Research Progress of Food Components Affecting the Gluten Network and the Processing Quality of Dough
-
摘要: 小麦粉与水混合搅拌形成的面团是面制品加工的重要环节,直接影响加工产品的品质。面团是由多种食品组分通过复杂相互作用形成的分散体系,其稳定性受到面筋网络结构的影响。本文综述了形成面筋的小麦蛋白组分构成与面筋网络及面团加工品质的密切关系,谷蛋白和醇溶蛋白通过二硫键相连形成面筋网络,是影响面团粘弹性和稳定性的重要因素;淀粉作为面筋网络的重要填充物质,保持面团形态的完整性;脂类具有提高面团柔软性的作用;糖类增强了面团的抗剪切性,延缓产品老化,改善产品品质;酚类、酶类、无机盐及水分等其它食品组分也会对面筋形成产生重要影响改善面团的流变学特性。通过阐述各食品组分对面筋网络及面团加工品质的影响,以期为面制品加工中提高面团加工适应性、改善产品品质提供理论基础与研究思路。Abstract: Mixing wheat flour and water to form dough is an important link of flour processing, which will directly affect the quality of processed products. Dough is a dispersed system formed by a variety of food components through complex interactions, and its stability is affected by the structure of the gluten network. It was reviewed the relationship between gluten-forming wheat protein components, gluten network and the processing quality of dough. The gluten network formed by gluten and gliadin through disulfide bondsis an important factor affecting the viscoelasticity and stability of dough. Starch acts as an important filling material in the gluten network and maintains the integrity of the dough morphology. Lipids can improve the softness of the dough. Sugar can enhance the shear resistance of the dough, delay the ageing of the products, and improve product quality. Other food components, such as phenols, enzymes, inorganic salts and water, may also affect on the formation of gluten and improve the rheological properties of dough. In this paper, the influence of food components on gluten network and the processing quality of dough were expounded in order to provide theoretical basis and research ideas for improving the adaptability of dough processing and product quality in flour product processing.
-
Keywords:
- dough /
- wheat protein /
- gluten network /
- starch /
- processing quality
-
面制品在中国历史悠久,品种繁多,尤其以小麦粉为主要原料制作的面条、馒头和面包等多种面食,成为备受人们喜爱的重要食品[1]。面团是制作面制品的基本材料,小麦粉是形成面团的主要原料。小麦粉中含有大量的淀粉、蛋白质和其他物质,当小麦粉与水混合,这些物质相互作用,形成具有一定黏弹性的面团。谷蛋白和醇溶蛋白是面筋蛋白的主要成分,蛋白分子通过分子内和分子间的二硫键形成立体网状结构构成面筋网络结构成面团骨架,淀粉颗粒和脂类、糖类、无机盐等物质填充在面筋网络基质中(图1)。这些食品组分间的相互作用直接影响面团的流变特性和质地[2],最终改变食品的结构等宏观特性[3]。醇溶蛋白决定面团的粘性和延展性,而谷蛋白与面团弹性有关[4]。面筋的延伸性、韧性、弹性和可塑性等还取决于脂质、非淀粉多糖以及无机盐和水分等物质分子间相互作用[5],通过影响面筋蛋白的非共价和共价相互作用,从而影响面包理化、感官和贮藏特性[6]。本文献综述通过分析小麦蛋白、淀粉、脂类、糖类、酚类、酶类、无机盐和水分等食品组分对面筋网络的影响,旨在探讨各食品组分与面筋网络间的相互作用以及对面团稳定性可能产生的影响,为面团和面包品质改良提供理论基础及研究思路。
1. 小麦蛋白组分与面筋网络和面团加工品质的关系
小麦中的谷蛋白和醇溶蛋白构成了面筋蛋白的主要成分。谷蛋白之间通过二硫键形成聚合物构成面筋网络骨架,醇溶蛋白通过非共价键(尤其是氢键)与谷蛋白聚合物相互作用共同形成面筋蛋白网络,并赋予面团一定的弹性和延展性[7−8]。由于谷蛋白和醇溶蛋白结构和组成的差异性,在面制品生产过程中对面团及加工产品的品质也发挥着不同作用。
1.1 谷蛋白
谷蛋白是由高、低分子量谷蛋白亚基通过二硫键交联而成的聚合体蛋白[9],谷蛋白亚基的组成和含量直接影响面筋蛋白的特性,进而影响面团的品质和加工特性。线性麦谷蛋白亚基分子末端通过二硫键形成网状和环状结构,并在氢键、疏水键和二硫键等多种力的作用下,各亚基彼此缠绕形成网络结构,其缠绕点数量越多,谷蛋白亚基分子量越大,网络结构越稳定,并最终赋予面团弹性[10]。谷蛋白发生二硫化物与巯基的交换反应,形成稳定的谷蛋白大聚体,谷蛋白大聚体含量提高有利于面团中良好面筋网络形成[11],使面包体积增加。相反,谷蛋白大聚体解聚使链外二硫键断裂,会降低面筋蛋白黏弹性,面包出炉后易收缩变形和塌架[12]。在面团冻藏过程中冰晶逐渐生长和水分迁移,造成面筋中谷蛋白微观结构破坏,导致面筋骨架不能起到应有的支撑作用,从而降低面团的粘弹性,冻藏使面筋蛋白发生构象变化疏水基团暴露,疏水性增强[13],最终降低面包品质。
1.1.1 高分子量谷蛋白亚基
高分子量麦谷蛋白亚基(high-molecular-weight glutenin subunit,HMW-GS)仅占小麦籽粒蛋白质含量的5%~10%,与面团加工特性和面筋黏弹性有关[14]。HMW-GS由位于第一同源组群染色体长臂的Glu-A1、Glu-B1和Glu-D1位点的基因(统称Glu-1)共同编码。理论上讲普通六倍体小麦应含有6条HMW-GS,但由于局部基因沉默,多数小麦品种仅含3~5条HMW-GS[15]。HMW-GS缺失株系中α-螺旋含量较高,β-折叠及β-转角含量较少。α-螺旋结构具有疏水性、刚性和不易水合性,面筋蛋白中α-螺旋含量越高,面团稳定性越低、水分流动性越大。而高含量的β-折叠可增强氢键分子间相互作用,有助于蛋白质聚集和增加面团粘弹性[16]。中心结构域中重复的β-转角形成弹性β-螺旋,这些弹性单体通过靠近N端和C端的α-螺旋中半胱氨酸残基间的分子间二硫键组装形成面筋蛋白聚合物[17],减少面团醒发时间,维持HMW-GS缺失株系的稳定性[9]。
