• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

阳离子对大豆蛋白及其组分凝胶特性影响的研究进展

黄雨洋, 刘纪元, 朱颖, 孙冰玉, 刘琳琳, 吕铭守, 朱秀清

黄雨洋,刘纪元,朱颖,等. 阳离子对大豆蛋白及其组分凝胶特性影响的研究进展[J]. 食品工业科技,2025,46(2):9−16. doi: 10.13386/j.issn1002-0306.2024030372.
引用本文: 黄雨洋,刘纪元,朱颖,等. 阳离子对大豆蛋白及其组分凝胶特性影响的研究进展[J]. 食品工业科技,2025,46(2):9−16. doi: 10.13386/j.issn1002-0306.2024030372.
HUANG Yuyang, LIU Jiyuan, ZHU Ying, et al. Progress in the Effect of Cations on the Gel Properties of Soy Protein and Its Fractions[J]. Science and Technology of Food Industry, 2025, 46(2): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030372.
Citation: HUANG Yuyang, LIU Jiyuan, ZHU Ying, et al. Progress in the Effect of Cations on the Gel Properties of Soy Protein and Its Fractions[J]. Science and Technology of Food Industry, 2025, 46(2): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030372.

阳离子对大豆蛋白及其组分凝胶特性影响的研究进展

基金项目: 黑龙江省自然基金联合引导项目(LH2023C064);哈尔滨商业大学科研启动支持计划项目(22BQ16);黑龙江省博士后科研启动金项目(BS0052)。
详细信息
    作者简介:

    黄雨洋(1979−),女,博士研究生,研究方向:粮食油脂及植物蛋白工程,E-mail:huangyuyang1979@163.com

    通讯作者:

    朱秀清(1968−),女,硕士,教授,研究方向:蛋白质分子化学及大豆深加工,E-mail:xqzhuwang@163.com

  • 中图分类号: TS214.2

Progress in the Effect of Cations on the Gel Properties of Soy Protein and Its Fractions

  • 摘要: 大豆蛋白含有人体全部的必需氨基酸,是替代动物性蛋白质的优选,由于其出色的凝胶特性,常被应用于豆腐、大豆酸奶、3D食品打印和生物材料等加工行业。添加阳离子是优化大豆蛋白凝胶特性的常用方法,阳离子的类型和浓度影响大豆蛋白凝胶的结构特性。本文重点综述了不同阳离子对大豆蛋白及其组分形成凝胶的影响,同时从聚集和胶凝的角度归纳了阳离子对大豆蛋白及其组分的影响,总结了阳离子诱导的大豆蛋白凝胶化机制,为设计高效利用的大豆蛋白凝胶产品提供参考。
    Abstract: Soy proteins are a popular alternative to animal proteins and contain all the essential amino acids. Their excellent gel properties make them useful in processing industries, including the production of tofu, soy yogurt, 3D food printing, and biological materials. Cation induction is a commonly used method to enhance the gel properties of soy proteins, with the type and concentration of cations influencing the structural properties of soy protein gels. This article explores the effects of different cations on soy protein gel formation and their fractions. It also summarizes the effects of cations on soy protein and its fractions in terms of aggregation and gelling. Finally, the article outlines the mechanism of cation-induced soy protein gelation, providing a valuable reference for the effective use of soy protein gel products.
  • 大豆蛋白含有8种人体必需氨基酸、价格低、功能特性好,可满足营养和加工需求[1],在凝胶化、乳化、发泡、吸水和吸脂等许多功能特性方面具有巨大潜力[2]。其中大豆蛋白的凝胶特性对凝胶型食品有重要作用[3],当凝胶网络结构更细,整个空间分布均匀,孔隙小,凝胶能够保留网络结构中的水分,形成的凝胶弹性较好、持水性较高;而蛋白质网络较厚,网络间的孔隙较大,形成的凝胶硬度较大、含水量偏低[45],因此凝胶的流变学特性、质构特性和微观结构决定了食品的增稠、稳定和持水等能力[6]

    大豆蛋白的凝胶特性受到多种因素的影响,这些因素可分为内在因素和外在因素。内在因素包括大豆种子的蛋白质组成和基因型,如7S/11S比例较小的大豆蛋白形成的凝胶弹性和持水性较低[7]、缺失α'-亚基的大豆蛋白凝胶的硬度高于7S凝胶[8],在食品加工中可以使用不同基因型的大豆作为原料或添加特定的大豆蛋白组分来改变大豆蛋白凝胶类产品的口感和质地;外在因素包括加工条件和食品包装,添加阳离子是加工凝胶型食品的常用方法,添加CaSO4提高豆腐的硬度[9]、添加H+至pH5.8时大豆蛋白由于豆浆酸化发生聚集[10],通过添加不同浓度和不同类型的阳离子改变大豆蛋白的聚集行为和凝胶特性,制备具有不同特点的凝胶型食品。

    为实现大豆蛋白凝胶在食品加工中的高效利用,从组成成分和加工方法改变大豆蛋白的凝胶特性并揭示凝胶化机制成为一个研究热点[11]。一方面,7S和11S球蛋白作为大豆蛋白的主要成分对其凝胶特性有着重要影响[12]。另一方面,大豆蛋白凝胶的形成受加工条件影响,例如:加热条件和阳离子及浓度的选择,促进大豆蛋白凝胶化。因此,本文主要总结了一价阳离子(Na+、K+和H+)和二价阳离子(Ca2+和Mg2+)对大豆蛋白及其组分凝胶特性的影响,解析了阳离子诱导大豆蛋白凝胶的形成机制,阐明了阳离子与凝胶品质间的关系,为改善大豆蛋白凝胶质地提供依据。

    根据pH7.6和离子强度0.5 mol/L时沉降系数不同,大豆分离蛋白(soy protein isolates,SPI)分为白蛋白(albumin,2S)、β-伴大豆球蛋白(β-conglycinin,7S)、大豆球蛋白(glycinin,11S)和蛋白质聚合物(protein polymers,15S)四大类蛋白质[13],分别占SPI的20%、40%、30%和10%。其中7S和11S是大豆贮藏蛋白的主要成分[14],形成的凝胶网络结构均匀致密,硬度、弹性、强度和持水性较好,对SPI的聚集和交联起主要作用[15]

