• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

热条件下膳食纤维对面筋蛋白的影响及其在面制品中应用的研究进展

张司雨, 聂宇嫦, 夏明杰, 朱丹实, 杨立娜

张司雨,聂宇嫦,夏明杰,等. 热条件下膳食纤维对面筋蛋白的影响及其在面制品中应用的研究进展[J]. 食品工业科技,2025,46(5):387−396. doi: 10.13386/j.issn1002-0306.2024030365.
引用本文: 张司雨,聂宇嫦,夏明杰,等. 热条件下膳食纤维对面筋蛋白的影响及其在面制品中应用的研究进展[J]. 食品工业科技,2025,46(5):387−396. doi: 10.13386/j.issn1002-0306.2024030365.
ZHANG Siyu, NIE Yuchang, XIA Mingjie, et al. Research Progress on the Effect of Dietary Fiber on Gluten Proteins under Thermal Treatment and Its Application in Flour Products[J]. Science and Technology of Food Industry, 2025, 46(5): 387−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030365.
Citation: ZHANG Siyu, NIE Yuchang, XIA Mingjie, et al. Research Progress on the Effect of Dietary Fiber on Gluten Proteins under Thermal Treatment and Its Application in Flour Products[J]. Science and Technology of Food Industry, 2025, 46(5): 387−396. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030365.

热条件下膳食纤维对面筋蛋白的影响及其在面制品中应用的研究进展

基金项目: 国家重点研发计划资助(2022YFD2100302)。
详细信息
    作者简介:

    张司雨(2000−),女,硕士研究生,研究方向:粮油深加工,E-mail:1121548424@qq.com

    通讯作者:

    杨立娜(1987−),女,博士,教授,研究方向:粮油精深加工与副产物综合利用,E-mail:398510872@qq.com

  • 中图分类号: TS213.2

Research Progress on the Effect of Dietary Fiber on Gluten Proteins under Thermal Treatment and Its Application in Flour Products

  • 摘要: 近些年,随着膳食纤维(Dietary fiber,DF)在面制品中的应用越来越广,DF对面制品品质的影响也受到广泛关注。面筋蛋白的变化是面制品品质改变的主要因素之一,通过探究面筋蛋白体系的变化可以用来表征面制品品质的改变。热处理是面制品加工的必要步骤,加热可以改变DF与面筋蛋白的理化特性,影响DF和面筋蛋白的互作机制,赋予面制品特殊的感官体验。因此,本文分别阐述了不同热处理过程中DF与面筋蛋白结构特性的变化,热处理过程中DF对面筋蛋白的影响以及DF在热加工面制品中的应用概况,以期为高纤面制品的加工与改良提供理论参考。
    Abstract: In recent years, the application of dietary fiber (DF) in flour products has become increasingly widespread, and the impact of DF on the quality of flour products has also received widespread attention. The change of gluten proteins is one of the main factors affecting the quality of flour products. Exploring the changes in the gluten proteins system can be used to characterize changes in the quality of flour products. Thermal treatment is a necessary step in the processing of flour products. Heating can change the physicochemical properties of DF and gluten proteins, affect the interaction mechanism between DF and gluten proteins, and give flour products a special sensory experience. Therefore, this article elaborates on the changes in the structural characteristics of DF and gluten proteins during different thermal treatment processes, the impact of DF on gluten proteins during thermal treatment, and the application of DF in heat-processed flour products, in order to provide theoretical reference for the processing and improvement of high fiber flour products.
  • 小麦是世界上的主要粮食之一,小麦制品销售量已占全部主食类食品60%~70%[1]。过去近百年里,消费者热衷于追求更加精细的小麦制品,因为精白面制作出来的面制品不仅口感好,硬度、色泽等方面也表现优良。然而依据世界卫生组织统计显示[2],由于日常饮食中膳食纤维的缺少,越来越多的人开始患上高血压、糖尿病等慢性病。因此,为促进国民的饮食健康,富含膳食纤维(Dietary fiber,DF)的小麦制品不断涌现出来,以补充膳食纤维的短缺。然而,DF的添加在提升了麦制品的营养特性的同时也对产品的感官特性产生较大影响。主要包括亮度降低、产品体积减小以及粗糙的口感等,让很多消费者望而却步[1,3]。因此,为提高面制品的纤维含量,研究人员将不同种类与浓度的DF加入到面制品中来探究产品变化。Hager[4]将菊粉、β-葡聚糖等添加到小麦面团中,发现高含量DF会影响面团的流变特性与质构特性,导致面团变小变硬。为改善DF对面团的影响,也有很多学者选择对膳食纤维进行预处理,如挤压、分馏以及化学或酶改性等方法改善其对面团功能特性的影响[57]。然而,这些方法只能部分改善高纤维小麦食品的品质,感官接受度仍然有限[89]

    小麦面团的是一个复杂的作用系统,面粉之中各个成分的相互作用引发面筋网络发生不同的变化,这些成分之间的相互作用在小麦面团制作的每一步都会产生变化,如搅拌、整形、醒发、加热等[1011]。近年来的研究发现,DF会通过影响面筋蛋白的特性进而对小麦面团产生影响。虽然通过控制纤维含量、纯度以及分子参数等可以控制高纤小麦产品的质量缺陷,但DF-面筋相互作用对面筋网络结构和面团整体特性影响机制的研究相对分散,有些学者集中探讨面筋网络结构的变化,另一些则对面团流变特性进行集中讨论[1215]。Zhou等[16]和Li等[17]系统阐述了不同纤维与面筋蛋白之间的作用关系,Wang等[18]总结了热处理下淀粉-面筋蛋白体系的变化,但缺少了热处理下DF-面筋蛋白体系变化的相关总结。

    加热过程中,面团会发生水分蒸发、淀粉糊化、蛋白质变性等一系列物理化学反应,面筋蛋白的变性会影响面制品的结构和性能,是面制品发生不可逆变化的主要原因[18]。热处理过程中的面筋变化是一个复杂的动态过程,涉及化学相互作用的形成、破坏和重排,以及面筋分子的一系列折叠、去折叠和聚集行为[19]。随着温度的升高,面筋蛋白的化学基团发生断裂并形成新的化学键,从而产生新的表面性质,形成更大的蛋白质聚集体[2022]。近年来的研究结果也表明,不同的热处理温度下,DF会影响面筋蛋白的热性能,从而改变面筋分子的构象[19]。Si等[19]表示大量的WUAX会影响面筋的粘弹性,并使面筋的热性能变弱。在高温下,大量的WUAX具有很强的促进蛋白质聚集的能力[2324]