HMW-GS的组成变化会影响面筋蛋白微观结构[18],并赋予小麦面团不同流变学特性。HMW-Bx7OE小麦品系的面粉中蛋白质含量、HMW-GSs占总谷蛋白的比例和游离巯基含量均较高,使面筋二级结构中β-折叠片段的含量增加,面团中形成更致密的面筋网络微观结构,提高面团在制作过程中的稳定性,改善小麦面团混合和流变特性[19]。HMW-GS上Ax1或Dx2亚基缺失,导致面筋网络中蛋白连接较少,面筋网络形成交联减少,HMW-A1a和HMW-D1a面筋蛋白微观结构的均一性降低,导致HMW-A1a和HMW-D1a包埋不同大小淀粉颗粒的能力降低[15]。
1.1.2 低分子量谷蛋白亚基
小麦低分子量麦谷蛋白亚基(low-molecular-weight glutenin subunit,LMW-GS)占麦谷蛋白总量的60%左右[20],与面团质量显著相关,赋予面团独特粘弹性,便于加工各种食物。与HMW-GS相比,LMW-GS的表征比较困难,主要是因为LMW-GS具有多变性,还原后的分子间二硫键导致蛋白溶解度较低[17]。LMW-GS由同源第1组染色体短臂上的Glu-3位点(Glu-A3、Glu-B3和Glu-D3)基因编码[20]。在六倍体小麦品种中共检测到20个蛋白等位变异,分别位于Glu-A3(6个)、Glu-B3(9个)和Glu-D3(5个)位点。LMW-GS在Glu-3位点的等位变异对小麦粉面团延展性有显著影响[21],Glu-3位点编码的单个LMW-GS对小麦粉、面团流变性和面包加工工艺有一定影响[22]。Glu-A3位点编码的LMW-GSs改善面团黏弹性,Glu-B3位点编码的亚基对面团硬度及拉伸性等具有重要作用[23],Glu-A3和Glu-B3部分位点编码的LMW-GSs降低面团流变学特性[24]。
1.2 醇溶蛋白
醇溶蛋白是在氢键、二硫键和范德华力共同作用下形成球状结构的单体蛋白,并通过分子间氢键与麦谷蛋白作用进一步稳固面筋网络,赋予面团延展性,是影响小麦面包烘烤品质的重要因素[25]。醇溶蛋白含量决定面筋基质能否完全包裹淀粉颗粒,影响淀粉-面筋蛋白体系在热处理过程中的性质[26]。醇溶蛋白在面筋网络形成过程中主要发挥“增塑剂”作用并降低面团弹性。醇溶蛋白在高温下通过氧化面筋分子中的含硫氨基酸,促使两个相邻巯基在面筋蛋白分子不同部位或不同面筋蛋白分子间形成二硫键,促进醇溶蛋白聚集和醇溶蛋白-谷蛋白交联[27],增加面团筋性,从而改善小麦粉加工特性和烘焙特性[28]。醇溶蛋白分子链内二硫键在冻藏过程中较稳定,其各亚基组成保持不变。醇溶蛋白分子能促进谷蛋白大聚体解聚,且解聚程度高于谷蛋白[13]。醇溶蛋白依据其在电泳图谱上的迁移率可分为α、β、γ和ω型4种类型,各自分别占醇溶蛋白总量的25%、30%、30%和15%。α、β型醇溶蛋白具有改善面团硬度和弹性的作用,尤其对弹性影响更大;γ-醇溶蛋白主要影响面团黏聚性;ω-醇溶蛋白对面团硬度、弹性等质构指标产生负面影响[29]。
谷蛋白和醇溶蛋白是小麦面筋蛋白的主要组成部分,机械搅拌会将面筋蛋白二硫键打破形成巯基基团后又氧化形成新的二硫键并固定面团结构赋予面团延展性[30−31]。面筋蛋白组成和含量是决定小麦粉加工品质的关键因素,合适比例是赋予产品良好品质的基础。因此,应深入研究蛋白组分和结构变化与面筋网络形态和产品品质的密切关系,如面筋蛋白天然结构与独特功能之间的精确相关性及其对产品品质的影响,深入探索并利用多种成像技术、流变学和量热学建模等方法,并借助于现代育种技术挖掘小麦面筋蛋白积累关键调控基因并解析其作用机理,将有助于阐明小麦面筋形成机制,探究高温导致蛋白构象变化形成面筋蛋白聚集体增加面筋网络强度的机理[32],为改善小麦的加工适应性和开发优质的小麦加工制品提供理论依据。
2. 淀粉对面筋网络和面团加工品质的影响
淀粉是小麦粉中含量最丰富的组分,约占70%~80%[33],在面团中填充在面筋网络之间,淀粉的含量、淀粉与面筋蛋白的比例、面团的混合时间均会对面团的流变特性产生重要影响[2]。小麦淀粉主要由直链淀粉(25%~28%)和支链淀粉(72%~75%)组成[34],不同品种小麦中直/支链淀粉比例存在一定差异,影响贮藏蛋白的沉积过程和蛋白质聚集体的致密性[35],从而影响面团的可塑性和粘弹性等相关品质。可溶性直链淀粉的量随烘焙时间延长而增加,可通过疏水相互作用或氢键与多肽链结合[36],使淀粉与面筋蛋白之间相互作用增强[37],形成复杂的淀粉-蛋白网络结构,有助于面包内部形成完整致密的结构[38]。支链淀粉能促进醇溶蛋白二硫键形成[39],加速淀粉颗粒吸水、溶胀和糊化,降低面包的硬度,增大体积。糯小麦粉几乎完全由支链淀粉组成,适量添加糯小麦粉可改善面团流变学特性,提高面包在烘焙过程中的膨胀度,而糯小麦粉添加量过高(>30%)会降低面团的可塑性,导致发酵食品在冷却过程中结构坍塌[40]。因此,适宜的直/支链淀粉比有助于改善发酵产品的比容、质构特性和稳定性[41]。
淀粉颗粒形态和粒径大小对面团流变学特性具有显著影响[42],尤其小而不规则形状的淀粉颗粒具有改善面团流变学特性的作用[43],这是因为小的淀粉(直径<10 µm)增加面筋蛋白填充度,减少面筋基质被破坏,增加淀粉和面筋网络的均匀性,进而提高面团弹性和韧性[44]。而较大粒径(直径约在15~40 µm)的淀粉颗粒显著提高面团拉伸特性[45],但是当面粉中大粒径淀粉颗粒比例较高时,会导致面团中面筋基质破裂和气体细胞聚集,从而降低发酵产品品质[46]。淀粉颗粒对面筋基质的填充作用以及淀粉颗粒与蛋白质基质之间的复杂相互作用仍是需要进一步深入研究的问题。
在小麦食品中,淀粉和面筋蛋白等成分间的相互作用是影响小麦食品宏观特性和品质的关键。在加热过程中,由于面筋蛋白的竞争水合和物理屏障作用,阻碍淀粉膨胀和糊化[47],最终影响产品品质。淀粉在加热过程中发生降解反应又会诱导谷蛋白和醇溶蛋白形成的键发生断裂,一方面影响面筋蛋白聚合[48],破坏面筋蛋白空间结构;另一方面使其暴露出更多裂解位点,增强面筋蛋白的消化性[49]。具有较高吸水性的淀粉颗粒与面筋蛋白竞争结合水分,抑制面筋蛋白水合作用;而不易与水结合的淀粉颗粒具有更多氢键与面筋蛋白相互作用[50],提高面团强度和稳定性[51]。目前关于面筋蛋白和淀粉颗粒间的协同作用,以及两者在面包制作过程中所发挥的作用并没有一个明确且统一的结果。此外,关于天然面筋蛋白及其四级结构的信息在分子水平上对面团弹性性质的贡献尚不明确。后续仍需深入研究来阐明面筋微观结构和淀粉特性对面团宏观力学特性的影响,结合蛋白质网络分析的成像技术追踪面筋-淀粉基质中面筋网络的热诱导构象变化;将面筋蛋白的二级结构分析与淀粉结合蛋白模型面团的力学特性随温度变化的轨迹相耦合,可以更好地理解淀粉结合蛋白相互作用对面团特性和面包品质的影响。
小麦淀粉在加热过程中发生的糊化现象,其特征是颗粒膨胀、直链淀粉浸出、长链分子有序性被破坏,形成三维淀粉-蛋白网络结构[52]。在烘焙阶段,糊化后的淀粉在面筋网络中具有包裹气体的作用,防止气泡聚结和散失,充当面包芯“填充物”,提高面包的柔软性;在降温和贮藏过程中,糊化后的淀粉分子出现从无序到有序重排和分子间的重组即淀粉回生,回生增加了淀粉凝胶的刚性,导致面包出现老化变硬,降低产品的品质[53]。为保持面包的柔软性,在面包制作中应适当控制淀粉颗粒的糊化进程,保证气体细胞有足够的膨胀时间,使面团在烘焙过程中充分膨胀,利于面包体积膨大[41]。