    7S和11S的不同包括氨基酸组成、分子构成和等电点,导致其具有不同的特性,因此它们在凝胶形成过程中的功能和作用不同[16]。从分子微观结构的角度来看,7S包含2个二硫键,没有巯基,11S中有2个巯基和20个二硫键[17],11S比7S具有更高的疏水性、更多的二硫键、更高的变性温度,导致蛋白质聚集速率和聚集程度不同,二者对SPI凝胶特性有不同的影响[9]图1为大豆组成成分及蛋白组分,从大豆蛋白质组成的角度来看,7S组分(~180 kDa)是一种三聚体糖蛋白,由三个糖基化亚基α(~67 kDa)、α'(~71 kDa)和β(~50 kDa)组成,这三种亚基主要通过疏水作用力以不同的排列组合呈平面三角形紧密堆积的形式构成7S球蛋白[18]。11S是一种六聚体糖蛋白,由一个酸性(A)多肽与一个特定的碱性(B)多肽通过二硫键连接而成[19]。11S的A多肽和B多肽并不是随机关联的,二者合成了独特的酸碱对[20]。这也决定了在7S凝胶中疏水作用为形成凝胶的主要作用力,而在11S凝胶中以二硫键支撑起凝胶网络结构。

    图  1  大豆组成成分及其蛋白质组成
    Figure  1.  Soybean composition and its protein components

    蛋白质的热变性是形成凝胶的先决条件,如图2所示,低温(40~70 ℃)下形成的凝胶网络更细,整个空间分布均匀,孔隙小,持水性好;高温(70~95 ℃)下蛋白质网络增厚,网络间的孔隙变大,分布不均匀,起初持水性较差,但持续加热使网络蛋白的结合密度和强度增加,凝胶收缩成粗糙但致密的结构,形成更密集和更坚硬的“链”,将其余的水紧紧“困”在凝胶网络中,并在成熟的网络结构形成后保持相对稳定[2123]。SPI的凝胶强度随加热时间的延长而增强,这也解释了高温持续加热后凝胶的持水性高于低温加热的现象[45]

    图  2  加热导致大豆蛋白凝胶化示意图
    Figure  2.  Schematic diagram of gelation of soy protein induced by heating

    加热处理过程中7S和11S球蛋白不可逆的展开,蛋白质分子内的官能团暴露促进分子间相互作用,巯基的暴露引发二硫键-巯基交换反应,蛋白质发生聚集和交联[5]。7S在较低的温度下(65~75 ℃)容易发生热变性,在较高的温度下(85~90 ℃)持续加热5 min后蛋白会完全变性,11S在90 ℃下持续10 min或更长时间才能完全变性[24]。由于变性过程和程度的差异,11S易聚集成更大的不溶性聚集体,7S的可溶性聚集体大小有限并且结构松散,即诱导形成凝胶后,11S的平均粒径高于7S的平均粒径[25]

    热处理形成聚集体后,在高温下被破坏的氢键在冷却过程中恢复并促进凝胶结构的形成[26]。当热诱导形成凝胶时,发现7S所形成的凝胶致密细腻,而11S所形成的凝胶较粗糙且具有较大孔洞[27],也证明了聚集体的粒径大小直接影响凝胶网络的均匀性和凝胶强度[2829]。粒径不断增大至适宜程度时形成由粗链联结成的高密度结构,使凝胶具有更高的G'值和断裂应力,以及更好的抗变形能力[26]

    每一种凝固剂都有其固有的优缺点,传统的盐类凝固剂(CaSO4、CaCl2和MgCl2)会产生苦味。CaSO4诱导的大豆蛋白凝胶更光滑、均匀,但难溶于水,CaCl2和MgCl2诱导的大豆蛋白凝胶硬度较好,但质地粗糙[3031]。氯化钠(NaCl)诱导的大豆蛋白凝胶弹性较好,但大量摄入会增加高血压[32]和尿钙流失的风险[33],为了避免这种情况,可以用KCl代替部分NaCl[34]。在酸类凝固剂中,常用葡萄糖酸-δ-内酯(glucono-δ-lactone,GDL),GDL的凝胶化速度较慢,诱导的大豆蛋白凝胶质地较软,消化率较高,但加工后的食品略带酸味,不适合油炸[3536]。不同阳离子诱导的大豆蛋白凝胶结构和质地不同,广泛应用于各类豆制品加工。

    少量的一价盐离子可以作为改善凝胶质地的“添加剂”。一价盐离子的存在屏蔽了静电相互作用并增强了蛋白质溶解度,低浓度下促进蛋白质形成粒径较小的聚集体提高了凝胶的硬度,但高浓度会破坏网络结构降低凝胶的硬度[37]。例如:添加0.05~0.10 g/100 mL的KCl可以提高柠檬酸制作的豆腐的硬度、持水性,当KCl浓度为0.15~0.20 g/100 mL时则相反[38]。这可能是由于高盐浓度下的凝胶化速度过快,使得形成大的聚集体,结构粗大,蛋白质之间的交联不稳定,从而导致硬度下降[39]

    加入H+破坏蛋白质四级结构,可以显著提高蛋白质的溶解度,使SPI更适用于不同食品的加工处理[40]。SPI经酸性环境处理后带有更多的正电荷,使其具有较高的分子间静电斥力[4142],可以维持分散液稳定而不发生沉淀。SPI形成凝胶的最低蛋白质浓度会随着pH的降低而降低,但pH不会影响蛋白质的变性温度,大豆蛋白仍能在加热下形成自支撑凝胶[41,43]。因此,由于H+显著提高了SPI的溶解度,并提供较高的静电斥力阻止SPI聚集,降低氢键和二硫键含量,形成粒径较小的聚集体,加热后形成均匀致密的网络结构,导致SPI凝胶的弹性较好、质地较软[3]

    盐浓度的增加有利于凝胶网络的孔径增加,若较粗的链保持均匀有序,空腔大小相似均匀分布,则凝胶强度得到提高。有研究证明了相同浓度下三种凝固剂的聚集能力依次为MgCl2>MgSO4>CaSO4[44],由于Ca2+和Mg2+的聚集速度不同,使用钙盐和镁盐作为凝固剂对蛋白质的聚集状态和凝胶特性有很大影响。