    在面制品制熟过程中,DF对面制品的品质变化的影响可以通过面筋蛋白的变化来体现,但已报道的热条件下DF与面筋蛋白之间相互作用的结果也存在较大差异[1516,2526]。因此,本文总结了热条件下DF对面筋蛋白的影响,并阐述了近年来DF在面制品中的应用情况,期望从热处理过程DF-蛋白质相互作用的最新结果中得出结论,为掌握更全面深入的食品加工理论和开发更健康的小麦制品提供参考。

    不同的热加工方式可以导致细胞壁结构的改变,影响膳食纤维组分的结构、含量和性质[2728]。在面制品烹饪温度范围内,DF在热处理中的变化主要表现在两个方面:一是含量的变化;二是分子特性的变化。Ozyurt等[29]研究发现热处理会将DF中不溶性膳食纤维(Insoluble dietary fiber,IDF)部分转变为可溶性膳食纤维(Soluble dietary fiber,SDF),SDF和IDF的比例发生了变化。随着加热温度升高到100 ℃左右,麦麸膳食纤维细胞壁破裂导致DF的含量逐渐减低[30];燕麦和高粱的总膳食纤维(Total dietary fiber,TDF)含量在煮沸(100~103 ℃)处理后显著升高,但大麦的TDF含量显著降低[3132]。Dong等[32]研究发现,100 ℃热处理会引发燕麦SDF的分子量和粒径增加;而当温度达到121 ℃时,燕麦SDF的分子量和粒径开始降低。热加工过程会改变β-葡聚糖的分子量与分子大小,但对官能团的组成并无较大影响[3334]。不同的DF受温度影响的产生的变化存在较大差异,因此不可一概而论,逐步增加对热处理过程中不同DF变化的研究会对高纤食品的生产加工产生重大影响。

    面筋蛋白是一种高分子量蛋白质,主要由麦谷蛋白和麦醇溶蛋白组成[16]。二者的相互纠缠使得面团形成网络结构,麦谷蛋白和麦醇溶蛋白暴露的游离巯基(-SH)通过氧化反应或参与SH/SS交换反应形成S-S键[35]。加热会使面筋蛋白结合,形成大的蛋白质聚集体。热诱导是面筋聚集、产品骨架网络形成的主要因素,并决定了产品的最终体积和质地[36]。热处理过程中面筋蛋白内部结构的变化如图1所示。随着加热温度的升高,面筋网络逐步形成,杂乱的多肽链在升温过程中通过化学键等因素相互聚集,形成有序的面筋网络。在20~40 ℃时,氢键的相互作用发生变化,但不影响网络的化学结构[35];而在45 ℃时,蛋白质上疏水区域则会暴露,分子间氢键发生断裂,但是位于蛋白质亚基上的巯基并没有完全暴露;随着温度进一步升高,面筋蛋白疏水区域的广泛暴露导致面筋蛋白开始疏水性聚集,-SH/SS基团之间开始发生交换反应[3739]。当温度达到60 ℃时,氢键断裂加剧,面筋蛋白中游离巯基含量略有降低,热处理会引发面筋蛋白变性从而使被埋藏的巯基基团易于接近,导致-SH氧化或-SH/SS交换相互作用[38]。当温度进一步升高至90 ℃以上时,疏水相互作用增强,-SH氧化以及-SH/SS交换反应增加;醇溶蛋白会通过-SH/SS交换反应参与面筋网络形成聚集体,从而产生致密的网络结构[4041]。但是当温度高于100 ℃时,蛋白质则会发生水化和变性,面筋网络结构产生永久性交联,不再发生变化[21]。面筋网络的形成与聚集离不开温度的变化,这也是面制品富有弹性的主要原因之一,对于控制面制品品质有重要意义。

    图  1  热处理过程中面筋蛋白的变化
    Figure  1.  Changes in gluten protein during heat treatment

    不同的处理温度下,面筋蛋白会表现出不同的特性,但当DF进入到面团体系当中时,DF会改变面筋蛋白原本的特征,从而使其形成粗糙的面筋网络,最终加剧产品品质的劣化,热处理过程中DF对面筋蛋白的影响如图2所示。加热改变了DF与面筋蛋白之间的交联,减少了DF引起的面筋蛋白解聚,在一定程度上促进了面筋聚集体的形成,增加了蛋白质的连通性[4243]。基于面筋蛋白在不同温度下的分子间变化,本文分别从DF与面筋蛋白在共价键和非共价键上的相互作用机制以及其在二级结构和高阶分子间的结构特征进行阐述。

    图  2  热处理过程中DF对面筋蛋白的影响
    注:A:麦麸膳食纤维(WBDF)在热处理下诱导麦醇溶蛋白二级结构变化的假说示意图[43];B:热处理过程中DF对面筋蛋白的影响的变化。
    Figure  2.  Effect of DF on gluten protein during heat treatment

    在面筋蛋白体系中,普遍存在的是共价S-S键,S-S键也是维持和判断面筋蛋白稳定性最主要的因素之一[44]。目前普遍的研究认为,在面筋体系中S-S键与游离巯基的含量一直都是此消彼长的,但也有研究表示,游离巯基含量的下降也有可能是转化为非S-S键进入到面筋蛋白体系[4546]。不同DF在热处理中对于-SH、S-S键含量变化的影响如表1所示。

    表  1  热处理下DF对面筋蛋白-SH、S-S键含量变化的影响
    Table  1.  Effect of DF on changes in gluten -SH and S-S bond content under heat treatment
    DF种类 温度范围(℃) S-S -SH 可利用-SH 参考文献
    25~60 增加 [1819,47]
    60~95 降低
    WBDF 20~100 降低 [48]
    25~60 增加 [43,49]
    60~95 降低
    20~100 降低 [48]
    魔芋葡甘聚糖(KGM) 20~100 降低 [12]
    25~55 降低 降低 [50]
    55~95 降低 增加
    菊粉 100 降低
    低酯柑橘果胶 25~60 降低 增加 [51]
    60~95 增加 降低
    不溶性阿拉伯木聚糖(WUAX) 30~50 增加 [19]
    水溶性阿拉伯木聚糖(WEAX) 25~95 降低 [52]
    小麦阿拉伯木聚糖 25~95 降低 [53]
    下载: 导出CSV 
    | 显示表格