3. 脂类对面筋网络和面团加工品质的影响
小麦粉中约含有1.4%~2.0%的内源性脂质,在面团制作过程中作为结合剂和桥梁促进疏水氨基酸相互作用[54],有助于提高烘焙产品质量。面团混合过程中内源性小麦脂质和面筋蛋白相互作用,能减少蛋白大分子物质形成,形成更柔软的面筋网络[55],同时也能提高面筋变性温度,增加面筋在烘焙过程中的可延展性,延长面筋热塑性,对面筋网络填料具有润滑作用,使面筋能更好稳定、包裹气体[56],有助于增加面包体积。脂质含量少的面筋网络缠结较强,面团较硬[57]。因此在面包加工中通常需要添加适量黄油和奶油等油脂,不仅提高了产品的营养价值和风味口感,而且具有提高产品柔软度、改善产品品质的效果。在脂肪酶作用下,脂类被水解为单/双甘油酯和脂肪酸,甘油酯具有乳化和稳定作用,起到增筋的效果,游离脂肪酸进一步被氧化形成过氧化物,进而将巯基氧化成二硫键,增加面团的筋性,显著改善面团的物化特性,提高最终产品品质。面团中加入的外源单甘酯,与支链淀粉末端连接发生络合作用,阻止回生淀粉三维网络结构形成,具有减缓淀粉回生的效果。饱和脂肪酸甘油酯较不饱和脂肪酸甘油酯更容易结合面筋蛋白质,对提高面筋的筋性具有重要作用[26]。
4. 糖类对面筋网络和面团加工品质的影响
小麦粉中含有少量的蔗糖、葡萄糖和果糖等,糖类本身拥有一定的吸水性,可吸收一些面团中存在的游离水,并且吸水后还易渗透到蛋白质分子之间,减少面筋蛋白中的水分,降低面筋形成度,减弱面团弹性。因此在面包制作过程中,常通过添加糖类改善面团的流变特性、促进发酵、改善面包口感和延长保质期等[58]。表1汇总了面包中常用的一些糖类对面筋蛋白网络、面团稳定性和面包品质的影响。
表 1 糖类对面筋网络和产品品质的影响Table 1. Effects of sugars on gluten network and product quality糖类 适宜添加量 对面筋网络影响 对面团影响 对面包影响 参考文献 蔗糖 8% 增强蛋白分子间缠绕及氢键连接 增加面团粘性和延展性 增加面包色泽及香味,增加面包
柔软度,延长保质期[59] 壳寡糖 0.8%(平均分子量69758 Da) 延缓面筋网络形成 增加面团抗机械搅拌性能 使面包内部气孔聚集形成大气孔,
影响其内部组织结构[60] 壳聚糖 使面包气孔均匀分布,有利于面包
内部组织松软;加速面包老化[60] 糖醇 ≤15% 与面筋蛋白竞争结合水分,减少面筋蛋白吸水溶胀 提升面团筋力和稳定性,降低
面团硬度改善面包品质,使面包更加柔软和
有弹性,延长货架期[61−62] 魔芋葡甘聚糖 1.5%~2% 促进蛋白交联,提高面筋网络
热稳定性赋予面团良好弹性、拉伸性和
质构特性改善面包质构特性,延缓面包回生 [63−65] 黄原胶 0.1% 与面筋蛋白相互作用,增强面筋网络 增加面团持水性与持气性 提高面包比容,改善面包心弹性和
硬度[66−67] 羧甲基纤维素 0.5% 促进面筋网络形成,增加蛋白间的交联 改善面团抗拉伸强度,增强面团弹性;降低面团延伸性 改善面包感官品质与质地特性,
提高面包短期保鲜效果[66,68] 蔗糖作为一种非极性物质,添加在面团中会增强蛋白分子间缠绕及氢键连接,使面团粘性增强[59]。有研究发现,在面粉中适量添加壳寡糖和壳聚糖能延缓面筋网络形成,增加面团抗机械搅拌性能,过高添加壳寡糖和壳聚糖均会导致面筋网络结构弱化;而在产品储藏过程中,添加壳寡糖会加速支链淀粉重结晶和水分迀移,加快面包老化回生,导致面包硬度增大、弹性变差,而壳聚糖则与壳寡糖刚好相反[60]。适当添加糖醇可减小面包硬度,改善面包口感,延缓面包在储藏过程中的老化[61]。但当糖醇加入量过多时,其分子中羟基通过氢键等相互作用与水分子结合,影响淀粉吸水溶胀及面筋网络吸水,延缓面团面筋网络形成,降低面团弹性,抑制面包体积增长,影响面包品质[62]。添加魔芋葡甘聚糖能够降低面团自由巯基和可冻结水含量[63],促进面筋蛋白交联,提高面筋蛋白交联度和面筋网络热稳定性[64],使面团具有良好弹性、拉伸性和质构特性。酶解后的魔芋葡甘聚糖具有提高面筋蛋白分子量,增加二硫键和β-折叠含量,增强面筋网络的作用[65]。添加黄原胶能提高面制品烹饪时的冻融稳定性,黄原胶通过与面团中的面筋蛋白相互作用,加强面筋网络,增强面团的持水性与持气性,增加面包体积[66]。冻藏过程使筋蛋白结构遭到破坏,而加入黄原胶可以保护面筋蛋白网络,提高冷冻面筋蛋白的冻藏稳定性[67]。羧甲基纤维素是一种成本低廉且安全的阴离子多糖,面包中添加羧甲基纤维素既能满足大众对膳食纤维的需求,也能改善面包感官品质与质地特性。中性条件下,添加羧甲基纤维素使谷蛋白形成网络结构,赋予醇溶蛋白成膜感,使面筋网络更为松散[68]。
适量的糖类可以改变面团内部组织结构,增加面团的柔软性,提高面包的口感,抑制老化,延长保质期。基于目前的研究结果,应深入探索不同分子形式的糖类与面团形成过程中谷蛋白或醇溶蛋白之间的相互作用机制,对提高现有产品品质以及开发优质的深加工面制品具有重要意义。
5. 酚类化合物对面筋网络和面团加工品质的影响
研究表明,多酚类物质的摄入可以降低癌症、心血管疾病、糖尿病、阿尔兹海默症等一系列慢性类疾病的发生风险概率。小麦粉中的酚类化合物主要有木质素、阿魏酸衍生物、酚酸和烷基间苯二酚等,其大部分与小麦纤维成分结合,影响面筋蛋白网络形成,影响面包品质[69]。在面团中添加适量酚类物质同面筋蛋白侧链相结合,能够改善面筋蛋白网络,增大面包体积;但过量的酚类也会加速二硫键还原,破坏形成的面筋蛋白网络,导致面包品质降低[70]。以茶多酚、柿单宁和阿魏酸等为代表的酚类化合物,在烘焙面包品质改善和功能产品研发方面发挥着重要作用[71−72]。
5.1 茶多酚
茶多酚对面团加工性能影响是一个动态过程,适量添加茶多酚,一方面改善了面筋蛋白网络,另一方面增加面包体系中淀粉抗消化性能力,有利于餐后血糖控制[73]。当茶多酚添加量逐渐增加后,优先同面筋蛋白相互作用,还原面团中的二硫键,增加面筋蛋白无规则卷曲程度,β-折叠比例以及面筋蛋白内部氢键和疏水作用力增加,同时降低α-螺旋二级结构、二硫键和湿面筋含量,减弱蛋白质结构稳定性,破坏面团网络结构,导致面包品质变差,降低面包可接受性。而且过量的茶多酚会同水分竞争结合面筋蛋白位点,导致面团内部结合水含量降低,自由水含量增加,影响面筋蛋白网络形成,增加面团内部自由氨基含量,增加蛋白质无序二级结构比例,降低面筋蛋白结构稳定性。通过研究表明,在面制品中添加茶多酚是把双刃剑,茶多酚最适添加量为2%,会赋予面团较好的网络结构,对面包品质改善具有显著效果[71]。
5.2 柿单宁
研究发现,多酚的分子量、结构柔性和羟基数目在多酚与蛋白的相互作用中起着重要作用[74]。而柿单宁具有较大分子量,酚羟基数目多,且具有特异性的结构单元,柿单宁与面筋蛋白组分的相互作用力更强,对面筋蛋白物理特性和结构影响更大。在面团中适量添加柿单宁能提高谷蛋白和醇溶蛋白在面团中的稳定性,提髙面筋蛋白分子内和分子间作用力[75],改变面筋蛋白组分分子链形态[76],促进面筋蛋白聚集[77];减小面筋蛋白组分间的氢键和疏水相互作用,干扰面筋蛋白组分间的非共价相互作用[78];提髙面筋蛋白分子间β-折叠含量,降低α-螺旋含量,促进面筋蛋白形成有序结构;同时添加柿单宁具有提高面包抗氧化性、降低餐后血糖生成指数的功能效果,并赋予面包适宜风味和咖啡色。但柿单宁添加量过多会促使面筋蛋白组分形成孔径小且致密和堆叠的网络结构,降低γ-醇溶蛋白亚基含量,提高所有谷蛋白亚基含量,导致面包体积显著降低、硬度增加,面包中柿单宁添加量应不超过8%[79]。
