ZHU Yongzhi, LUO Zhang, et al. Optimizing the oven roasting of crayfish by response surface methodology[J]. Meat Research,2023,37(5):39−48.]

    WEN Limin, ZHU Yongzhi, LUO Zhang, et al. Optimizing the oven roasting of crayfish by response surface methodology[J]. Meat Research, 2023, 37(5): 39−48.

    [2] 徐文思, 杨祺福, 赵子龙, 等. 微波熟制对小龙虾营养与风味的影响[J]. 食品与机械,2022,38(2):216−221. [XU Wensi, YANG Qifu, ZHAO Zilong, et al. Study on microwave heating on nutrition and flavor composition of crayfish[J]. Food and Machinery,2022,38(2):216−221.]

    XU Wensi, YANG Qifu, ZHAO Zilong, et al. Study on microwave heating on nutrition and flavor composition of crayfish[J]. Food and Machinery, 2022, 38(2): 216−221.

    [3]

    CAO Y, WU G, ZHANG F, et al. A comparative study of physicochemical and flavor characteristics of chicken nuggets during air frying and deep frying[J]. Journal of the American Oil Chemists' Society,2020,97:901−913. doi: 10.1002/aocs.12376

    [4]

    JOSHY C G, RATHEESH G, NINAN G, et al. Optimizing air-frying process conditions for the development of healthy fish snack using response surface methodology under correlated observations[J]. Journal of Food Science and Technology,2020,57:2651−2658. doi: 10.1007/s13197-020-04301-z

    [5]

    ZHU X, YANG C, SONG Y, et al. Changes provoked by altitudes and cooking methods in physicochemical properties, volatile profile, and sensory characteristics of yak meat[J]. Food Chemistry:X,2023,20:101019.

    [6]

    RAO J W, MENG F B, LI Y C, et al. Effect of cooking methods on the edible, nutritive qualities and volatile flavor compounds of rabbit meat[J]. Journal of the Science of Food and Agriculture,2022,102(10):4218−4228. doi: 10.1002/jsfa.11773

    [7]

    RAZA A, SONG H, RAZA J, et al. Formation of beef-like odorants from glutathione-enriched yeast extract via Maillard reaction[J]. Food & Function,2020,11(10):8583−8601.

    [8]

    SHI S, WANG X, WU X, et al. Effects of four cooking methods on sensory and taste quality of Portunus trituberculatus[J]. Food Science & Nutrition,2020,8:1115−1124.

    [9] 程荣, 刘瑞玲, 吴伟杰, 等. 电子鼻结合气相色谱-离子迁移谱法鉴别不同干燥方式的膳食虾肉复合果蔬棒风味变化[J]. 食品安全质量检测学报, 2024, 15(9):187-196. [CHENG Rong, LIU Ruilin, WU Weijie, et al. Flavour changes of dietary shrimp composite fruit and vegetable sticks with different drying methods identified by electronic nose combined with gas chromatography-ion mobility spectrometry[J]Journal of Food Safety & Quality, 2024, 15 (9):187-196.]

    CHENG Rong, LIU Ruilin, WU Weijie, et al. Flavour changes of dietary shrimp composite fruit and vegetable sticks with different drying methods identified by electronic nose combined with gas chromatography-ion mobility spectrometry[J]Journal of Food Safety & Quality, 2024, 15 (9): 187-196.

    [10]

    HUANG J B, KONG X W, CHEN Y Y, et al. Assessment of flavor characteristics in snakehead (Ophiocephalus argus Cantor) surimi gels affected by atmospheric cold plasma treatment using GC-IMS[J]. Frontiers in Nutrition,2022,9:1086426.

    [11] 杜柳, 邱文兴, 刘栋银, 等. 不同热加工方式熟化对克氏原螯虾理化性质和风味的影响[J]. 肉类研究,2023,37(5):49−56. [DU Liu, QIU Wenxing, LIU Dongyin, et al. Effects of different cooking methods on the physicochemical properties and flavor of crawfish (Procambarus clarkia)[J]. Meat Research,2023,37(5):49−56.]

    DU Liu, QIU Wenxing, LIU Dongyin, et al. Effects of different cooking methods on the physicochemical properties and flavor of crawfish (Procambarus clarkia)[J]. Meat Research, 2023, 37(5): 49−56.