    蛋白质浓度低于成胶浓度,Ca2+浓度为11.6 mmol/L时,凝胶状态基本稳定[21,45],表明凝固剂的加入促进蛋白质交联,更高浓度的凝固剂会导致蛋白质加速凝固,从而形成结构更紧凑的蛋白质凝胶[4647]。 但当Ca2+浓度增加至15 mmol/L时,形成了堆叠簇和具有粗糙不规则结构的极大孔洞,凝胶性能较差[47]

    与Ca2+相比,5 mmol/L的Mg2+有助于形成致密的蛋白质聚集结构,促进凝胶的均匀性,并提高抗变形能力。使用浓度为30 mmol/L的Mg2+诱导的凝胶微观结构不均匀且疏松,多孔结构导致含水量较低,较少的水分残留则导致凝胶的硬度、内聚性和咀嚼性较大[4850]。低浓度Mg2+诱导的凝胶微观结构不均匀,一方面是由于大豆蛋白对Mg2+浓度敏感度更高,加快了凝胶化速率,使凝胶形成粗糙的微观结构;另一方面可能是由于Mg2+可快速溶解在蛋白溶液中导致蛋白质分子迅速形成网络并凝胶化。高浓度的Mg2+导致SPI过度聚集形成粒径较大的聚集体,分散液中蛋白质间的氢键和静电斥力已经不能维持稳定状态,导致SPI沉淀无法形成具有粘弹性的凝胶[51]。因此使用Mg2+诱导生产的豆腐产量低、持水能力差、结构粗糙[44,52]

    使用油包水(W/O)乳液包裹镁离子延缓Mg2+释放,可以减缓凝胶化速度,提高豆腐的稳定性、产量以及改善质地。较小的液滴尺寸可以获得较高的乳液黏度,降低液滴碰撞率,抑制液滴凝聚,进而提高乳液的稳定性。与Mg2+直接诱导形成凝胶相比,W/O乳液包覆Mg2+凝固的凝胶形成了更厚的聚集体,结构更致密,没有明显的孔隙,同时当W/O乳液中的Mg2+浓度增加到2.0 mol/L时,凝胶形成了相对均匀和有序的微观结构[5354]

    KCl促进7S蛋白间的静电相互作用对凝胶结构的支撑,改善7S凝胶的力学特性[55]。NaCl主要影响7S的溶解度,7S的溶解度随着NaCl浓度的增加而增加,这是由于亚基间的静电吸引力被削弱。但对于亚基而言,Na+和Cl抑制了静电排斥力,促进亚基聚集,降低了溶解度[56]αα′-亚基的N端连接聚糖,聚糖通过强烈的立体排斥作用抑制蛋白质的聚集,导致αα′-亚基的溶解度高于β-亚基[57]。NaCl的加入还会延缓酸诱导7S凝胶的形成[58],进而延缓SPI凝胶的形成速率,使其凝胶速率变慢,当盐酸胍(GuHCl)诱导7S凝胶时,添加NaCl有延缓凝胶化的作用,并且在4 mol/L GuHCl 的存在下不会发生凝胶化[37]

    H+离子的加入会导致7S变性温度降低[59],pH靠近或原理7S等电点时也影响凝胶的形成和凝胶特性。pH4和pH5靠近7S的等电点,蛋白质聚集沉淀但不能形成凝胶,在pH6时7S凝胶的硬度最大,pH7时7S凝胶的弹性最大[60]。因此,不同pH环境下大豆蛋白表现出不同的凝胶特点,进而可以调节pH和蛋白质组成生产出不同质地的凝胶。

    当Ca2+诱导7S蛋白形成凝胶时,大量7S的αα'-亚基未参与凝胶的形成[29,61],7S中αα'和β三个亚基的含量均与凝胶的硬度呈负相关,因此7S/11S比值较高时形成的凝胶硬度更低[62]

    与11S相比,7S对Mg2+敏感性较弱,与巯基含量较少有关,导致Mg2+存在时,7S不易形成更大更多的蛋白质颗粒,凝胶的硬度较小[6364]。Hsieh等[65]研究发现5 mmol/L的MgCl2使热变性的7S亚基形成聚集体,20 mmol/L的MgCl2使7S发生最大程度的聚集和沉淀,而11S只需要10 mmol/L就可以诱导最大程度的沉淀[66]。推测11S在较低MgCl2浓度下形成的凝胶结构已经被破坏。

    一价盐离子主要影响11S蛋白的变性温度,二者呈正相关。在Braga等[55]的研究中发现KCl的加入使11S的变性温度增加了约13 ℃,提高了变性解离温度。11S对低离子浓度敏感,部分解离成亚基,部分形成聚集体,继续提高盐浓度会削弱静电相互作用,疏水相互作用和氢键成为主要的作用力[67],作用力的改变影响凝胶强度。与未加入NaCl的大豆蛋白凝胶相比,当NaCl浓度为0~0.1 mol/L时,凝胶强度大幅度提升,在0.1~0.25 mol/L浓度下趋于稳定,而当NaCl浓度从0.25 mol/L增加至0.5 mol/L时凝胶强度下降[68]

    H+离子的加入会导致11S 变性温度升高[69],使11S凝胶具有较高的内聚性、粘性和硬度。同样地,当在pH远离11S等电点的碱性环境中形成的凝胶具有较高的弹性,表面细腻且持水性好[60]

    当Ca2+诱导形成凝胶时,11S易形成高密度凝胶网络结构[29,61],推测在二价阳离子诱导的凝胶中11S起主要作用。例如:用CaSO4·2H2O制备的豆腐质地较硬,其11S球蛋白变性程度较大产生了更多支撑凝胶网络结构的二硫键[62],含有较多疏水氨基酸的碱性B多肽和酸性A多肽在室温下也容易形成较大颗粒,也是导致11S凝胶强度增加的主要原因[7,22]。总的来说,Ca2+提高11S的变性程度,11S亚基之间的二硫键可促进形成较硬的凝胶[62]

    在Mg2+诱导下,相比于SPI,11S对Mg2+敏感度更高,蛋白质分子迅速形成网络并凝胶化,11S凝胶的网络结构致密程度更高,其微观结构更粗糙且不均一,导致11S比SPI形成更多的不溶性聚集体和更硬的凝胶[50]