5.3 其他酚类化合物
除茶多酚和柿单宁外,还有阿魏酸、儿茶素等酚类化合物可与面筋相互作用,改变面筋结构和面团性质,提高面包抗氧化特性,用于功能型面包的制作。阿魏酸[80−81]和咖啡酸[82]会降低面筋网络的稳定性;高粱单宁[83]和儿茶素[84−85]则能够增强面筋网络,增加面筋筋性,同时也会提高面包营养特性(表2)。如何平衡加入外源物质后影响面制品感官和营养特性间的关系,仍是后续需深入研究的问题。
表 2 一些酚类化合物对面筋网络和产品品质的影响Table 2. Effects of some phenolic compounds on gluten network and product quality6. 酶类对面筋网络和面团加工品质的影响
小麦中存在大量活性酶,如淀粉酶、蛋白酶、脂肪酶、氧化酶和酯酶等,即使加工成面粉后这些内源性酶依然存在,对面粉的贮藏和加工特性以及加工产品的品质产生重要影响。受到贮藏环境的影响,这些酶会随着面粉放置过程因受氧化而降低活性。具有水解活性的酶类,大多通过水解机制直接和间接影响面筋,改善面团品质,如蛋白酶和肽酶直接水解面筋蛋白中的肽键,破坏一部分二硫键,使面筋蛋白球状结构展开,产生新的巯基和原有游离巯基基团之间产生新的二硫键,以稳定较小的肽结构[86];而木聚糖酶、戊聚糖酶和纤维素酶通过水解纤维结构间接影响面筋蛋白网络[87]。在面团中加入酶类物质能促进面团发酵,改善面团延伸性、稳定性,增强面筋结构,增大产品体积以及提高产品风味和营养价值等[88]。
由于面粉本身含有的酶类通常不能满足加工的需要,因此会在面粉制作或面制品加工过程中强化各种酶制以实现改善加工产品品质的效果。研究证实,添加的葡萄糖氧化酶和谷氨酰胺转胺酶能使面团面筋网络增强[8];谷胱甘肽还原酶通过影响小麦面团巯基含量和面筋蛋白聚合增大面包的体积[27];脂肪酶能给面团中的脂氧合酶提供更多多不饱和脂肪酸,提高氧化反应强度,通过亲水键结合麦谷蛋白来降低面筋网络中的疏水反应,促进直链淀粉脂质复合物形成,延缓淀粉老化,从而提高面团延伸性和面团筋力,降低面团黏性[26];漆酶添加在面团中能使面筋蛋白之间相互连接形成膜状面筋网络,维持面团强度和弹性。而且,这些酶类的存在可以减弱冻藏过程中由于水分迁移和冰晶重结晶对面筋网络的破坏作用,改善面筋蛋白拉伸性能和流变学性质,延缓面团品质下降[89]。
7. 无机盐对面筋网络和面团加工品质的影响
无机盐对面制品面筋网络结构稳定性和产品品质改善具有重要作用。无机盐的存在促使面筋蛋白和淀粉之间发生酯化反应进行桥联结合,能增加淀粉和面筋蛋白间的结合力产生更稳定复合物,从而减少淀粉溶解,增加面团面筋强度[90],改善面包产品的风味和口感,提升产品的感官品质[91]。工业生产中常用的无机盐为氯化钠,氯化钠可加快面团吸水[92],增强面团耐揉性、弹性和延展性[93],延长面团稳定时间,促使面团体系中形成面筋聚集体,增加面团黏弹性和强度。添加氯化钠一定要适量,因为当氯化钠浓度较高(>2%)时,会提高水分与面筋蛋白的竞争力,降低面筋蛋白水合速率[94],从而影响面团的网络稳定性,同时过多摄入氯化钠对身体产生一系列的伤害与疾病,不符合倡导的“三减”健康饮食理念。复合磷酸盐也是一种常用的面粉改良剂,能够改善加工面制品的筋性和硬度,使产品口感爽滑有弹性[95]。通过向面粉中强化柠檬酸钙或乳酸钙,不仅降低了面包的硬度、增加其内聚力,而且得到具有较高钙含量的高质量面包[96]。面筋蛋白与无机盐之间的特异性相互作用以及它们形成的复合物结构仍有待进一步研究。
8. 水分对面筋网络和面团加工品质的影响
水在面团中作为组分间的溶剂、酶和氧化还原反应的媒介必不可少,促使面筋网络形成,影响面团黏弹特性。面粉中加入水分使蛋白质分布均匀,通过共价键、疏水键、离子键和氢键等进行交联,形成良好面筋网络,赋予面团良好状态,得到较优品质面包。适量的水分是面团保持优良品质的关键,改变面团中的水分分布会限制蛋白质构象变化,影响面筋形成。当面团中含水量较低时,面筋蛋白分子流动性受到限制,面筋蛋白亚基不能正常连接,面团粗糙易断,酵母也会由于缺水发酵不足,导致面包发酵不充分,体积较小;含水量过高的面团具有较高面筋蛋白分子流动性,蛋白质-蛋白质氢键被水-蛋白质氢键取代,大量水-蛋白质氢键导致面筋网络间相互联系减少,造成面团结构软化、延展性较低以及持气能力下降,导致面包比容降低[97]。水分被面筋蛋白分子与油脂同时竞争,同时面粉中存在的多组分也增加了面团基质的复杂程度[98]。
9. 结语与展望
现有研究表明,小麦蛋白中谷蛋白与醇溶蛋白的含量和组成与面筋网络结构具有密切关系,而且淀粉、脂类、糖类、酚类、酶类、无机盐和水分等食品组分与面筋蛋白通过氢键、二硫键和疏水相互作用等主要方式对面筋网络稳定性具有重要作用。尽管目前的研究已取得显著进展,但仍需深入研究谷蛋白、醇溶蛋白等蛋白与淀粉之间的互作机理,明确不同粒径的食品组分对面包品质和营养功能特性的影响,构建面制品物化特性、感官品质和营养功能品质综合评价体系。在食品组分结构与变化对产品品质的影响机制,各食品组分间的相互作用,食品组分、加工环节的互作关系与面筋网络结构的关联及作用机理方面仍需进一步深入研究,才能全方位了解食品原料、工艺技术与面团稳定性和产品品质的关系,为下一步产品研发中原料筛选、配方设计与工艺优化提供理论依据,进而得到口感好、品质佳及营养价值高的面制品。
-
表 1 糖类对面筋网络和产品品质的影响
Table 1 Effects of sugars on gluten network and product quality
糖类 适宜添加量 对面筋网络影响 对面团影响 对面包影响 参考文献 蔗糖 8% 增强蛋白分子间缠绕及氢键连接 增加面团粘性和延展性 增加面包色泽及香味,增加面包
柔软度,延长保质期[59] 壳寡糖 0.8%(平均分子量69758 Da) 延缓面筋网络形成 增加面团抗机械搅拌性能 使面包内部气孔聚集形成大气孔,
影响其内部组织结构[60] 壳聚糖 使面包气孔均匀分布,有利于面包
内部组织松软;加速面包老化[60] 糖醇 ≤15% 与面筋蛋白竞争结合水分,减少面筋蛋白吸水溶胀 提升面团筋力和稳定性,降低
面团硬度改善面包品质,使面包更加柔软和
有弹性,延长货架期[61−62] 魔芋葡甘聚糖 1.5%~2% 促进蛋白交联,提高面筋网络
热稳定性赋予面团良好弹性、拉伸性和
质构特性改善面包质构特性,延缓面包回生 [63−65] 黄原胶 0.1% 与面筋蛋白相互作用,增强面筋网络 增加面团持水性与持气性 提高面包比容,改善面包心弹性和
硬度[66−67] 羧甲基纤维素 0.5% 促进面筋网络形成,增加蛋白间的交联 改善面团抗拉伸强度,增强面团弹性;降低面团延伸性 改善面包感官品质与质地特性,
提高面包短期保鲜效果[66,68] 表 2 一些酚类化合物对面筋网络和产品品质的影响
Table 2 Effects of some phenolic compounds on gluten network and product quality
-
[1] MA S, WANG Z, LIU H, et al. Supplementation of wheat flour products with wheat bran dietary fiber:Purpose, mechanisms, and challenges[J]. Trends in Food Science and Technology,2022,123(5):281−289.