    [12] 付娜, 王锡昌. 电子舌分析和感官评价在游离氨基酸对中华绒螯蟹整体滋味贡献评价中的研究[J]. 食品工业科技,2014,35(20):91−96. [FU Na, WANG Xichang. Study on the contribution of free amino acid composition to the Chinese mitten crab taste by sensory evaluation and the electronic tongue[J]. Science and Technology of Food Industry,2014,35(20):91−96.]

    FU Na, WANG Xichang. Study on the contribution of free amino acid composition to the Chinese mitten crab taste by sensory evaluation and the electronic tongue[J]. Science and Technology of Food Industry, 2014, 35(20): 91−96.

    [13] 金文刚, 赵萍, 姜鹏飞, 等. 基于GC-IMS技术结合多元统计模型分析不同色泽小米粥挥发性有机物差异[J]. 食品科学,2023,44(6):277−284. [JIN Wengang, ZHAO Ping, JIANG Pengfei, et al. Analysis of differential volatile organic compounds in different colored millet porridges by gas chromatography-ion mobility spectrometry combined with multivariate statistical analysis[J]. Food Science,2023,44(6):277−284.]

    JIN Wengang, ZHAO Ping, JIANG Pengfei, et al. Analysis of differential volatile organic compounds in different colored millet porridges by gas chromatography-ion mobility spectrometry combined with multivariate statistical analysis[J]. Food Science, 2023, 44(6): 277−284.

    [14] 张权, 王为, 吴思纷, 等. 黑鱼油精制过程中品质及风味成分变化[J]. 食品科学, 2023, 44(12):208-16. [ZHANG Quan, WANG Wei, WU Sifen, et al. Changes in the quality and flavor components of snakehead fish oil during refining[J]. Food Science, 2023, 44(12):208-216.]

    ZHANG Quan, WANG Wei, WU Sifen, et al. Changes in the quality and flavor components of snakehead fish oil during refining[J]. Food Science, 2023, 44(12): 208-216.

    [15] 乞萌, 魏冠棉, 李丽娜, 等. 不同酵母发酵面团特性分析及其对馒头品质的影响[J]. 食品科学,2024,45(12):59−67. [QI Meng, LI lina, XU Chao, et al. Characteristics of dough fermented by different yeasts and quality analysis of steamed bread[J]. Food Science,2024,45(12):59−67.]

    QI Meng, LI lina, XU Chao, et al. Characteristics of dough fermented by different yeasts and quality analysis of steamed bread[J]. Food Science, 2024, 45(12): 59−67.

    [16] 倪瑞洁, 詹萍, 田洪磊. 基于GC-IMS结合多元统计方法分析炸制时间对花椒调味油挥发性物质的影响[J]. 食品科学, 2022, 43(6):279-86. [NI Ruijie, ZHAN Ping, TIAN Honglei. Effects of frying time on volatile flavor compounds in fried pepper (Zanthoxylum bungeanum) oil as analyzed by gas chromatography-ion mobility spectrometry and multivariate statistical analysis[J]. Food Science, 2022, 43(6):279-286.]

    NI Ruijie, ZHAN Ping, TIAN Honglei. Effects of frying time on volatile flavor compounds in fried pepper (Zanthoxylum bungeanum) oil as analyzed by gas chromatography-ion mobility spectrometry and multivariate statistical analysis[J]. Food Science, 2022, 43(6): 279-286.

    [17] 关君兰, 姚雨萱, 伍菱, 等. 轻度盐腌大黄鱼的气味特征及形成途径[J]. 食品科学,2023,44(24):235−244. [GUAN Junlan, YAO Yuxuan, WU Ling, et al. Odor characteristics and formation pathways of low-salted large yellow croaker[J]. Food Science,2023,44(24):235−244.]

    GUAN Junlan, YAO Yuxuan, WU Ling, et al. Odor characteristics and formation pathways of low-salted large yellow croaker[J]. Food Science, 2023, 44(24): 235−244.

    [18] 易宇文, 何莲, 邓静, 等. 基于电子鼻和气质联用识别不同工艺的俄色茶[J]. 食品工业科技,2023,44(18):361−370. [YI Yuwen, HE Lian, DENG Jing, et al. Identification of Malus toringoides (Rehd. ) Hughes teas with different processes based on E-nose and GC-MS[J]. Science and Technology of Food Industry,2023,44(18):361−370.]

    YI Yuwen, HE Lian, DENG Jing, et al. Identification of Malus toringoides (Rehd. ) Hughes teas with different processes based on E-nose and GC-MS[J]. Science and Technology of Food Industry, 2023, 44(18): 361−370.