    当Mg2+浓度极低时,快速凝固作用使蛋白质发生一定程度的聚集,聚集后易形成更粗的蛋白链,从而增强凝胶强度。然而,随着 Mg2+浓度进一步增加,蛋白质聚集体过大而无法形成均匀的凝胶结构[44]。豆腐生产一般选择浓度为0.25 g/100 mL的氯化镁作为凝固剂,使用浓度大于0.25 g/100 mL的氯化镁会导致豆腐质量变差[70]

    在Mg2+或Ca2+的作用下,提高了11S凝胶中二硫键的含量,促进11S凝胶形成稳定的三维网络结构,而7S凝胶的形成依靠氢键[71]。因此,二价阳离子诱导的11S凝胶的凝胶特性能优于7S凝胶。

    一价阳离子诱导大豆蛋白凝胶的形成机制,与二价阳离子的相同点是二者都可以屏蔽带电蛋白质分子之间的静电相互作用。但是与二价阳离子在蛋白质之间形成盐桥不同,一价阳离子中和蛋白质表面负电荷,减弱大豆蛋白表面负电荷的排斥力,形成水层,从而将水留在凝胶中,形成凝胶网络[38,72]

    蛋白质的聚集行为不仅可以通过增加金属离子来促进成胶,也可以通过降低pH来调整凝胶行为[73]。降低蛋白质溶液的 pH 可以通过添加GDL来实现,GDL在水中逐渐水解形成葡萄糖酸,并释放H+使pH下降至大豆蛋白的等电点,从而促进蛋白质在等电点沉淀[74]。因此,根据大豆蛋白在不同pH的凝胶行为差异调整GDL的添加量,可以调节大豆蛋白凝胶产品的质地和理化特性。GDL诱导亚基形成凝胶的过程如图3所示,β-亚基和B多肽的凝胶化速度最快,凝胶速度快导致其聚集体粒径较大,形成粗糙和空隙较大的凝胶结构,αα′-亚基和A多肽较慢的凝胶化速度形成了光滑和紧凑的网络[75]。由此推测:B多肽和β-亚基最先凝固形成凝胶基质,接着αα'凝固,最后凝固的是A多肽,对B多肽和β-亚基形成的凝胶基质进行补充,形成孔隙更小、更坚固的凝胶网络。

    图  3  亚基水平上大豆蛋白凝胶化机理示意图[76]
    Figure  3.  Schematic representation of the mechanism on gelation process of soybean protein at subunit level[76]

    目前,关于二价阳离子诱导大豆蛋白凝胶的形成机制有三种理论。第一种是基于金属离子和大豆蛋白之间热诱导交联的阳离子盐桥理论[77]。第二种理论是盐离子和H+的反离子交换,中和变性蛋白质表面的负电荷,导致蛋白质间依靠疏水相互作用聚集并促进凝胶化[78]。第三种理论是基于加盐后热变性的大豆蛋白因脱水而产生的出盐效应[7980]

    SPI与二价阳离子形成“盐桥”是目前最得到认同的理论,二价阳离子具有交联带负电荷的羧酸基团的附加作用,能蛋白质表面的羧基发生反应[81],即蛋白质分子与盐离子交联[10],使二价阳离子有更强的屏蔽能力,因此能够在低于蛋白质成胶浓度时诱导凝胶化。例如:CaCl2是一种强电解质,可以完全电离成Ca2+和Cl−[82],Ca2+与蛋白质的天冬氨酸和谷氨酸侧链的羧基结合,交联蛋白质分子,构成“蛋白质-Ca2+-蛋白质”桥[61],同时降低电势差,使蛋白质更容易聚集[77],蛋白质聚集体通过疏水相互作用和二硫键进一步形成三维网络。

    图4所示,热处理引起的SPI变性对CaSO4诱导的凝胶形成的影响机制[24],11S的变性温度高,因此以11S的完全/不完全变性代表SPI的变性程度。在加热过程中,位于SPI分子内部的一些疏水基团和巯基会暴露出来,而且暴露程度会随着变性程度的增加而增强[83]。当加入Ca2+时,处于聚集状态的带电SPI分子与Ca2+聚集在一起,成为相邻蛋白质分子上相邻带电羧基之间的桥梁[84]。维持凝胶结构最关键的蛋白质间相互作用是疏水相互作用和二硫键,因此完全变性的SPI所形成的凝胶具有最紧密和均匀的微观结构。

    图  4  SPI热变性对CaSO4诱导的SPI凝胶化的影响机理研究[9]
    Figure  4.  Proposed mechanism for the effects of thermos-denaturation of SPI on the CaSO4-induced SPI gelation[9]

    第二种理论中,添加阳离子后,阳离子解离出的H+会中和变性蛋白质表面的负电荷[85]。如图5所示,首先,蛋白质分子在原生状态下的疏水区域位于内部,并通过热变性暴露于外部。由于变性的大豆蛋白带负电,二价阳离子(Ca2+)诱导质子的形成并在第二步中和了蛋白质的净电荷。因此,被中和的蛋白质分子发生的疏水相互作用引起蛋白质聚集[72],随后,在冷却过程中氢键重新形成促进凝胶成型。

    图  5  大豆蛋白由CaSO4诱导的凝胶形成过程[72]
    Figure  5.  Gelation mechanism of soybean protein in the presence of CaSO4[72]

    第三种理论是出盐效应,是添加盐后热变性大豆蛋白脱水而产生的盐析现象。如图6所示,在蛋白质-水-盐的三组分体系中大量的蛋白质发生水合作用,盐渗透在蛋白质的水和层中,促进蛋白质聚集,表现为盐析或出盐现象[86]

    图  6  添加CaSO4后SPI脱水产生出盐效应引起的凝胶化[86]
    Figure  6.  Gelation induced by the salting out effect of SPI dehydration after the addition of CaSO4[86]