    Wen等[48]在5种不同温度下探究了WBDF对面筋中-SH含量的影响发现,随着温度的升高,体系中的SHfree含量逐渐减少,与不添加DF时的变化趋势一致。同样的现象也发生在含有KGM的小麦面团中[50]。但Wang等[50]表示高KGM添加量下,-SH的含量在55 ℃升温到95 ℃的过程中逐步上升。有人指出KGM对-SH含量的影响可能是在面筋蛋白聚合过程中起到填充作用,通过抑制热转变来延缓蛋白质变性,从而维持面筋的原始折叠[52]。Bao等[49]在研究WBDF与面筋蛋白的作用中也得出类似的结论。无论是WUAX还是果胶,在加热过程中,面筋蛋白中-SH含量的变化均是先增加后减少[51]。这主要是因为加热致面筋蛋白构象发生变化,暴露出更多-SH基团的区域,而当DF这些外源物质进入后,DF自身特殊的性质会改变原有的面筋体系形成模式。比如果胶分子中有更多的游离羧基可以容纳更多的水,水中的氧则可以促进-SH向S-S键转化,麸皮膳食纤维亦是如此[5455]。WUAX与面筋蛋白之间的非共价相互作用或物理纠缠会破坏面筋蛋白间的共价交联,减少S-S键的形成;同时WUAX较大的空间位阻也会降低-SH相互接触的机会,导致-SH含量增加,但是这些反应的程度也取决于体系中-SH的浓度[51,56]

    S-S键构象的变化也是判断DF对面制品品质影响的重要因素。在加热过程中,WEAX会降低S-S键的稳定性[57],而低浓度的WEAX在75 ℃和95 ℃等较高温度下有助于保持蛋白质稳定[58];这可能是由于高温下谷蛋白和醇溶蛋白分子间的交联反应增加。此外,WEAX还可以促进S-S键诱导谷蛋白分子内与分子间的聚合集,但这也可能导致多肽链位移,从而出现异常的蛋白质折叠和亚基聚集[57,59]。加热过程会使S-S键的含量增加,在加热过程中DF会通过促进或阻碍-SH的形成和转化而改变面筋网络的状态,但这也与DF自身特性密切相关。

    在整个面筋体系中,非共价键主要由氢键、疏水作用以及静电作用组成[34]。而在热处理过程中,这些非共价相互作用主导了谷蛋白大聚合物的形成[22]。果胶、卡拉胶可能会与面筋蛋白发生静电相互作用;菊粉、纤维多糖等则可能会通过疏水作用影响蛋白质的构象[6061]。热处理过程中DF-面筋蛋白之间氢键、疏水作用与静电作用的变化如图3所示。随着温度的升高,氢键作用逐渐增强,静电相互作用逐渐增加;疏水作用则表现出先增加后降低的趋势。

    图  3  热处理过程中DF-面筋蛋白之间非共价键的变化
    Figure  3.  Changes in non-covalent bonds between DF-gluten proteins during heat treatment

    蛋白质分子间氢键减少会降低面筋蛋白的分子间交联[62]。DF的加入会限制面筋蛋白分子的运动,Nawrocka等[63]研究SDF和IDF与面筋蛋白之间的相互作用发现,一些SDF会通过与面筋蛋白相互作用而减少分子间氢键[64]。还有解释称DF的空间位阻会减少热处理过程中面筋分子链之间的接触,从而削弱氢键作用[57]。而WBDF会在加热过程中增强分子间的氢键作用[43]。Liu等[65]指出热处理过程中,菊粉面团氢键作用的增强可能是由于菊粉会与面筋分子的长链亚基或侧链氨基酸之间形成氢键,但同时也会阻碍肽链的折叠,进而影响面筋网络的连续性。与此同时,当添加大分子量的菊粉时,大分子量的菊粉会占据面筋网络中多余的空间与蛋白质链接触形成氢键,并赋予空间位阻,从而阻断肽链的聚集,引发氢键强度的增加。

    虽然DF与面筋之间的主要作用力是氢键[66],但疏水作用在热诱导小麦谷蛋白凝胶形成中也至关重要[67]。热处理使疏水基团暴露,DF可以与面筋蛋白体系中的疏水位点结合,进而屏蔽疏水位点,从而诱导或改变体系的面筋蛋白构象。Liu等[65]探究热诱导菊粉-小麦蛋白凝胶时证实,低浓度与高浓度的菊粉与面筋蛋白之间的主要非共价力是疏水相互作用。也有研究表示,高浓度的KGM可能会在55 ℃左右增强麦谷蛋白高分子量亚基重复区的疏水相互作用[68]。对于添加了WUAX的体系来说,加热过程中分子相互作用发生重排,WUAX会通过疏水侧链扩展蛋白质的疏水核心,从而影响面筋蛋白的变性或聚集,使得其在25 ℃与95 ℃时表现出不一样的疏水作用强度[36,51,69]。Bao等[43]也发现WBDF参与了加热过程中麦谷蛋白和麦醇溶蛋白的分子重排,在25、60 ℃时增强了麦谷蛋白和麦醇溶蛋白之间的疏水相互作用,而在95 ℃和130 ℃时减弱了这种作用。但Wang等[35]却表示WBDF在95 ℃时会增强疏水相互作用,这可能是由于分子间相互作用在加热过程中发生了展开和重排。并不是所有的DF在热处理过程中都会增强面筋蛋白的疏水作用。菊粉的添加会对系统中的疏水相互作用产生抑制作用[51,65]。低酯果胶则会降低谷蛋白表面疏水区域,使得未折叠的面筋蛋白暴露疏水性氨基酸残基。

    面团中的一些单体蛋白质会通过静电相互作用进行聚集。Iwaki等[70]发现,当DF进入到面筋体系中时,会对蛋白质分子之间的静电相互作用产生阻断和屏蔽作用,但是这种作用也会受到DF浓度与种类的限制[65,71]。Wang等[55]表示热处理下高浓度的IDF的静电相互作用始终低于低浓度的IDF,从而引发面筋结构稳定性降低。因为当大量的DF混入到体系中时,其空间位阻效应远大于其他作用力,导致静电作用降低。这种影响还发生在氢键以及面筋蛋白的二级结构中。较高温度下,面筋表面的疏水性氨基酸残基被掩埋,谷蛋白处于聚集状态,低酯果胶有可能通过静电相互作用与这些氨基酸残基反应,从而形成更多的蛋白质聚集体[51,7273]。然而,高温蒸煮时DF与蛋白质间的静电作用相比于低温处理下的更低。