    [19] 刘同, 杨悠悠, 刘大鹏, 等. 肉鸭胸肌特异挥发性风味物质的鉴定[J]. 畜牧兽医学报,2022,53(2):402−413. [LIU Tong, YANG Youyou, LIU Dapeng, et al. Identification of specific volatile flavor compounds in breast muscle of meat duck[J]. Acta Veterinaria et Zootechnica Sinica,2022,53(2):402−413.]

    LIU Tong, YANG Youyou, LIU Dapeng, et al. Identification of specific volatile flavor compounds in breast muscle of meat duck[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 402−413.

    [20]

    CADWALLADER K R, TAN Q, CHEN F, et al. Evaluation of the aroma of cooked spiny lobster tail meat by aroma extract dilution analysis[J]. Journal of Agricultural and Food Chemistry,1995,43(9):2432−2437. doi: 10.1021/jf00057a022

    [21]

    BAINY E M, BERTAN L C, CORAZZA M L, et al. Effect of grilling and baking on physicochemical and textural properties of tilapia (Oreochromis niloticus) fish burger[J]. Journal of Food Science and Technology,2015,52:5111−5119. doi: 10.1007/s13197-014-1604-3

    [22] 孙艺飞, 崔文甲, 王文亮, 等. 鸡脂和美拉德反应对松蘑菌汤风味的影响[J]. 食品工业科技,2022,43(19):98−107. [SUN Yifei, CUI Wenjia, WANG Wenliang, et al. Effect of chicken fat and Maillard reaction on flavor of tricholoma matsutake soup[J]. Science and Technology of Food Industry,2022,43(19):98−107.]

    SUN Yifei, CUI Wenjia, WANG Wenliang, et al. Effect of chicken fat and Maillard reaction on flavor of tricholoma matsutake soup[J]. Science and Technology of Food Industry, 2022, 43(19): 98−107.

    [23] 鲁金花, 谢定, 鲜灵芝. 发酵型与浸泡型杨梅酒的挥发性成分分析[J]. 食品与机械,2022(6):31−36. [LU Jinhua, XIE Ding, XIAN Lingzhi. Analysis of volatile components of fermented and soaked bayberry wine[J]. Food & Machinery,2022(6):31−36.]

    LU Jinhua, XIE Ding, XIAN Lingzhi. Analysis of volatile components of fermented and soaked bayberry wine[J]. Food & Machinery, 2022(6): 31−36.

    [24] 王浩文, 邓静, 唐红梅, 等. 不同品牌樟茶鸭风味特征分析[J]. 食品工业科技,2020,41(6):215−222,227. [WANG Haowen, DENG Jing, TANG Honmei, et al. Analysis of flavor characteristics of smoked duck from different brands[J]. Science and Technology of Food Industry,2020,41(6):215−222,227.]

    WANG Haowen, DENG Jing, TANG Honmei, et al. Analysis of flavor characteristics of smoked duck from different brands[J]. Science and Technology of Food Industry, 2020, 41(6): 215−222,227.

    [25] 张权, 李金林, 胡明明, 等. 基于电子鼻和SAFE-GC-MS分析调味小龙虾挥发性风味特征差异[J/OL]. 食品与发酵工业:1−14. [2025-01-21]. https://doi.org/10.13995/j.cnki.11-1802/ts.036446. [ZHANG Quan, LI Jinlin, HU Mingming, et al Analysis of volatile flavor characteristics of seasoned crayfish based on electronic nose and SAFE-GC-MS[J/OL]. Food and Fermentation Industries: 1−14. [2025-01-21]. https://doi.org/10.13995/j.cnki.11-1802/ts.036446.]

    ZHANG Quan, LI Jinlin, HU Mingming, et al Analysis of volatile flavor characteristics of seasoned crayfish based on electronic nose and SAFE-GC-MS[J/OL]. Food and Fermentation Industries: 1−14. [2025-01-21]. https://doi.org/10.13995/j.cnki.11-1802/ts.036446.

    [26]

    PAVLIDIS D E, MALLOUCHOS A, ERCOLINI D, et al. A volatilomics approach for off-line discrimination of minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis[J]. Meat Science,2019,151:43−53. doi: 10.1016/j.meatsci.2019.01.003

    [27] 江津津, 严静, 郑玉玺, 等. 不同产地传统鱼露风味特征差异分析[J]. 食品科学,2021,42(12):206−214. [JIANG Jinjin, YAN Jing, ZHENG Yuxi, et al. Analysis of flavor characteristics of traditional fish sauce from different regions[J]. Food Science,2021,42(12):206−214.]