    本文总结了一价阳离子(Na+、K+和H+)和常用凝固剂的二价阳离子(Ca2+和Mg2+)诱导大豆蛋白及其组分形成凝胶的特点、性质差异和凝胶形成机制,阐明了不同阳离子对大豆蛋白及其组分形成凝胶的影响。首先,7S和11S对SPI凝胶形成的功能和作用不同,11S依靠二硫键连接支撑起凝胶的网络结构,7S粒径较小并对网络结构进行填充,共同形成具有硬度和粘弹性特点的凝胶结构。其次,7S对Ca2+和Mg2+的敏感度较低,当Ca2+和Mg2+浓度较高时7S凝胶仍能保持较好的弹性,同理7S含量较高的SPI凝胶也能保持较好的弹性;11S对Mg2+的敏感度较高,仅当Mg2+浓度较低时促进蛋白质聚集,Mg2+浓度较高时聚集体粒径较大导致凝胶结构破坏。此外,添加H+至pH远离蛋白质等电点时形成的凝胶具有较高的弹性。

    目前大豆蛋白凝胶特性的研究,主要集中在阳离子类型和浓度,以及蛋白质组分方面。在研究凝固剂方面,发掘新的阳离子(Fe3+、Zn2+)对大豆蛋白凝胶结构和质地的影响。在研究蛋白组成方面,阳离子对7S和11S亚基影响的研究较少,不同阳离子在亚基层面的凝胶机制研究还不够全面,但是具有较高的应用前景,未来也可能会成为新的研究热点。

  • 图  1   大豆组成成分及其蛋白质组成

    Figure  1.   Soybean composition and its protein components

    图  2   加热导致大豆蛋白凝胶化示意图

    Figure  2.   Schematic diagram of gelation of soy protein induced by heating

    图  3   亚基水平上大豆蛋白凝胶化机理示意图[76]

    Figure  3.   Schematic representation of the mechanism on gelation process of soybean protein at subunit level[76]

    图  4   SPI热变性对CaSO4诱导的SPI凝胶化的影响机理研究[9]

    Figure  4.   Proposed mechanism for the effects of thermos-denaturation of SPI on the CaSO4-induced SPI gelation[9]

    图  5   大豆蛋白由CaSO4诱导的凝胶形成过程[72]

    Figure  5.   Gelation mechanism of soybean protein in the presence of CaSO4[72]

    图  6   添加CaSO4后SPI脱水产生出盐效应引起的凝胶化[86]

    Figure  6.   Gelation induced by the salting out effect of SPI dehydration after the addition of CaSO4[86]

  • [1]

    PORTO COSTA M, SAGET S, ZIMMERMANN B, et al. Environmental and land use consequences of replacing milk and beef with plant-based alternatives[J]. Journal of Cleaner Production,2023,424:138826. doi: 10.1016/j.jclepro.2023.138826

    [2]

    INGRASSIA R, BEA L L, HIDALGO M E, et al. Microstructural and textural characteristics of soy protein isolate and tara gum cold-set gels[J]. LWT-Food Science and Technology,2019,113:108286. doi: 10.1016/j.lwt.2019.108286

    [3]

    RENKEMA J M, GRUPPEN H, VAN VLIET T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J]. Journal of Agricultural and Food Chemistry,2002,50(21):6064−6071. doi: 10.1021/jf020061b

    [4]

    WU C, MA W, HUA Y. The relationship between breaking force and hydrophobic interactions or disulfide bonds involved in heat-induced soy protein gels as affected by heating time and temperature[J]. International Journal of Food Science & Technology,2019,54(1):231−239.

    [5]

    RUAN Q, CHEN Y, KONG X, et al. Heat-induced aggregation and sulphydryl/disulphide reaction products of soy protein with different sulphydryl contents[J]. Food Chem,2014,156:14−22. doi: 10.1016/j.foodchem.2014.01.083

    [6]

    LÜ Y, XU L, TANG T, et al. Gel properties of soy protein isolate-potato protein-egg white composite gel:Study on rheological properties, microstructure, and digestibility[J]. Food Hydrocolloids,2023,135:108223.

    [7]

    WU C, MA W, CHEN Y, et al. The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size[J]. LWT-Food Science and Technology,2019,103:125−130. doi: 10.1016/j.lwt.2018.12.064

    [8]

    FU H, LI J, YANG X, et al. The heated-induced gelation of soy protein isolate at subunit level:Exploring the impacts of α and α′ subunits on SPI gelation based on natural hybrid breeding varieties[J]. Food Hydrocolloids,2023,134:108008. doi: 10.1016/j.foodhyd.2022.108008

    [9]

    HAIBO, ZHAO, WEIWEI, et al. Calcium sulphate-induced soya bean protein tofu-type gels:Influence of denaturation and particle size[J]. International Journal of Food Science & Technology,2016,51(3):731−741.

    [10]

    CHEN C C, HSIEH J F, KUO M I. Insight into the processing, gelation and functional components of tofu:A review[J]. Processes,2023,11(1):202.

    [11]

    DONG S R, XU H H, LI B Y, et al. Inhibition or improvement for acidic subunits fibril aggregation formation from β-conglycinin, glycinin and basic subunits[J]. Journal of Cereal Science,2016,70:263−269. doi: 10.1016/j.jcs.2016.07.002

    [12]

    ZHENG X, REN C, WEI Y, et al. Soy protein particles with enhanced anti-aggregation behaviors under various heating temperatures, pH, and ionic strengths[J]. Food Research International,2023,170:112924.

    [13]

    COATES J B, MEDEIROS J S, THANH V H, et al. Characterization of the subunits of beta-conglycinin[J]. Archives of Biochemistry And Biophysics,1985,243(1):184−194. doi: 10.1016/0003-9861(85)90787-8

    [14]

    NATARAJAN S S, XU C, BAE H, et al. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis[J]. Journal of Agricultural and Food Chemistry,2006,54(8):3114−3120.

    [15]

    GE J, SUN C, CHANG Y, et al. Understanding the differences in heat-induced gel properties of twelve legume proteins:A comparative study[J]. Food Research International,2023,163:112134. doi: 10.1016/j.foodres.2022.112134

    [16]

    JAMES A T, YANG A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties[J]. Food Chemistry,2016,194:284−289. doi: 10.1016/j.foodchem.2015.08.021

    [17]

    ZHENG L, REGENSTEIN J M, TENG F, et al. Tofu products:A review of their raw materials, processing conditions, and packaging[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3683−3714. doi: 10.1111/1541-4337.12640

    [18]

    SUI X, ZHANG T, JIANG L. Soy protein:Molecular structure revisited and recent advances in processing technologies[J]. Annual Review of Food Science and Technology,2021,12(1):119−147. doi: 10.1146/annurev-food-062220-104405

    [19]

    WU C, YAN X, WANG T, et al. A self-sorted gel network formed by heating a mixture of soy and cod proteins[J]. Food & Function,2019,10(8):5140−5151.