    蛋白的二级结构对面筋网络的形成起着至关重要的作用。二级结构的稳定性主要是由氢键等非共价键维持;热诱导过程中面筋蛋白的展开和折叠是由S-S键重排、氢键和疏水作用协同影响的[74]。蛋白质的二级结构特征取决于α-螺旋、β-折叠、β-转角和无规则卷曲等结构[75]。面筋网络的关键成分是谷蛋白的分子间的交联,这与β-折叠的形成紧密相连[76]。一般来说,α-螺旋结构反映了蛋白质的折叠过程,而β-折叠结构是参与DF与谷蛋白互作关键部分也是分子聚集变化的重要证明[7778]。因此,加热过程中温度影响DF与谷蛋白分子链内的折叠,增强谷蛋白分子聚集的过程可以通过探究体系中α-螺旋、β-折叠、以及β-转角的含量来判断[43]。许多研究阐明了热处理过程中DF-面筋系统的二级结构的变化,表2中列出了不同种类DF在热处理下对面筋蛋白二级结构的影响。

    表  2  热处理下不同DF对面筋蛋白二级结构变化的影响
    Table  2.  Effects of different DF on the secondary structure changes of gluten protein under heat treatment
    DF种类 温度范围(℃) α-螺旋 β-折叠 β-转角 无卷曲结构 参考文献
    25~50 减少 减少 增加 [67]
    50~90 增加 增加 增加 减少
    WEAX 20~50 增加 减少 减少 [57]
    50~95 增加 增加 减少
    25~95 减少 增加 [58]
    小麦膳食纤维 25~60 增加 减少 [49]
    60~95 减少 增加
    WUAX 25~60 增加 减少 [19]
    60~95 减少 增加
    KGM 25~55 减少 减少 增加 增加 [50]
    55~95 增加 增加 减少 减少
    低酯柑橘果胶 25~95 减少 增加 [51]
    高分子量菊粉 100 减少 [65]
    WBDF 25~60 增加 [43]
    60~95 减少
    95~130 增加
    下载: 导出CSV 
    | 显示表格

    在不同温度下,DF对于蛋白质二级结构的影响会因DF种类的变化而变化;较高的加热温度会引发分子间氢键作用力减弱导致β-折叠含量降低;但一些DF的加入则会延缓热处理过程中氢键强度的减弱。Zhu等[25]证实了75 ℃前WEAX可以通过维持氢键强度进而减弱β-折叠含量的降低。β-折叠含量的变化还可以归因于DF中丰富的羟基与面筋蛋白形成氢键[56]。在较高的温度下(95 ℃),KGM中的氢键较弱,展开的KGM暴露出更多的羟基,从而增强了与面筋蛋白的物理纠缠效应。Wen等[48]也证实了在温度升高的过程中,DF对面筋蛋白的包裹越来越紧(图4[78]。而当添加的DF的浓度过高,其空间位阻效应则会高于氢键,最终导致β-折叠含量的下降[49]β-转角在热条件下会向β-折叠转化,从而促进蛋白质的聚集。加热引发WEAX的空间位阻会加快β-转角的转化,可以使面筋蛋白保持抗性并稳定其构象;而在25 ℃下,由于WEAX支链主链的高度空间位阻,β-折叠、β-转角的含量会同时减少,这主要归因于热条件在改变面筋蛋白内部结构的同时,也使得DF的特性发生了改变[57]

    图  4  20 ℃与100 ℃下DF与面筋蛋白缠绕的SEM图[48]
    Figure  4.  SEM images of gluten protein entanglement with DF at 20 ℃ and 100 ℃[48]

    加热可以促进面筋蛋白非共价聚集,形成蛋白质聚集体,使β-折叠含量增加,提高面筋的稳定性,β-折叠含量是加热时蛋白质折叠状态的关键指标[57]。面筋蛋白的水合程度主导着二级结构之间的转化,水分会影响β-折叠和β-转角之间的平衡[17]。对于IDF来说,β-折叠含量的变化有可能是由于水分的竞争而引起的;具有相对较高的水结合能力的DF会与面筋蛋白之间竞争水分,进而影响二级结构含量的变化。在较低温度下,WUAX诱导面筋分子展开或解聚以暴露更多疏水区域;而在较高的加热温度(75~95 ℃)下,WUAX诱导蛋白链的延伸减少了β-折叠含量,增了强蛋白质聚集的能力[26]。但也有人表示随着加热温度的升高,果胶通过与氨基酸和水相互作用延缓β-折叠含量的上升,从而延缓面筋样品的聚集行为[51]。Si等[19]探究热处理过程中WUAX与面筋蛋白之间的相互作用发现,WUAX通过在25 ℃时与面筋蛋白竞争水分而导致蛋白分子展开,然后在温度升高到60 ℃左右的过程中,由于水分重新分配,分子间作用力重排,面筋分子的疏水相互作用则会增强,进而引发分子链内的氢键断裂;DF吸水膨胀后有利于水合键的形成,加剧DF与面筋蛋白之间的物理纠缠,从而使β-折叠含量的降低[19,51]

    此外,Fan等[79]根据“train and loop”结构模型推测β-折叠含量的增加可能与WBDF中高分子量亚基或氨基酸侧链与游离羟基之间形成氢键有关。据报道,β-转角结构可在一定变形范围内增强肽链的延展性,因为使“loop”区变形所需的能量小于“unzip”和“train”区所需的能量,从而可能促进谷蛋白的延展性[30,35]。然而,添加膳食纤维导致β-转角含量降低。WBDF可能有更多可用的羟基,这些羟基在β-转角结构中容易与氢结合,导致β-转角的数量减少。

    不同温度下,DF-面筋蛋白的二级结构含量是显著变化的,这与DF的含量、性状和来源有着很大的关系。首先,在温度变化时,DF释放的羟基会对氢键造成影响,且影响强度随着DF的浓度变化而变化;较高温度下也会产生静电作用,延缓氢键作用力的减弱,DF的空间位阻作用也是使得β-折叠含量变化的重要因素之一。其次,DF会在温度升高的同时与面筋蛋白竞争水分;加热之前,有强大水结合能力的DF吸收了大量的游离水,形成凝胶介入到体系中去,或以疏水作用改变氢键强度,从而干扰蛋白聚集体的形成[80]。这些作用力的改变最终会反映在β-折叠的含量上,进而影响面筋蛋白的聚集效应。