[2] BIRGITTA S, ANDREAS B, BEATRICE C P, et al. Short-and long-range interactions governing the viscoelastic properties during wheat dough and model dough development[J]. Journal of Texture Studies,2013,44(4):317−332. doi: 10.1111/jtxs.12027
[3] SHEN H, YAN M, LIU X, et al. Wheat starch particle size distribution regulates the dynamic transition behavior of gluten at different stages of dough mixing[J]. International Journal of Biological Macromolecules,2023,244(16):125371.
[4] KLOSO K, WELC R, FORNAL E, et al. Effects of physical and chemical factors on the structure of gluten, gliadins and glutenins as studied with spectroscopic methods[J]. Molecules,2021,26(2):508. doi: 10.3390/molecules26020508
[5] QUAYSON E T, MARTI A, MORRIS C F, et al. Structural consequences of the interaction of puroindolines with gluten proteins[J]. Food Chemistry,2018,253(1):255−261.
[6] LIU C, SONG M, HONG J, et al. Effects of salt and kansui on rheological, chemical and structural properties of noodle dough during repeated sheeting process[J]. Food Chemistry,2021,342(16):128365.
[7] MCCANN T H, GALL M L, DAY L. Extensional dough rheology-impact of flour composition and extension speed[J]. Journal of Cereal Science,2016,69(1):228−237.
[8] 袁永利. GOD和T Gase在冷冻面团中的应用研究[D]. 无锡:江南大学, 2007. [YUAN Y L. Study on the application of GOD and T Gase in frozen dough[D]. Wuxi:Jiangnan University, 2007.] YUAN Y L. Study on the application of GOD and T Gase in frozen dough[D]. Wuxi: Jiangnan University, 2007.
[9] YANG T, WANG Y, JIANG J, et al. Influence of high-molecular-weight glutenin subunit on components and multiscale structure of gluten and dough quality in soft wheat[J]. Journal of Agricultural and Food Chemistry,2023,71(12):4943−4956. doi: 10.1021/acs.jafc.2c07958
[10] 苏婷, 刘鸿飞, 李芳, 等. 综述小麦面团制造中麦谷蛋白大聚体的变化[J]. 中国食品学报,2023,23(4):481−489. [SU T, LIU H F, LI F, et al. Glutenin in wheat dough making big changes in polymers[J]. Journal of Chinese Food,2023,23(4):481−489.] SU T, LIU H F, LI F, et al. Glutenin in wheat dough making big changes in polymers[J]. Journal of Chinese Food, 2023, 23(4): 481−489.
[11] 孙兆国. 苜蓿冰结构蛋白对冷冻面团力学特性的改善作用研究[D]. 哈尔滨:哈尔滨商业大学, 2016. [SUN Z G. Improvement of mechanical properties of frozen dough by alfalfa ice structural protein[D]. Harbin:Harbin Business University, 2016.] SUN Z G. Improvement of mechanical properties of frozen dough by alfalfa ice structural protein[D]. Harbin: Harbin Business University, 2016.
[12] 郭兴凤, 张莹莹, 任聪, 等. 小麦蛋白质的组成与面筋网络结构、面制品品质关系的研究进展[J]. 河南工业大学学报(自然科学版),2018,39(6):119−124. [GUO X F, ZHANG Y Y, REN C, et al. Research progress on the relationship between protein composition and gluten network structure and flour product quality in wheat[J]. Journal of Henan University of Technology (Natural Science Edition),2018,39(6):119−124.] doi: 10.3969/j.issn.1673-2383.2018.06.022 GUO X F, ZHANG Y Y, REN C, et al. Research progress on the relationship between protein composition and gluten network structure and flour product quality in wheat[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(6): 119−124. doi: 10.3969/j.issn.1673-2383.2018.06.022
[13] 王沛. 冷冻面团中小麦面筋蛋白品质劣变机理及改良研究[D]. 无锡:江南大学, 2016. [WANG P. Study on the deterioration mechanism and improvement of wheat gluten protein quality in frozen dough[D]. Wuxi:Jiangnan University, 2016.] WANG P. Study on the deterioration mechanism and improvement of wheat gluten protein quality in frozen dough[D]. Wuxi: Jiangnan University, 2016.
[14] DHAKA V, KHATKAR B S. Microstructural, thermal and IR spectroscopy character is action of wheat gluten and its sub fractions[J]. Journal of Food Science and Technology,2016,53(8):3356−3363. doi: 10.1007/s13197-016-2314-9
[15] GAO X, LIU T, DING M, et al. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L. )[J]. Food Chemistry,2018,240(1):626−633.
[16] 张晓, 李曼, 陆成彬, 等. 小麦高分子量谷蛋白亚基缺失品质效应研究进展[J]. 作物杂志,2020(5):17−22. [ZHANG X, LI M, LU C B, et al. Research progress on the quality effect of high molecular weight gluten subunit deletion in wheat[J]. Crop Science,2020(5):17−22.] ZHANG X, LI M, LU C B, et al. Research progress on the quality effect of high molecular weight gluten subunit deletion in wheat[J]. Crop Science, 2020(5): 17−22.
[17] ZANG P, GAO Y, CHEN P, et al. Recent advances in the study of wheat protein and other food components affecting the gluten network and the properties of noodles[J]. Foods,2022,11(23):3824. doi: 10.3390/foods11233824
[18] LI Y, FU J, SHEN Q, et al. High-molecular-weight glutenin subunits:Genetics, structures, and relation to end use qualities[J]. International Journal of Molecular Sciences,2020,22(1):184. doi: 10.3390/ijms22010184
[19] LI S, LIU Y, TONG J, et al. The overexpression of high-molecular-weight glutenin subunit Bx7 improves the dough rheological properties by altering secondary and micro-structures of wheat gluten[J]. Food Research International,2020,130(1):108914.
[20] 马勇. 小麦低分子量麦谷蛋白亚基研究进展[J]. 农业科技通讯,2017,46(9):9−11. [MA Y. Research progress of low molecular weight glutenin subunits in wheat[J]. Communications of Agricultural Science and Technology,2017,46(9):9−11.] doi: 10.3969/j.issn.1000-6400.2017.09.003 MA Y. Research progress of low molecular weight glutenin subunits in wheat[J]. Communications of Agricultural Science and Technology, 2017, 46(9): 9−11. doi: 10.3969/j.issn.1000-6400.2017.09.003
[21] POURMOHAMMADI K, ABEDI E, HASHEMI S M B. Gliadin and glutenin genomes and their effects on the technological aspect of wheat-based products[J]. Current Research in Food Science,2023,28(7):100622.
[22] MA F, KIM J, BAIK B K. Influences of high-molecular-weight glutenin subunits and rye translocations on dough-mixing properties and sugar-snap cookie-baking quality of soft winter wheat[J]. Journal of the Science of Food and Agriculture,2020,100(10):3850−3856. doi: 10.1002/jsfa.10423
[23] GUAN Y, WANG Y, PAN C, et al. The additive interactions between high-molecular-weight glutenin subunits and tannic acid improve the wheat quality[J]. Food Research International,2023,168(5):112756.