    [20]

    SCOTT M P, JUNG R, MUNTZ K, et al. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean[J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(2):658−662.

    [21]

    WANG R, JIN X, SU S, et al. Soymilk gelation:The determinant roles of incubation time and gelation rate[J]. Food Hydrocolloids,2019,97:105230. doi: 10.1016/j.foodhyd.2019.105230

    [22]

    HE X T, YUAN D B, WANG J M, et al. Thermal aggregation behaviour of soy protein:Characteristics of different polypeptides and sub-units[J]. Journal of the Science of Food and Agriculture,2016,96(4):1121−1131.

    [23]

    LIU X, XU J, LI Y, et al. Mechanism of the glucono-δ-lactone induced soymilk gelation:Enthalpy and entropy transformation in the cross-linking of protein molecules[J]. Food Research International,2023,169:112868. doi: 10.1016/j.foodres.2023.112868

    [24]

    ZHAO H, LI W, QIN F, et al. Calcium sulphate-induced soya bean protein tofu-type gels:Influence of denaturation and particle size[J]. International Journal of Food Science & Technology,2015,51(3):731−741.

    [25]

    PANG Z, SAFDAR B, WANG Y, et al. Improvement of tribo-rheological properties of acid soymilk gels by reinforcement of 7S or 11S proteins[J]. Food Hydrocolloids,2021,110:106173. doi: 10.1016/j.foodhyd.2020.106173

    [26]

    WANG X, ZENG M, QIN F, et al. Enhanced CaSO4-induced gelation properties of soy protein isolate emulsion by pre-aggregation[J]. Food Chemistry,2018,242:459−465.

    [27]

    JU Q, YUAN Y, WU C, et al. Heat-induced aggregation of subunits/polypeptides of soybean protein:Structural and physicochemical properties [J]. Food Chemistry, 2023, 405(Pt A):134774.

    [28]

    PATOLE S, CHENG L, YANG Z. Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels[J]. Food Biophysics,2022,17(3):314−323. doi: 10.1007/s11483-022-09720-3

    [29]

    HUI T, XING G. Effect of transglutaminase pre-crosslinking treatment incorporated with glucono-delta-lactone on the physicochemical and digestive properties of tofu[J]. Polymers (Basel),2022,14(12):2364. doi: 10.3390/polym14122364

    [30]

    KAMIZAKE N K K, SILVA L C P, PRUDENCIO S H. Effect of soybean aging on the quality of soymilk, firmness of tofu and optimum coagulant concentration[J]. Food Chemistry,2016,190:90−96. doi: 10.1016/j.foodchem.2015.05.041

    [31]

    CAO F H, LI X J, LUO S Z, et al. Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu[J]. LWT-Food Science and Technology,2017,85:58−65. doi: 10.1016/j.lwt.2017.07.005

    [32]

    MACGREGOR G A. Sodium and potassium intake and high blood pressure[J]. Acsm S Health & Fitness Journal,2012,16(3):13−21.

    [33]

    BELL R R, ELDRID M M, SC P G D H, et al. The influence of NaCl and KCl on urinary calcium excretion in healthy young women[J]. Nutrition Research,1992,12(1):17−26.

    [34]

    AROGUNDADE L A, AKINFENWA M O, SALAWU A A. Effect of NaCl and its partial or complete replacement with KCl on some functional properties of defatted Colocynthis citrullus L. seed flour[J]. Food Chemistry,2004,84(2):187−193. doi: 10.1016/S0308-8146(03)00199-7

    [35]

    RUI X, FU Y, ZHANG Q, et al. A comparison study of bioaccessibility of soy protein gel induced by magnesiumchloride, glucono-δ-lactone and microbial transglutaminase[J]. LWT-Food Science and Technology,2016,71:234−242. doi: 10.1016/j.lwt.2016.03.032

    [36]

    MENG S, CHANG S, GILLEN A M, et al. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production[J]. Food Chemistry,2016,213(dec.15):31−39.

    [37]

    NAGANO T, MORI H, NISHINARI K. Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans[J]. Journal of Agricultural and Food Chemistry,2002,42(7):1415−1419.

    [38]

    ZHAO Y Y, CAO F H, LI X J, et al. Effects of different salts on the gelation behaviour and mechanical properties of citric acid‐induced tofu[J]. International Journal of Food Science & Technology,2019,55(2):785−794.

    [39]

    LU X, LU Z, YIN L, et al. Effect of preheating temperature and calcium ions on the properties of cold-set soybean protein gel[J]. Food Research International,2010,43(6):1673−1683. doi: 10.1016/j.foodres.2010.05.011

    [40]

    WANG R, WANG L H, WEN Q H, et al. Combination of pulsed electric field and pH shifting improves the solubility, emulsifying, foaming of commercial soy protein isolate[J]. Food Hydrocolloids,2023,134:108049. doi: 10.1016/j.foodhyd.2022.108049

    [41]

    YANG J, DOU J, ZHU B, et al. Multi-dimensional analysis of heat-induced soybean protein hydrolysate gels subjected to ultrasound-assisted pH pretreatment[J]. Ultrasonics Sonochemistry,2023,95:106403.

    [42]

    JIANG J, WANG Q, XIONG Y L. A pH shift approach to the improvement of interfacial properties of plant seed proteins[J]. Current Opinion in Food Science,2018,19:50−56. doi: 10.1016/j.cofs.2018.01.002

    [43]

    CHEN N, ZHAO M, NIEPCERON F, et al. The effect of the pH on thermal aggregation and gelation of soy proteins[J]. Food Hydrocolloids,2017,66:27−36. doi: 10.1016/j.foodhyd.2016.12.006

    [44]

    WANG X, LUO K, LIU S, et al. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium[J]. Journal of Food Engineering,2019,244:32−39. doi: 10.1016/j.jfoodeng.2018.09.025

    [45]

    CHEN K, HUANG Y, LI X, et al. Textural properties of firm tofu as affected by calcium coagulants[J]. Journal of Food Measurement and Characterization,2021,15(5):4508−4516.