    DF在面制品中的应用已经是普遍存在的现象,很多研究人员会根据DF特有的性质来应用到面制品中从而改善面制品的感官特性及营养特性等。大部分DF的使用是为了提高面制品中DF的含量,增强其营养特性;还有一部分是用于改善面制品的品质特性[27,8187]。就目前的小麦加工产品来看,主要分为蒸煮与烘烤两种加工方式。其中大多数中式面点如馒头、面条等大都使用蒸煮的加工方式,由于溶液的沸点与气压等条件的限制,蒸煮的最大温度只能达到100 ℃左右。但是面包、馕等产品一般采用烘烤的方式进行加工,其最大加工温度可达250 ℃左右。图5展示了DF在热加工面制品中的应用,不同来源的DF被加入到面团中制成可食用的面制品。

    图  5  DF在热加工面制品中的应用
    Figure  5.  Application of DF in heat-processed flour products

    蒸煮类面制品的特点是在加热过程中水分的持续吸收,其加热温度一般在100 ℃左右[88]。将桑葚果渣加入到意大利面中后明显提高了其DF的含量,适当的添加桑葚果渣有利于意大利面口感与外观的改善,但是面团的拉伸特性显著降低[89]。同样的,包子皮、馒头在蒸煮过程中也会受到不同DF的影响,其中IDF由于较强的空间位阻效应对面制品品质的影响最大,增加了产品的硬度,但随着温度的升高面团的硬度会逐渐减小[9093]。类似的现象还出现在富含WBDF和原料麦麸的馒头中,且李晓宁等[94]还发现WBDF和原料麦麸还会够抑制馒头中淀粉的体外消化。几乎所有的DF都有一定的水分保持能力,这可以增加面制品整体的含水量从而改善口感,SDF的效果更佳。大豆膳食纤维较强的持水性,可与部分面筋蛋白更好地结合吸水,形成坚实的网络结构,当少量存在时有利于面条品质的提升,减少蒸煮损失率,延缓血糖的上升[95]

    虽然在蒸煮类面制品中DF与面筋蛋白对于水分的竞争不是很明显,但对烘烤类产品会造成很大的影响。烘烤类面制品的特点是通过加热减少面团中的水分来延长面制品的贮藏时间、赋予特殊香味以及改善口感等[96]。面包的制作温度一般是180 ℃左右,部分法棍面包的烘烤温度可达250 ℃。瓜尔胶中含有较多的亲水性基团与面筋蛋白竞争水分子,会减少在烘烤过程中水分的蒸发,进而会使面包的口感更松软[97]。杨烁等[96]表示,不溶性纤维含量高、持水性高、乳化性强的DF更有利于冷冻面团面包质地柔软、比容增大、感官性质良好,如竹纤维、小麦纤维和甘蔗纤维等。类似的研究也表示面包的硬度随着葡萄渣粉、香蕉苞片膳食纤维含量的增加而增加,DF弱化了面筋网络,使得气体保持能力变差,面包中心则会产生湿软塌陷等问题[7,81,9899]。与之类似的还有添加玉米须膳食纤维后面包的比容更小,颜色更深,硬度增大,孔隙率降低;但与此同时,玉米须膳食纤维对于维持血糖稳定有一定的功效[100]

    对于小麦制品来说,热加工对于产品品质有着重大影响,它会影响产品的外观色泽,口感品质以及营养特性等。在加热之前,有些DF会通过竞争水分,导致面筋蛋白异常聚集;随着温度的上升(20~40 ℃),分子间氢键发生断裂,DF可能会与面筋分子的长链亚基或侧链氨基酸之间形成氢键,阻碍肽链的折叠,影响分子链的流动性;当温度进一步升高时(40~60~90 ℃),面筋蛋白疏水区域的广泛暴露导致面筋蛋白开始疏水性聚集,面筋蛋白开始出现-SH/SS交换,DF可以通过其疏水侧链扩展蛋白质的疏水核心;在较高的加热温度下(90~100 ℃),谷蛋白处于聚集状态,部分DF有可能通过静电作用与氨基酸残基反应,进而影响面筋蛋白的构象,导致面制品硬度大,口感差等问题出现。空间位阻效应可能会贯穿整个加热过程。近几年的研究大都集中于探究不同种类与浓度的DF对于面筋蛋白的特性的影响,对于二者之间如何作用的研究还是相对较少;探究热条件下不同DF自身特性与面筋蛋白的作用方式,尤其是高温条件下的交互形式对于改善某种DF对面制品的影响有很大的实际意义。与此同时,目前针对于DF在面制品中的应用在100 ℃以下的研究已经普遍存在,且主要针对于面制品的形态、感官以及营养特性的考察与探究,但是对于更高温度下DF的变化对于改变面制品品质的机制、内部变化机理的了解甚少,因此加强对于更高温度下DF对面制品内部影响机制的研究可能会为未来DF在烘烤类面制品的应用提供参考。

  • 图  1   热处理过程中面筋蛋白的变化

    Figure  1.   Changes in gluten protein during heat treatment

    图  2   热处理过程中DF对面筋蛋白的影响

    注:A:麦麸膳食纤维(WBDF)在热处理下诱导麦醇溶蛋白二级结构变化的假说示意图[43];B:热处理过程中DF对面筋蛋白的影响的变化。

    Figure  2.   Effect of DF on gluten protein during heat treatment

    图  3   热处理过程中DF-面筋蛋白之间非共价键的变化

    Figure  3.   Changes in non-covalent bonds between DF-gluten proteins during heat treatment

    图  4   20 ℃与100 ℃下DF与面筋蛋白缠绕的SEM图[48]

    Figure  4.   SEM images of gluten protein entanglement with DF at 20 ℃ and 100 ℃[48]

    图  5   DF在热加工面制品中的应用

    Figure  5.   Application of DF in heat-processed flour products

    表  1   热处理下DF对面筋蛋白-SH、S-S键含量变化的影响

    Table  1   Effect of DF on changes in gluten -SH and S-S bond content under heat treatment

    DF种类 温度范围(℃) S-S -SH 可利用-SH 参考文献
    25~60 增加 [1819,47]
    60~95 降低
    WBDF 20~100 降低 [48]
    25~60 增加 [43,49]
    60~95 降低
    20~100 降低 [48]
    魔芋葡甘聚糖(KGM) 20~100 降低 [12]
    25~55 降低 降低 [50]
    55~95 降低 增加
    菊粉 100 降低
    低酯柑橘果胶 25~60 降低 增加 [51]
    60~95 增加 降低
    不溶性阿拉伯木聚糖(WUAX) 30~50 增加 [19]
    水溶性阿拉伯木聚糖(WEAX) 25~95 降低 [52]
    小麦阿拉伯木聚糖 25~95 降低 [53]
    下载: 导出CSV