[24] RAI A, SINGH A, GANJEWALA D, et al. Rheological evaluations and molecular marker analysis of cultivated bread wheat varieties of India[J]. Journal of Food Science and Technology,2019,56(4):1696−1707. doi: 10.1007/s13197-019-03593-0
[25] 刘滔. 柿粉对面包品质的影响及柿单宁—面筋蛋白相互作用及机制研究[D]. 武汉:华中农业大学, 2017. [LIU T. Effect of persimmon flour on bread quality and interaction between persimmon tannin and gluten protein and its mechanism [D]. Wuhan:Huazhong Agricultural University, 2017.] LIU T. Effect of persimmon flour on bread quality and interaction between persimmon tannin and gluten protein and its mechanism [D]. Wuhan: Huazhong Agricultural University, 2017.
[26] LI L, PENG P, MA Q, et al. Effects of composition and strength of wheat gluten on starch structure, digestion properties and the underlying mechanism[J]. Foods,2022,11(21):3432. doi: 10.3390/foods11213432
[27] XU D, TANG K, HU Y, et al. Effect of glutathione dehydrogenase of lactobacillus Sanfranciscensis on gluten properties and bread volume in type I wheat sourdough bread[J]. Journal of Agricultural and Food Chemistry,2018,66(37):9770−9776. doi: 10.1021/acs.jafc.8b03298
[28] 尚珊. 热处理糯麦粉及其在面包面团体系中的研究与应用[D]. 无锡:江南大学, 2013. [SHANG S. Research and application of heat treated waxing wheat flour in bread dough system[D]. Wuxi:Jiangnan University, 2013.] SHANG S. Research and application of heat treated waxing wheat flour in bread dough system[D]. Wuxi: Jiangnan University, 2013.
[29] 潘治利, 罗元奇, 艾志录, 等. 不同小麦品种醇溶蛋白的组成与速冻水饺面皮质构特性的关系[J]. 农业工程学报,2016,32(4):242−248. [PAN Z L, LUO Y Q, AI Z L, et al. Relationship between composition of gliadin and texture properties of quick-frozen dumpling skins based on different wheat varieties[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(4):242−248.] doi: 10.11975/j.issn.1002-6819.2016.04.034 PAN Z L, LUO Y Q, AI Z L, et al. Relationship between composition of gliadin and texture properties of quick-frozen dumpling skins based on different wheat varieties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 242−248. doi: 10.11975/j.issn.1002-6819.2016.04.034
[30] SCHEFER S, OEST M, ROHN S. Interactions between phenolic acids, proteins, and carbohydrates-influence on dough and bread properties[J]. Foods,2021,10(11):2798. doi: 10.3390/foods10112798
[31] MERCADO P-P-D, MOJICA L, MORALES-HERNNDEZ N. Protein ingredients in bread:technological, textural and health implications[J]. Foods,2022,11(16):2399. doi: 10.3390/foods11162399
[32] UNGUREANU I M, MTRONEASA S. Changes induced by heat moisture treatment in wheat flour and pasta rheological, physical and starch digestibility properties[J]. Gels,2023,9(6):449. doi: 10.3390/gels9060449
[33] XU F, LIU W, ZHANG L, et al. Prediction of the rheological properties of wheat dough by starch-gluten model dough systems:Effect of gluten fraction and starch variety[J]. International Journal of Food Science Technology,2022,57(4):2126−2137. doi: 10.1111/ijfs.15643
[34] VAN ROOYEN J, SIMSEK S, OYEYINKA S A, et al. Wheat starch structure-function relationship in breadmaking:A review[J]. Comprehensive Reviews in Food Science and Food Safety,2023,22(3):2292−2309. doi: 10.1111/1541-4337.13147
[35] EMIDE D, MAGNI C, SAITTA F, et al. Molecular insights into the role of amylose/amylopectin ratio on gluten protein organization[J]. Food Chemistry,2023,404(15):134675.
[36] DU Q Z, TAI H M, HONG N S. Effects of starch from five different botanical sources on the fermentation and gelatinization properties of starch–gluten model doughs[J]. Starch-Starke,2018,71(1-2):180034.
[37] ZHANG B, QIAO D, ZHAO S, et al. Starch-based food matrices containing protein:recent understanding of morphology, structure, and properties[J]. Trends in Food Science and Technology,2021,114(1):212−231.
[38] ZHANG D, MU T, SUN H, et al. Effects of different high hydrostatic pressure-treated potato starch on the processing performance of dough-like model systems[J]. Food Research International,2019,120(1):456−463.
[39] WANG H, ZHAO J, GUO J, et al. Effects of amylopectin from five different sources on disulfide bond formation in alkali-soluble glutenin[J]. Foods,2023,12(2):414. doi: 10.3390/foods12020414
[40] PURNA S K G, MILLER R A, SEIB P A, et al. Volume, texture, and molecular mechanism behind the collapse of bread made with different levels of hard waxy wheat flours[J]. Journal of Cereal Science,2011,54(1):37−43. doi: 10.1016/j.jcs.2011.02.008
[41] HU X, CHENG L, HONG Y, et al. An extensive review:How starch and gluten impact dough machinability and resultant bread qualities[J]. Critical Reviews in Food Science and Nutrition,2021,63(13):1930−1941.
[42] BRANDNER S, BECKER T, JEKLE M. Classification of starch-gluten networks into a viscoelastic liquid or solid, based on rheological aspects-A review[J]. International Journal of Biological Macromolecules,2019,136(1):1018−1025.
[43] CAO X, TONG J, DING M, et al. Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L. )[J]. Food Chemistry,2019,297(11):125000.
[44] MCCANN T H, HOMER S H, OISETH S K, et al. High amylose wheat starch increases the resistance to deformation of wheat flour dough[J]. Journal of Cereal Science,2018,79(1):440−448.
[45] FENG W, MA S, WANG X. Recent advances in quality deterioration and improvement of starch in frozen dough[J]. Grain and Oil Science and Technology,2020,3(4):154−163. doi: 10.1016/j.gaost.2020.07.002
[46] HAYMAN D A, SIPES K, HOSENEY R C, et al. Factors controlling gas cell failure in bread dough[J]. Cereal Chemistry,1998,75(5):585−589. doi: 10.1094/CCHEM.1998.75.5.585
[47] JIANG D, CAI J, HUANG M, et al. Effects of different gluten proteins on starch's structural and physicochemical properties during heating and their molecular interactions[J]. International Journal of Molecular Sciences,2022,23(15):8523. doi: 10.3390/ijms23158523
[48] LIAO L, ZHANG F, LIN W, et al. Gluten-starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment[J]. Food Chemistry,2019,283(6):111−122.
[49] WEN W, LI S, GU Y, et al. Effects of starch on the digestibility of gluten under different thermal processing conditions[J]. Journal of Agricultural and Food Chemistry,2019,67(25):7120−7127. doi: 10.1021/acs.jafc.9b01063
[50] WANG Z, MA S, SUN B, et al. Effects of thermal properties and behavior of wheat starch and gluten on their interaction:A review[J]. International Journal of Biological Macromolecules,2021,177(4):474−484.
[51] GAO X, TONG J, GUO L, et al. Influence of gluten and starch granules interactions on dough nixing properties in wheat (Triticum aestivum L.)[J]. Food Hydrocolloids,2020,106(9):105885.
[52] XU F, ZHANG L, LIU W, et al. Physicochemical and structural characterization of potato starch with different degrees of gelatinization[J]. Foods,2021,10(5):1104. doi: 10.3390/foods10051104
[53] 张瑶. 右旋糖苷对面包品质的影响及机理研究[D]. 无锡:江南大学, 2020. [ZHANG Y. Effects of dextrose on bread quality and its mechanism [D]. Wuxi:Jiangnan University, 2020.] ZHANG Y. Effects of dextrose on bread quality and its mechanism [D]. Wuxi: Jiangnan University, 2020.