    JIANG Jinjin, YAN Jing, ZHENG Yuxi, et al. Analysis of flavor characteristics of traditional fish sauce from different regions[J]. Food Science, 2021, 42(12): 206−214.

    [28]

    ZHANG W, ZHANG L, XU C. Chemical and volatile composition of jujube wines fermented by Saccharomyces cerevisiae with and without pulp contact and protease treatment[J]. Food Science and Technology,2016,36:204−209. doi: 10.1590/1678-457X.0011

    [29] 余力, 贺稚非, 王兆明, 等. 不同解冻方式对伊拉兔肉挥发性风味物质的影响[J]. 食品科学,2015,36(22):95−101. [YU Li, HE Zhife, WANG Zhaoming, et al, et al. Effect of different thawing methods on volatile flavor compounds of hyla rabbit meat[J]. Food Science,2015,36(22):95−101.]

    YU Li, HE Zhife, WANG Zhaoming, et al, et al. Effect of different thawing methods on volatile flavor compounds of hyla rabbit meat[J]. Food Science, 2015, 36(22): 95−101.

    [30] 黄慧清, 郑玉成, 胡清财, 等. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析[J]. 食品科学,2024,45(1):101−108. [HUANG Huiqing, ZHENG Yucheng, HU Qingcai, et al. Analysis of key aroma components of three representative oolong tea varieties by stir bar sorptive extraction combined with gas chromatography-olfactory-mass spectrometry[J]. Food Science,2024,45(1):101−108.]

    HUANG Huiqing, ZHENG Yucheng, HU Qingcai, et al. Analysis of key aroma components of three representative oolong tea varieties by stir bar sorptive extraction combined with gas chromatography-olfactory-mass spectrometry[J]. Food Science, 2024, 45(1): 101−108.

    [31]

    ZHANG D, JI W, PENG Y, et al. Evaluation of flavor improvement in antarctic krill defluoridated hydrolysate by Maillard reaction using sensory analysis, E-nose, and GC-MS[J]. Journal of Aquatic Food Product Technology,2020,29(3):279−292. doi: 10.1080/10498850.2020.1723764

    [32] 张曦鹏, 蒋中权, 郭全友, 等. 不同水分含量对轻腌大黄鱼贮藏期间细菌菌相和风味特征的影响[J]. 食品科学,2024,45(8):210−217. [ZHANG Xipeng, JIANG Zhongquan, GUO Quanyou, et al. Effects of different moisture content on bacterial flora and flavor characteristics of lightly salted large yellow croaker during storage[J]. Food Science,2024,45(8):210−217.]

    ZHANG Xipeng, JIANG Zhongquan, GUO Quanyou, et al. Effects of different moisture content on bacterial flora and flavor characteristics of lightly salted large yellow croaker during storage[J]. Food Science, 2024, 45(8): 210−217.

    [33] 王蓓, 韩兆盛, 杨智杰, 等. 6类常见食品中含硫化合物风味特征及形成机理研究进展[J]. 食品科学技术学报, 2022, 40(6):13-25. [WANG Bei, HAN Zhaosheng, YANG Zhijie, et al. Research progress on flavor characteristics and formation mechanism of sulfur compounds in six common foods[J]Journal of Food Science and Technology, 2022, 40(6):13-25.]

    WANG Bei, HAN Zhaosheng, YANG Zhijie, et al. Research progress on flavor characteristics and formation mechanism of sulfur compounds in six common foods[J]Journal of Food Science and Technology, 2022, 40(6): 13-25.

    [34]

    ZHU Z S, FANG R, HUANG M, et al. Oxidation combined with Maillard reaction induced free and protein-bound Nε-carboxymethyllysine and Nε-carboxyethyllysine formation during braised chicken processing[J]. Food Science and Human Wellness,2020,9(4):383−393. doi: 10.1016/j.fshw.2020.05.013

    [35] 刘振平, 龙道崎, 甘芳瑗, 等. 基于GC-IMS技术的油菜花蜂蜜产地溯源模型鉴别[J]. 中国食品学报,2023,23(8):379−388. [LIU Zhenping, LONG Daoqi, GAN Fangyuan, et al. Identification model for rape flower honey geographical origin based on GC-IMS technology[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(8):379−388.]

    LIU Zhenping, LONG Daoqi, GAN Fangyuan, et al. Identification model for rape flower honey geographical origin based on GC-IMS technology[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(8): 379−388.