    表  2   热处理下不同DF对面筋蛋白二级结构变化的影响

    Table  2   Effects of different DF on the secondary structure changes of gluten protein under heat treatment

    DF种类 温度范围(℃) α-螺旋 β-折叠 β-转角 无卷曲结构 参考文献
    25~50 减少 减少 增加 [67]
    50~90 增加 增加 增加 减少
    WEAX 20~50 增加 减少 减少 [57]
    50~95 增加 增加 减少
    25~95 减少 增加 [58]
    小麦膳食纤维 25~60 增加 减少 [49]
    60~95 减少 增加
    WUAX 25~60 增加 减少 [19]
    60~95 减少 增加
    KGM 25~55 减少 减少 增加 增加 [50]
    55~95 增加 增加 减少 减少
    低酯柑橘果胶 25~95 减少 增加 [51]
    高分子量菊粉 100 减少 [65]
    WBDF 25~60 增加 [43]
    60~95 减少
    95~130 增加
    下载: 导出CSV
  • [1]

    SIRBU A, ARGHIRE C. Functional bread:Effect of inulin-type products addition on dough rheology and bread quality[J]. Journal of Cereal Science,2017,75:220−227. doi: 10.1016/j.jcs.2017.03.029

    [2]

    World Health Organization. WHO global report on traditional and complementary medicine 2019[M]. World Health Organization, 2019.

    [3]

    LIU Z. Application of dietary fiber from agricultural products in bread[D]. Guelph:University of Guelph, 2019.

    [4]

    HAGER A S. Cereal products for specific dietary requirements. Evaluation and improvement of technological and nutritional properties of gluten free raw materials and end products[D]. Cork:University College Cork, 2013.

    [5]

    HARTIKAINEN K, POUTANEN K, KATINA K. Influence of bioprocessed wheat bran on the physical and chemical properties of dough and on wheat bread texture[J]. Cereal Chemistry,2014,91(2):115−123. doi: 10.1094/CCHEM-04-13-0074-R

    [6]

    AKTAS-AKYILDIZ E, MATTILA O, SOZER N, et al. Effect of steam explosion on enzymatic hydrolysis and baking quality of wheat bran[J]. Journal of Cereal Science,2017,78:25−32. doi: 10.1016/j.jcs.2017.06.011

    [7]

    ORTIZ DE ERIVE M, WANG T, HE F, et al. Development of high-fiber wheat bread using microfluidized corn bran[J]. Food Chemistry,2020,310:125921. doi: 10.1016/j.foodchem.2019.125921

    [8]

    GÓMEZ M, JIMÉNEZ S, RUIZ E, et al. Effect of extruded wheat bran on dough rheology and bread quality[J]. LWT-Food Science and Technology,2011,44(10):2231−2237. doi: 10.1016/j.lwt.2011.06.006

    [9]

    SUI W, XIE X, LIU R, et al. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough[J]. Food Hydrocolloids,2018,84:571−580. doi: 10.1016/j.foodhyd.2018.06.027

    [10]

    SIVAM A S, SUN-WATERHOUSE D, PERERA C O, et al. Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols[J]. Food Research International,2013,50(2):574−585. doi: 10.1016/j.foodres.2011.03.039

    [11]

    MIR S A, SHAH M A, NAIK H R, et al. Influence of hydrocolloids on dough handling and technological properties of gluten-free breads[J]. Trends in Food Science & Technology,2016,51:49−57.

    [12]

    CUI T, ZHOU X, SUI W, et al. Effects of thermal-induced konjac glucomannan-protein interaction on structural and rheological properties of wheat dough[J]. Food Structure,2022,33:100288. doi: 10.1016/j.foostr.2022.100288

    [13]

    HU X, CHENG L, HONG Y, et al. Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough[J]. International Journal of Biological Macromolecules,2022,206:534−542. doi: 10.1016/j.ijbiomac.2022.02.150

    [14]

    MA S, WANG Z, LIU H, et al. Supplementation of wheat flour products with wheat bran dietary fiber:Purpose, mechanisms, and challenges[J]. Trends in Food Science & Technology,2022,123:281−289.

    [15]

    LI X, WANG L, JIANG P, et al. The effect of wheat bran dietary fibre and raw wheat bran on the flour and dough properties:A comparative study[J]. LWT,2023,173:114304. doi: 10.1016/j.lwt.2022.114304

    [16]

    ZHOU Y, DHITAL S, ZHAO C, et al. Dietary fiber-gluten protein interaction in wheat flour dough:Analysis, consequences and proposed mechanisms[J]. Food Hydrocolloids,2021,111:106203. doi: 10.1016/j.foodhyd.2020.106203

    [17]

    LI M, LI L, SUN B, et al. Interaction of wheat bran dietary fiber-gluten protein affects dough product:A critical review[J]. International Journal of Biological Macromolecules, 2024, 128199.

    [18]

    WANG Z, MA S, SUN B, et al. Effects of thermal properties and behavior of wheat starch and gluten on their interaction:A review[J]. International Journal of Biological Macromolecules,2021,177:474−484. doi: 10.1016/j.ijbiomac.2021.02.175

    [19]

    SI X, LI T, ZHANG Y, et al. Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment[J]. Food Chemistry,2021,345:128785. doi: 10.1016/j.foodchem.2020.128785

    [20]

    CHYLIŃSKA M, SZYMAŃSKA-CHARGOT M, ZDUNEK A. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall[J]. Carbohydrate Polymers,2016,154:48−54. doi: 10.1016/j.carbpol.2016.07.121

    [21]

    BHATTACHARJEE S, MAHON E, HARRISON S M, et al. Nanoparticle passage through porcine jejunal mucus:Microfluidics and rheology[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2017,13(3):863−873. doi: 10.1016/j.nano.2016.11.017

    [22]

    YANG Y L, GUAN E Q, ZHANG T J, et al. Behavior of wheat flour dough at different pretreated temperatures through rheological characteristics and molecular interactions of proteins[J]. Food Chemistry,2023,404:134188. doi: 10.1016/j.foodchem.2022.134188

    [23]

    STĂNCIUC N, APRODU I, RÂPEANU G, et al. Fluorescence spectroscopy and molecular modeling investigations on the thermally induced structural changes of bovine β-lactoglobulin[J]. Innovative Food Science & Emerging Technologies,2012,15:50−56.