[54] YANG Z, HUANG Q, XING J J, et al. Changes of lipids in noodle dough and dried noodles during industrial processing[J]. Journal of Food Science,2021,86(8):3517−3528. doi: 10.1111/1750-3841.15844
[55] PENG X, YAO Y. Carbohydrates as fat replacers[J]. Annual Review of Food Science and Technology,2017,8(1):331−351. doi: 10.1146/annurev-food-030216-030034
[56] MELIS S, DELCOUR J A. Impact of wheat endogenous lipids on the quality of fresh bread:Key terms, concepts, and underlying mechanisms[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3715−3754. doi: 10.1111/1541-4337.12616
[57] YAZAR G, KOKINI J L, SMITH B. Effect of endogenous wheat gluten lipids on the non-linear rheological properties of the gluten network[J]. Food Chemistry,2022,367(1):130729.
[58] 穆婉菊. 菊糖与淀粉、蛋白互作研究及对面团的影响[D]. 天津:天津科技大学, 2019. [MU W J. Interaction of inulin with starch and protein and its effect on dough[D]. Tianjin:Tianjin University of Science and Technology, 2019.] MU W J. Interaction of inulin with starch and protein and its effect on dough[D]. Tianjin: Tianjin University of Science and Technology, 2019.
[59] 张笃芹. 高静压处理淀粉对谷朊蛋白和HPMC面团流变学特性影响的研究[D]. 北京:中国农业科学院, 2018. [ZHANG D Q. Effect of high static pressure treatment of starch on rheological properties of gluten and HPMC dough [D]. Beijing:Chinese Academy of Agricultural Sciences, 2018.] ZHANG D Q. Effect of high static pressure treatment of starch on rheological properties of gluten and HPMC dough [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
[60] 杨航. 壳聚糖和壳寡糖对小麦面团及其成品特性的影响[D]. 武汉:武汉轻工大学, 2020. [YANG H. Effects of chitosan and chitosan oligosaccharide on the properties of wheat dough and its finished products[D]. Wuhan:Wuhan University of Light Industry, 2020.] YANG H. Effects of chitosan and chitosan oligosaccharide on the properties of wheat dough and its finished products[D]. Wuhan: Wuhan University of Light Industry, 2020.
[61] 彭博. 糖醇类物质对面团特性及面包品质的影响[D]. 武汉:华中农业大学, 2017. [PENG B. Effects of sugar alcohols on dough characteristics and bread quality[D]. Wuhan:Huazhong Agricultural University, 2017.] PENG B. Effects of sugar alcohols on dough characteristics and bread quality[D]. Wuhan: Huazhong Agricultural University, 2017.
[62] 仇志俊, 包杰. 糖醇对面团特性及面包品质的影响研究进展[J]. 粮食与油脂,2023,36(7):10−12. [QIU Z J, BAO J. Research progress on the effect of sugar alcohols on dough characteristics and bread quality[J]. Grain and Oils,2023,36(7):10−12.] doi: 10.3969/j.issn.1008-9578.2023.07.003 QIU Z J, BAO J. Research progress on the effect of sugar alcohols on dough characteristics and bread quality[J]. Grain and Oils, 2023, 36(7): 10−12. doi: 10.3969/j.issn.1008-9578.2023.07.003
[63] GUO J, LIU F, GAN C, et al. Effects of konjac glucomannan with different viscosities on the rheological and microstructural properties of dough and the performance of steamed bread[J]. Food Chemistry,2021,368(1):130853.
[64] CUI T, LIU R, WU T, et al. Influence of konjac glucomannan and frozen storage on rheological and tensile properties of frozen dough[J]. Polymers,2019,11(5):794. doi: 10.3390/polym11050794
[65] CUI T, WU T, LIU R, et al. Effect of degree of konjac glucomannan enzymatic hydrolysis on the physicochemical characteristic of gluten and dough[J]. Acs Omega,2019,4(6):9654−9663. doi: 10.1021/acsomega.9b00061
[66] 王雨生, 陈海华, 王坤. 亲水胶体对面包品质和面团流变学特性的影响[J]. 食品科学,2013,34(13):105−109. [WANG Y S, CHEN H H, WANG K. Effect of hydrophilic colloids on quality of bread and rheological properties of dough[J]. Food Science,2013,34(13):105−109.] doi: 10.7506/spkx1002-6630-201313023 WANG Y S, CHEN H H, WANG K. Effect of hydrophilic colloids on quality of bread and rheological properties of dough[J]. Food Science, 2013, 34(13): 105−109. doi: 10.7506/spkx1002-6630-201313023
[67] 范鹏辉. 黄原胶对面筋蛋白冻藏稳定性的影响研究[D]. 广州:华南理工大学, 2015. [FAN P H. Effect of xanthan gum on the stability of gluten protein in frozen storage[D]. Guangzhou:South China University of Technology, 2015.] FAN P H. Effect of xanthan gum on the stability of gluten protein in frozen storage[D]. Guangzhou: South China University of Technology, 2015.
[68] 唐宇. pH、氯化钠对小麦面筋蛋白与羧甲基纤维素相互作用的影响[D]. 重庆:西南大学, 2019. [TANG Y. Effects of pH and sodium chloride on the interaction between wheat gluten protein and carboxymethyl cellulose [D]. Chongqing:Southwest University, 2019.] TANG Y. Effects of pH and sodium chloride on the interaction between wheat gluten protein and carboxymethyl cellulose [D]. Chongqing: Southwest University, 2019.
[69] ZHANG L L, PASCUAL G P, ERIKA M, et al. Different fractions from wheat flour provide distinctive phenolic profiles and different bioaccessibility of polyphenols following in vitro digestion[J]. Food Chemistry,2023,404(7):134540.
[70] 赵钜阳, 袁惠萍, 孙昕萌. 蛋白质-多酚复合物的形成机制及其功能性变化研究进展[J]. 食品工业科技,2022,43(8):416−425. [ZHAO JY, YUAN H P, SUN X M. Research progress on the formation mechanism and functional changes of protein-polyphenol complex[J]. Science and Technology of Food Industry,2022,43(8):416−425.] ZHAO JY, YUAN H P, SUN X M. Research progress on the formation mechanism and functional changes of protein-polyphenol complex[J]. Science and Technology of Food Industry, 2022, 43(8): 416−425.
[71] 皮俊翔. 茶多酚对面筋蛋白网络结构影响机制的研究[D]. 无锡:江南大学, 2020. [PI J X. Effects of tea polyphenols on the structure of gluten protein network[D]. Wuxi:Jiangnan University, 2020.] PI J X. Effects of tea polyphenols on the structure of gluten protein network[D]. Wuxi: Jiangnan University, 2020.
[72] 姜丽君. 单宁对小麦面团流变特性的影响及其作用机理研究[D]. 武汉:华中科技大学, 2009. [JIANG L J. Effect of tannins on rheological properties of wheat dough and its mechanism [D]. Wuhan:Huazhong University of Science and Technology, 2009.] JIANG L J. Effect of tannins on rheological properties of wheat dough and its mechanism [D]. Wuhan: Huazhong University of Science and Technology, 2009.
[73] QIN W, PI J, ZHANG G. The interaction between tea polyphenols and wheat gluten in dough formation and bread making[J]. Food and Function,2022,13(24):12827−12835. doi: 10.1039/D2FO02576K
[74] XIONG J, CHAN Y H, RATHINASABAPATHY T, et al. Enhanced stability of berry pomace polyphenols delivered in protein polyphenol aggregate particles to an in vitro gastrointestinal digestion model[J]. Food Chemistry,2020,331:1−36.
[75] FENG Y, ZHANG H, FU B, et al. Interactions between dietary fiber and ferulic acid change the aggregation of glutenin, gliadin and glutenin macropolymer in wheat flour system[J]. Journal of the Science of Food and Agriculture,2021,101(5):1979−1988. doi: 10.1002/jsfa.10814
[76] WANG K, LUO S, CAI J, et al. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure[J]. Food Chemistry,2016,197(4):168−174.