    [46]

    HSIEH J F. Effects of calcium sulfate and chitosan on textural modification and microstructure of tofu made from lentils (Lens culinaris)[J]. Processes,2022,10(10):2000. doi: 10.3390/pr10102000

    [47]

    WANG X, YU M, WANG Z, et al. Modulation of soy protein isolate gel properties by a novel ''two-step'' gelation process:Effects of pre-aggregation with different divalent sulfates[J]. Food Chemistry,2022,394:133515. doi: 10.1016/j.foodchem.2022.133515

    [48]

    SHI L, YIN T, HUANG Q, et al. Effects of filleting methods on composition, gelling properties and aroma profile of grass carp surimi[J]. Food Science and Human Wellness,2021,10(3):308−315. doi: 10.1016/j.fshw.2021.02.022

    [49]

    ULLAH I, KHODER R M, YIN T, et al. Gelation properties of tofu induced by different coagulants:Effects of molecular interactions between nano-sized okara dietary fiber and soybean proteins[J]. Food Chemistry,2023,403:134056.

    [50]

    NAGANO T, TOKITA M. Viscoelastic properties and microstructures of 11S globulin and soybean protein isolate gels:Magnesium chloride-induced gels[J]. Food Hydrocolloids,2011,25(7):1647−1654. doi: 10.1016/j.foodhyd.2011.03.001

    [51]

    DURAND D, CHRISTOPHE GIMEL J, NICOLAI T. Aggregation, gelation and phase separation of heat denatured globular proteins[J]. Physica A:Statistical Mechanics and its Applications,2002,304(1−2):253−265. doi: 10.1016/S0378-4371(01)00514-3

    [52]

    ZHU Q, WU F, SAITO M, et al. Effect of magnesium salt concentration in water-in-oil emulsions on the physical properties and microstructure of tofu[J]. Food Chemistry,2016,201:197−204. doi: 10.1016/j.foodchem.2016.01.065

    [53]

    LI J, CHENG Y, TATSUMI E, et al. The use of W/O/W controlled-release coagulants to improve the quality of bittern-solidified tofu[J]. Food Hydrocolloids,2014,35:627−635. doi: 10.1016/j.foodhyd.2013.08.002

    [54]

    LI J, QIAO Z, TATSUMI E, et al. A novel approach to improving the quality of bittern-solidified tofu by W/O controlled-release coagulant. 2:Using the improved coagulant in tofu processing and product evaluation[J]. Food and Bioprocess Technology,2012,6(7):1801−1808.

    [55]

    BRAGA A L M, AZEVEDO A, JULIA MARQUES M, et al. Interactions between soy protein isolate and xanthan in heat-induced gels:The effect of salt addition[J]. Food Hydrocolloids,2006,20(8):1178−1189. doi: 10.1016/j.foodhyd.2006.01.003

    [56]

    JU Q, WANG J, ZHOU H, et al. Influence of pH and ionic strength on the physicochemical and structural properties of soybean beta-conglycinin subunits in aqueous dispersions [J]. International Journal of Biological Macromolecules, 2023, 253(Pt 3):126927.

    [57]

    MARUYAMA N, KATSUBE T, WADA Y, et al. The roles of the N-linked glycans and extension regions of soybean beta-conglycinin in folding, assembly and structural features[J]. European journal of biochemistry,1998,258(2):854−862. doi: 10.1046/j.1432-1327.1998.2580854.x

    [58]

    SCHULDT S, RAAK N, JAROS D, et al. Acid-induced formation of soy protein gels in the presence of NaCl[J]. LWT-Food Science and Technology,2014,57(2):634−639. doi: 10.1016/j.lwt.2014.02.013

    [59]

    NAGANO T, MORI H, NISHINARI K. Rheological properties and conformational states of β-conglycinin gels at acidic pH[J]. Biopolymers,2004,34(2):293−298.

    [60] 冯芳, 刘文豪, 陈志刚. 大豆7S、11S蛋白的结构与热致凝胶特性的分析[J]. 食品科学,2020,41(2):58−64. [FENG Fang, LIU Wenhao, CHEN Zhigang. Structure and heat-induced gelation properties of soybean 7S and 11S proteins[J]. Food Science,2020,41(2):58−64.] doi: 10.7506/spkx1002-6630-20190121-243

    FENG Fang, LIU Wenhao, CHEN Zhigang. Structure and heat-induced gelation properties of soybean 7S and 11S proteins[J]. Food Science, 2020, 41(2): 58−64. doi: 10.7506/spkx1002-6630-20190121-243

    [61]

    LI Y, WAN Y, MAMU Y, et al. Aggregation and gelation of soymilk protein after alkaline heat treatment:Effect of coagulants and their addition sequences[J]. Food Hydrocolloids,2023,135:108178. doi: 10.1016/j.foodhyd.2022.108178

    [62]

    PAVLICEVIC M Z, TOMIC M D, DJONLAGIC J A, et al. Evaluation of variation in protein composition on solubility, emulsifying and gelling properties of soybean genotypes synthesizing β' subunit[J]. Journal of the American Oil Chemists' Society,2018,95(2):123−134. doi: 10.1002/aocs.12002

    [63]

    TEZUKA M, TAIRA H, IGARASHI Y, et al. Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin[J]. Journal of Agricultural and Food Chemistry,2000,48(4):1111−1117. doi: 10.1021/jf990560l

    [64]

    SAIO K, KAJIKAWA M, WATANABE T. Food processing characteristics of soybean proteins[J]. Agricultural and Biological Chemistry,2014,35(6):890−898.

    [65]

    HSIEH J F, PAN P H. Proteomic profiling of the coagulation of soymilk proteins induced by magnesium chloride[J]. Food Hydrocolloids,2012,29(1):219−225. doi: 10.1016/j.foodhyd.2012.03.001

    [66]

    TENG Z, LIU C, YANG X, et al. Fractionation of soybean globulins using Ca2+ and Mg2+:A comparative analysis[J]. Journal of the American Oil Chemists' Society,2009,86(5):409−417.

    [67]

    HASHIZUME K, NAKAMURA N, WATANABE T. Influence of ionic strength on conformation changes of soybean proteins caused by heating, and relationship of its conformation changes to gel formation[J]. Agricultural and Biological Chemistry,2014,39(7):1339−1347.