    [24]

    WANG P, ZOU M, TIAN M, et al. The impact of heating on the unfolding and polymerization process of frozen-stored gluten[J]. Food Hydrocolloids,2018,85:195−203. doi: 10.1016/j.foodhyd.2018.07.019

    [25]

    ZHU X F, TAO H, WANG H L, et al. Impact of water soluble arabinoxylan on starch-gluten interactions in dough[J]. LWT,2023,173:114289. doi: 10.1016/j.lwt.2022.114289

    [26]

    XU K, KUANG J. Effects of thermal treatment on the physicochemical and structural properties of wheat gluten proteins:Insights from gluten, glutenin, and gliadin fractions[J]. International Journal of Food Science & Technology,2024,59:2275−2285.

    [27]

    STOJCESKA V, AINSWORTH P, PLUNKETT A, et al. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products[J]. Food Chemistry,2010,121(1):156−164. doi: 10.1016/j.foodchem.2009.12.024

    [28]

    LI Q, LIU R, WU T, et al. Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy[J]. Food Research International,2017,95:19−27. doi: 10.1016/j.foodres.2017.02.021

    [29]

    OZYURT V H, ÖTLES S. Effect of food processing on the physicochemical properties of dietary fibre[J]. Acta Scientiarum Polonorum Technologia Alimentaria,2016,15(3):233−245. doi: 10.17306/J.AFS.2016.3.23

    [30]

    JOHANSSON M. Dietary fibre composition and sensory analysis of heat treated wheat and rye bran[J]. Second Cycle, A2E. Uppsala:SLU, Dept. of Food Science. 2012, 351.

    [31]

    FANG F, HE Y, ZHAO J, et al. Effects of boiling and steaming process on dietary fiber components andin vitro fermentation characteristics of 9 kinds of whole grains[J]. Food Research International,2023,164:112328. doi: 10.1016/j.foodres.2022.112328

    [32]

    DONG J L, YANG M, SHEN R L, et al. Effects of thermal processing on the structural and functional properties of soluble dietary fiber from whole grain oats[J]. Food Science and Technology International,2018,25(4):282−294.

    [33]

    DONG J L, YANG M, ZHU Y Y, et al. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation[J]. Food Research International,2020,138:109818. doi: 10.1016/j.foodres.2020.109818

    [34]

    COMINO P, COLLINS H, LAHNSTEIN J, et al. Effects of diverse food processing conditions on the structure and solubility of wheat, barley and rye endosperm dietary fibre[J]. Journal of Food Engineering,2016,169:228−237. doi: 10.1016/j.jfoodeng.2015.08.037

    [35]

    WANG P, ZOU M, LIU K, et al. Effect of mild thermal treatment on the polymerization behavior, conformation and viscoelasticity of wheat gliadin[J]. Food Chemistry,2018,239:984−992. doi: 10.1016/j.foodchem.2017.07.029

    [36]

    LAGRAIN B, THEWISSEN B G, BRIJS K, et al. Mechanism of gliadin–glutenin cross-linking during hydrothermal treatment[J]. Food Chemistry,2008,107(2):753−760. doi: 10.1016/j.foodchem.2007.08.082

    [37]

    PENG K, GAO Y, ANGSANTIKUL P, et al. Modulation of gastrointestinal mucus properties with ionic liquids for drug delivery[J]. Advanced Healthcare Materials,2021,10(13):2002192. doi: 10.1002/adhm.202002192

    [38]

    LI Y, ARRANZ E, GURI A, et al. Mucus interactions with liposomes encapsulating bioactives:Interfacial tensiometry and cellular uptake on Caco-2 and cocultures of Caco-2/HT29-MTX[J]. Food Research International,2017,92:128−137. doi: 10.1016/j.foodres.2016.12.010

    [39]

    FENG Y, FENG X, LIU S, et al. Effects of dietary fiber and ferulic acid on dough characteristics and glutenin macropolymer (GMP) aggregation behavior during dough resting[J]. LWT,2022,166:113782. doi: 10.1016/j.lwt.2022.113782

    [40]

    LUO Y, LI M, ZHU K X, et al. Heat-induced interaction between egg white protein and wheat gluten[J]. Food Chemistry,2016,197:699−708. doi: 10.1016/j.foodchem.2015.09.088

    [41]

    LIU H, LIANG Y, ZHANG S, et al. Cooking mediated wheat gluten aggregation behavior:Physicochemical properties and component changes[J]. Food Hydrocolloids,2023,144:108957. doi: 10.1016/j.foodhyd.2023.108957

    [42]

    MA S, HAN W, LI L, et al. Small and large strain rheology of gluten and gluten–starch doughs containing wheat bran dietary fiber[J]. Journal of the Science of Food and Agriculture,2019,100(1):177−183.

    [43]

    BAO Q, YAN J, WANG Z, et al. Changes in the structure and aggregation behavior of wheat glutenin and gliadin induced by the combined action of heat treatment and wheat bran dietary fiber[J]. Food Hydrocolloids,2024,148:109506. doi: 10.1016/j.foodhyd.2023.109506

    [44]

    HU F, LI J Y, ZOU P R, et al. Effects of Lycium barbarum on gluten structure, in vitro starch digestibility, and compound noodle quality[J]. Food Bioscience,2023,54:102915. doi: 10.1016/j.fbio.2023.102915

    [45]

    HAN W, MA S, LI L, et al. Gluten aggregation behavior in gluten and gluten-starch doughs after wheat bran dietary fiber addition[J]. LWT,2019,106:1−6. doi: 10.1016/j.lwt.2019.02.051

    [46]

    CUI T, LIU R, WU T, et al. Influence of konjac glucomannan and frozen storage on rheological and tensile properties of frozen dough[J]. Polymers,2019,11(5):794. doi: 10.3390/polym11050794

    [47]

    LIU R, SHI C, SONG Y, et al. Impact of oligomeric procyanidins on wheat gluten microstructure and physicochemical properties[J]. Food Chemistry,2018,260:37−43. doi: 10.1016/j.foodchem.2018.03.103

    [48]

    WEN W, LI S, GU Y, et al. Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions[J]. Food Hydrocolloids,2020,108:106080. doi: 10.1016/j.foodhyd.2020.106080

    [49]

    BAO Q, YAN J, MA S. Effect of heat treatment on conformation and aggregation properties of wheat bran dietary fiber-gluten protein[J]. International Journal of Biological Macromolecules,2023,253:127164. doi: 10.1016/j.ijbiomac.2023.127164

    [50]

    WANG Y, CHEN Y, ZHOU Y, et al. Effects of konjac glucomannan on heat-induced changes of wheat gluten structure[J]. Food Chemistry,2017,229:409−416. doi: 10.1016/j.foodchem.2017.02.056