    [36] 徐永霞, 白旭婷, 冯媛, 等. 基于GC-IMS和化学计量学分析海鲈鱼肉蒸制过程中风味物质的变化[J]. 食品科学,2021,42(22):270−275. [XU Yongxia, BAI Xuting, FENG Yuan, et al. Changes of flavor compounds in sea bass during steaming process as analyzed by gas chromatography-ion mobility spectroscopy and chemometrics[J]. Food Science,2021,42(22):270−275.]

    XU Yongxia, BAI Xuting, FENG Yuan, et al. Changes of flavor compounds in sea bass during steaming process as analyzed by gas chromatography-ion mobility spectroscopy and chemometrics[J]. Food Science, 2021, 42(22): 270−275.

    [37] 吴倩蓉, 朱宁, 陈松, 等. 加工工艺对酱牛肉中蛋白质降解及风味物质的影响[J]. 食品科学,2021,42(12):76−84. [WU Qianrong, ZHU Ning, CHEN Song, et al. Changes in protein degradation and flavor substance in sauce beef during processing[J]. Food Science,2021,42(12):76−84.]

    WU Qianrong, ZHU Ning, CHEN Song, et al. Changes in protein degradation and flavor substance in sauce beef during processing[J]. Food Science, 2021, 42(12): 76−84.

    [38]

    KONG Y, ZHANG L L, SUN Y, et al. Determination of the free amino acid, organic acid, and nucleotide in commercial vinegars[J]. Journal of Food Science,2017,82(5):1116−1123. doi: 10.1111/1750-3841.13696

    [39] 岳宜静, 臧明伍, 刘海杰, 等. 干制南美白对虾贮藏过程中的肌原纤维蛋白氧化、滋味变化及其相关性分析[J]. 食品科学,2023,44(19):180−189. [YUE Yijing, ZANG Mingwu, LIU Haijie, et al. Changes and correlation between myofibrillar protein oxidation and taste of dried penaeus vannamei during storage[J]. Food Science,2023,44(19):180−189.]

    YUE Yijing, ZANG Mingwu, LIU Haijie, et al. Changes and correlation between myofibrillar protein oxidation and taste of dried penaeus vannamei during storage[J]. Food Science, 2023, 44(19): 180−189.

    [40]

    YAMAGUCHI S, YOSHIKAWA T, IKEDA S, et al. Measurement of the relative taste intensity of some l‐α‐amino acids and 5'‐nucleotides[J]. Journal of Food Science,1971,36(6):846−849. doi: 10.1111/j.1365-2621.1971.tb15541.x

    [41] 韩昕苑, 樊震宇, 从娇娇, 等. 冻融循环过程中冷冻罗非鱼片呈味物质的变化[J]. 食品科学,2022,43(2):269−275. [HAN Xinyuan, FAN Zhenyu, CONG Jiaojiao, et al. Changes of taste substances in frozen tilapia (Oreochromis niloticus) fillets during freeze-thaw cycles[J]. Food Science,2022,43(2):269−275.]

    HAN Xinyuan, FAN Zhenyu, CONG Jiaojiao, et al. Changes of taste substances in frozen tilapia (Oreochromis niloticus) fillets during freeze-thaw cycles[J]. Food Science, 2022, 43(2): 269−275.

    [42] 张紫涵, 吴予灿, 宋玉, 等. 木瓜汁腌制对文昌鸡风味形成的影响[J]. 食品科学,2023,44(20):236−244. [ZHANG Zihan, WU Yucan, SONG Yu, et al. Effect of marination in papaya juice on the flavor formation of boiled wenchang chicken[J]. Food Science,2023,44(20):236−244.]

    ZHANG Zihan, WU Yucan, SONG Yu, et al. Effect of marination in papaya juice on the flavor formation of boiled wenchang chicken[J]. Food Science, 2023, 44(20): 236−244.

    [43]

    SHAKER M. Comparison between traditional deep-fat frying and air-frying for production of healthy fried potato strips[J]. International Food Research Journal,2015,22(4):1557−1563.

    [44]

    XIAO Z B, QU H L, MAO C T, et al. Study on the sweetening mechanism of aroma compounds in yangshan peach using sensory analysis, molecular docking, and molecular dynamics simulation techniques[J]. LWT,2024,191:115562. doi: 10.1016/j.lwt.2023.115562

图(4)  /  表(7)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 网络出版日期:  2025-03-02

目录

/

返回文章
返回
x 关闭 永久关闭