[77] NIETO-ORELLANA A, ANTONIO M D, CONTE C, et al. Effect of polymer topology on non-covalent polymer–protein complexation:Miktoarm versus linear mpeg-poly (glutamic acid) copolymers[J]. Polymer Chemistry,2017,8(14):2210−2220. doi: 10.1039/C7PY00169J
[78] 杜静. 柿单宁影响面筋蛋白网络结构的机制及多糖对其调控效果研究[D]. 武汉:华中农业大学, 2020. [DU J. Effect of persimmon tannin on the structure of gluten protein network and its regulation by polysaccharide [D]. Wuhan:Huazhong Agricultural University, 2020.] DU J. Effect of persimmon tannin on the structure of gluten protein network and its regulation by polysaccharide [D]. Wuhan: Huazhong Agricultural University, 2020.
[79] 刘滔, 朱维, 李春美. 我国柿子加工产业的现状与对策[J]. 食品工业科技,2016,37(24):369−375. [LIU T, ZHU W, LI C M. Current situation and countermeasures of persimmon processing industry in China[J]. Science and Technology of Food Industry,2016,37(24):369−375.] LIU T, ZHU W, LI C M. Current situation and countermeasures of persimmon processing industry in China[J]. Science and Technology of Food Industry, 2016, 37(24): 369−375.
[80] LAOKULDILOK T, SHOEMAKER C F, JONGKAEWWATTANA S, et al. Antioxidants and antioxidant activity of several pigmented rice brans[J]. Journal of Agricultural and Food Chemistry,2011,59(1):193−199. doi: 10.1021/jf103649q
[81] 王崇崇. 膳食纤维和阿魏酸对馒头品质及淀粉消化性的影响机理研究[D]. 无锡:江南大学, 2022. [WANG C C. Dietary fiber and ferulic acid on steamed bread quality and starch digestibility, the influence mechanism research [D]. Wuxi:Jiangnan university, 2022.] WANG C C. Dietary fiber and ferulic acid on steamed bread quality and starch digestibility, the influence mechanism research [D]. Wuxi: Jiangnan university, 2022.
[82] 张慧娟, 冯钰琳, 付冰冰, 等. 麦麸酚酸类物质对面团聚集态的影响[J]. 中国食品学报,2021,21(4):55−63. [ZHANG H J, FENG Y L, FU B B, et al. Effect of phenolic acids of wheat bran on aggregation state of dough[J]. Journal of Chinese Food Science and Technology,2021,21(4):55−63.] ZHANG H J, FENG Y L, FU B B, et al. Effect of phenolic acids of wheat bran on aggregation state of dough[J]. Journal of Chinese Food Science and Technology, 2021, 21(4): 55−63.
[83] GIRARD A L, CASTELL-PEREZ M E, BEAN S R, et al. Effect of condensed tannin profile on wheat flour dough rheology[J]. Journal of Agricultural and Food Chemistry,2016,64(39):7348−7356. doi: 10.1021/acs.jafc.6b02601
[84] GOH R, GAO J, ANANINGSIH V K, et al. Green tea catechins reduced the glycaemic potential of bread:An in vitro digestibility study[J]. Food Chemistry,2015,180(1):203−210.
[85] 石长波, 梁昌谋, 赵钜阳, 等. 儿茶素对面包贮藏期内氧化性质和感官品质的影响[J]. 包装工程,2023,44(13):120−131. [SHI C B, LIANG C M, ZHAO J Y, etc. Effect of catechin on oxidation properties and sensory quality of bread during storage[J]. Packaging Engineering,2023,44(13):120−131.] SHI C B, LIANG C M, ZHAO J Y, etc. Effect of catechin on oxidation properties and sensory quality of bread during storage[J]. Packaging Engineering, 2023, 44(13): 120−131.
[86] DENG L, WANG Z, YANG S, et al. Improvement of functional properties of wheat gluten using acid protease from aspergillus usamii[J]. Public Library of Science ONE,2016,11(7):e0160101.
[87] POURMOHAMMADI K, ABEDI E. Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties:An extensive review[J]. Food Science and Nutrition,2021,9(7):3988−4006. doi: 10.1002/fsn3.2344
[88] 王志煌, 郑春椋, 黄静娥, 等. 酶制剂在面包等烘焙产品中的应用[J]. 现代食品,2020,11(20):33−40. [WANG Z H, ZHENG C L, HUANG J E, et al. Application of enzyme preparations in bakery products such as bread[J]. Modern Food,2020,11(20):33−40.] WANG Z H, ZHENG C L, HUANG J E, et al. Application of enzyme preparations in bakery products such as bread[J]. Modern Food, 2020, 11(20): 33−40.
[89] 潘志琴. 漆酶协同阿魏酸对小麦面团微观结构及冻藏稳定性的影响机制[D]. 广州:华南理工大学, 2019. [PAN Z Q. Effects of laccase and ferulic acid on microstructure and stability of wheat dough during freezing [D]. Guangzhou:South China University of Technology, 2019.] PAN Z Q. Effects of laccase and ferulic acid on microstructure and stability of wheat dough during freezing [D]. Guangzhou: South China University of Technology, 2019.
[90] OBADI M, ZHANG J, XU B. The role of inorganic salts in dough properties and noodle quality-A review[J]. Food Research International,2022,157(7):111278.
[91] MARCO E R D, NAVARRO J L, LEON A E, et al. Sodium chloride replacement by potassium chloride in bread:Determination of sensorial potassium threshold and effect on dough properties and breadmaking quality[J]. International Journal of Gastronomy and Food Science,2022,27(3):100486.
[92] CAPPELLI A, LUPORI L, CINI E. Baking technology:A systematic review of machines and plants and their effect on final products, including improvement strategies[J]. Trends in Food Science and Technology,2021,115(9):275−284.
[93] FAN H, FU F, CHEN Y, et al. Effect of NaCl on rheological properties of dough and noodle quality[J]. Journal of Cereal Science,2020,93(5):102936.
[94] 邢亚楠, 张影全, 刘锐, 等. 无机盐对小麦粉面团流变学特性的影响[J]. 中国食品学报,2016,16(9):77−86. [XING Y N, ZHANG Y Q, LIU R, et al. Effect of inorganic salts on rheological properties of wheat flour dough[J]. Journal of Food Science and Technology,2016,16(9):77−86.] XING Y N, ZHANG Y Q, LIU R, et al. Effect of inorganic salts on rheological properties of wheat flour dough[J]. Journal of Food Science and Technology, 2016, 16(9): 77−86.
[95] 王立, 陈敏, 赵俊丰, 等. 复合磷酸盐在面制品中的应用现状及发展趋势[J]. 食品与机械,2017,33(1):193−198. [WANG L, CHEN M, ZHAO J F, et al. Application status and development trend of compound phosphate in flour products[J]. Food and Machinery,2017,33(1):193−198.] WANG L, CHEN M, ZHAO J F, et al. Application status and development trend of compound phosphate in flour products[J]. Food and Machinery, 2017, 33(1): 193−198.
[96] 李婉冰, 蒋晓宇, 刘颖, 等. 面制品减盐技术及其应用[J]. 武汉轻工大学学报,2023,42(5):26−33. [LI W B, JIANG X Y, LIU Y, et al. Salt reduction technology of flour products and its application[J]. Journal of Wuhan University of Light Industry,2023,42(5):26−33.] doi: 10.3969/j.issn.2095-7386.2023.05.004 LI W B, JIANG X Y, LIU Y, et al. Salt reduction technology of flour products and its application[J]. Journal of Wuhan University of Light Industry, 2023, 42(5): 26−33. doi: 10.3969/j.issn.2095-7386.2023.05.004
[97] DUFOUR M, FOUCAT L, HUGON F, et al. Water mobility and microstructure of gluten network during dough mixing using TD NMR[J]. Food Chemistry,2023,409(5):135329.
[98] JEKLE M, MUHLBERGER K, BECKER T. Starch-gluten interactions during gelatinization and its functionality in dough like model systems[J]. Food Hydrocolloids,2016,54(3):196−201.