    [68]

    WU C, HUA Y, CHEN Y, et al. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size[J]. Food Hydrocolloids,2017,66:389−395. doi: 10.1016/j.foodhyd.2016.12.007

    [69]

    BRANT D A. Hydrocolloids:Part 1:Physical chemistry and industrial applications of gels, polysaccharides, and proteins. Part 2:Fundamentals and applications in food, biology, and medicine[J]. Carbohydrate Research,2002,4(337):379.

    [70]

    TODA K, ONO T, KITAMURA K, et al. Seed protein content and consistency of tofu prepared with different magnesium chloride concentrations in six japanese soybean varieties[J]. Breeding Science,2003,53(3):217−223.

    [71]

    UTSUMI S, MATSUMURA Y, MORI T. Structure-function relationships of soy proteins[M]. CRC Press:Food Proteins and Their Applications,2017:257−292.

    [72]

    KOHYAMA K, SANO Y, DOI E. Rheological characteristics and gelation mechanism of tofu (soybean curd)[J]. Journal of Agricultural and Food Chemistry,2002,43(7):1808−1812.

    [73]

    XU Y, YE Q, ZHANG H, et al. Naturally fermented acid slurry of soy whey:High-throughput sequencing-based characterization of microbial flora and mechanism of tofu coagulation[J]. Frontiers in Microbiology,2019,10:1088. doi: 10.3389/fmicb.2019.01088

    [74]

    ZHAO Y, LIU Q, ZHANG S, et al. Formation and properties of recombined soymilk and cow's milk gels:Effect of glucono-delta-lactone[J]. Journal of Oleo Science,2018,67(7):885−892. doi: 10.5650/jos.ess17245

    [75] 巨倩. 大豆7S球蛋白亚基结构与功能特性研究[D]. 咸阳:西北农林科技大学, 2023. [JU Q. Study on the structural and functional properties of soybean β-conglycinin subunits[D]. Xianyang:Northwest A&F University, 2023.]

    JU Q. Study on the structural and functional properties of soybean β-conglycinin subunits[D]. Xianyang: Northwest A&F University, 2023.

    [76]

    JU Q, WU C, YUAN Y, et al. Insights into the mechanism on glucono-delta-lactone induced gelation of soybean protein at subunit level[J]. Food Hydrocolloids,2022,125:107402. doi: 10.1016/j.foodhyd.2021.107402

    [77]

    LEE C H, RHA C. Microstructure of soybean protein aggregates and its relation to the physical and textural properties of the curd[J]. Journal of Food Science,2006,43(1):79−84.

    [78]

    KANAUCHI M, SAKIKO H, SHIMOYAMADA M. New cheese-like food production from soymilk utility of soymilk curdling yeast [J]. Food production and industry, 2015:79−100.

    [79]

    WANG W, SHEN M, LIU S, et al. Gel properties and interactions of mesona blumes polysaccharide-soy protein isolates mixed gel:The effect of salt addition[J]. Carbohydrate Polymers,2018,192:193−201. doi: 10.1016/j.carbpol.2018.03.064

    [80]

    KAWASAKI Y, HIRAKAWA A, ISAKARI K. Calcium contents in certain foods (Part 13):Changes of calcium, magnesium, phosphorus and protein contents in the process of tofu making and physical properties of tofu[J]. Journal of the Faculty of Agriculture Kyushu University,1981,29(6):287−294.

    [81]

    ARII Y, NISHIZAWA K. Divalent magnesium cation concentrations determine the formation of tofu-like precipitates with differing urea solubilities[J]. Heliyon,2018,4(9):e00817.

    [82]

    WANG R, XIE L, GUO S. Effects of small molecular compounds in soymilk on the protein coagulation process:Ca2+ as coagulant[J]. Food Research International,2015,77:34−42. doi: 10.1016/j.foodres.2015.04.019

    [83]

    HU H, LI-CHAN E C Y, WAN L, et al. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate[J]. Food Hydrocolloids,2013,32(2):303−311. doi: 10.1016/j.foodhyd.2013.01.016

    [84]

    KAO F J, SU N-W, LEE M H. Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey[J]. Journal of Agricultural and Food Chemistry,2003,51(21):6211−6216. doi: 10.1021/jf0342021

    [85]

    KHODER R M, YIN T, LIU R, et al. Effects of nano fish bone on gelling properties of tofu gel coagulated by citric acid[J]. Food Chemistry,2020,332:127401.

    [86]

    ARAKAWA T, TIMASHEFF S N. Mechanism of protein salting in and salting out by divalent cation salts:Balance between hydration and salt binding[J]. Biochemistry,1984,23(25):5912−5923. doi: 10.1021/bi00320a004

  • 期刊类型引用(6)

    1. 冯博,邵毅,黄柳娟,禹建虎,龚新武,白冰. 不同处理方式对‘大泡’青皮核桃采后保鲜效果的影响. 上海农业学报. 2024(01): 103-108 . 百度学术
    2. 王盼盼,管维良,孙志栋,蔡路昀. 芥末精油复合1-甲基环丙烯保鲜处理对绿花菜贮藏期间品质的影响. 食品工业科技. 2024(11): 270-279 . 本站查看
    3. 李金金,李春媛,罗铮,张鹏,张爱琳,吴迪,李江阔. 高值果蔬采后保鲜技术研究进展. 保鲜与加工. 2024(06): 109-119 . 百度学术
    4. 张玉萍,莫丽媛,丁惠敏,史君彦,王文亮,王延圣,乔丽萍. 双乙酰处理对鲜切西兰花贮藏品质及抗氧化能力的影响. 食品与发酵工业. 2024(24): 114-122 . 百度学术
    5. 钱井,郑鄢燕,李蔚,满杰,郑丽静,韦强,赵立群. 1-甲基环丙烯结合寡雄腐霉菌对番茄贮藏品质的影响. 食品科技. 2023(09): 23-29 . 百度学术
    6. 刘培秀,赵美萱,杨梅,雷晓英,刘文强,杨敏,李玉鹏. 西兰花粉营养成分及理化性质研究. 食品工业科技. 2022(11): 326-333 . 本站查看

    其他类型引用(7)

  • 其他相关附件

图(6)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-03-24
  • 网络出版日期:  2024-11-18
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回
x 关闭 永久关闭