    [51]

    SHI W, CHEN J, CUI Y, et al. Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree[J]. Food Hydrocolloids,2024,147:109420. doi: 10.1016/j.foodhyd.2023.109420

    [52]

    ZHAO X, HOU C, TIAN M, et al. Effect of water-extractable arabinoxylan with different molecular weight on the heat-induced aggregation behavior of gluten[J]. Food Hydrocolloids,2020,99:105318. doi: 10.1016/j.foodhyd.2019.105318

    [53]

    WANG P, WANG G, ZHANG Y, et al. Impact of Wheat arabinoxylan with defined substitution patterns on the heat-induced polymerization behavior of gluten[J]. Journal of Agricultural and Food Chemistry,2022,70(46):14784−14797. doi: 10.1021/acs.jafc.2c05236

    [54]

    MARTI A, BOCK J E, PAGANI M A, et al. Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour[J]. Food Chemistry,2016,194:994−1002. doi: 10.1016/j.foodchem.2015.08.082

    [55]

    WANG C C, YANG Z, GUO X N, et al. Effects of insoluble dietary fiber and ferulic acid on the quality of steamed bread and gluten aggregation properties[J]. Food Chemistry,2021,364:130444. doi: 10.1016/j.foodchem.2021.130444

    [56]

    ZHOU Y, ZHAO D, FOSTER T J, et al. Konjac glucomannan-induced changes in thiol/disulp hide exchange and gluten conformation upon dough mixing[J]. Food Chemistry,2014,143:163−169. doi: 10.1016/j.foodchem.2013.07.088

    [57]

    WANG P, ZHAO X, YANG R, et al. Water-extractable arabinoxylan-induced changes in the conformation and polymerization behavior of gluten upon thermal treatment[J]. Journal of Agricultural and Food Chemistry,2020,68(13):4005−4016. doi: 10.1021/acs.jafc.9b08122

    [58]

    FENG X, SONG Z, TAO A, et al. Prediction of active marker of sea buck thorn polysaccharides for prevention and treatment of cervical cancer and mechanism study[J]. Frontiers in Nutrition,2023,10:1136590. doi: 10.3389/fnut.2023.1136590

    [59]

    MA Y, HONG T, CHEN Y, et al. The conformational rearrangement and microscopic properties of wheat gluten following superheated steam treatment[J]. Food Control,2022,137:108924. doi: 10.1016/j.foodcont.2022.108924

    [60]

    CUI Y, CHEN J, ZHANG S. The effect of degree of esterification of pectin on the interaction between pectin and wheat gluten protein[J]. Food Hydrocolloids,2023,136:108272. doi: 10.1016/j.foodhyd.2022.108272

    [61]

    NAWROCKA A, SZYMAŃSKA-CHARGOT M, MIŚ A, et al. Aggregation of gluten proteins in model dough after fibre polysaccharide addition[J]. Food Chemistry,2017,231:51−60. doi: 10.1016/j.foodchem.2017.03.117

    [62]

    XUAN Y F, ZHANG Y, ZHAO Y Y, et al. Effect of hydroxy propyl methyl cellulose on transition of water status and physicochemical properties of wheat gluten upon frozen storage[J]. Food Hydrocolloids,2017,63:35−42. doi: 10.1016/j.foodhyd.2016.08.025

    [63]

    NAWROCKA A, SZYMAŃSKA-CHARGOT M, MIŚ A, et al. Raman studies of gluten proteins aggregation induced by dietary fibres[J]. Food Chemistry,2016,194:86−94. doi: 10.1016/j.foodchem.2015.07.132

    [64]

    NAWROCKA A, SZYMAŃSKA-CHARGOT M, MIŚ A, et al. Dietary fiber-induced changes in the structure and thermal properties of gluten proteins studied by fourier transform-raman spectroscopy and thermogravimetry[J]. Journal of Agricultural and Food Chemistry,2016,64(10):2094−2104. doi: 10.1021/acs.jafc.5b05712

    [65]

    LIU M, CHEN G, ZHANG H, et al. Heat-induced inulin-gluten gel:Insights into the influences of inulin molecular weight on the rheological and structural properties of gluten gel to molecular and physicochemical characteristics[J]. Food Hydrocolloids,2021,111:106397. doi: 10.1016/j.foodhyd.2020.106397

    [66]

    NAWROCKA A, KREKORA M, NIEWIADOMSKI Z, et al. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition[J]. Food Chemistry,2018,252:198−206. doi: 10.1016/j.foodchem.2018.01.110

    [67]

    WANG K Q, LUO S Z, ZHONG X Y, et al. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation[J]. Food Chemistry,2017,214:393−399. doi: 10.1016/j.foodchem.2016.07.037

    [68]

    WANG Y, GUO J, WANG C, et al. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough[J]. LWT,2023,177:11488.

    [69]

    WANG P, ZOU M, GU Z, et al. Heat-induced polymerization behavior variation of frozen-stored gluten[J]. Food Chemistry,2018,255:242−251. doi: 10.1016/j.foodchem.2018.02.047

    [70]

    IWAKI S, FU B X, HAYAKAWA K. Behavior of protein aggregates via electrostatic interactions or hydrogen bonds during dough formation[J]. Journal of Cereal Science,2023,111:103683. doi: 10.1016/j.jcs.2023.103683

    [71]

    LI C, CHEN G, RAN C, et al. Adlay starch-gluten composite gel:Effects of adlay starch on rheological and structural properties of gluten gel to molecular and physico-chemical characteristics[J]. Food Chemistry,2019,289:121−129. doi: 10.1016/j.foodchem.2019.03.030

    [72]

    CHEN S X, NI Z J, THAKUR K, et al. Effect of grape seed power on the structural and physicochemical properties of wheat gluten in noodle preparation system[J]. Food Chemistry,2021,355:129500. doi: 10.1016/j.foodchem.2021.129500

    [73]

    RAHAMAN T, VASILJEVIC T, RAMCHANDRAN L. Shear, heat and pH induced conformational changes of wheat gluten-Impact on antigenicity[J]. Food Chemistry,2016,196:180−188. doi: 10.1016/j.foodchem.2015.09.041

    [74]

    WANG P, CHEN H, MOHANAD B, et al. Effect of frozen storage on physico-chemistry of wheat gluten proteins:Studies on gluten-, glutenin- and gliadin-rich fractions[J]. Food Hydrocolloids,2014,39:187−194. doi: 10.1016/j.foodhyd.2014.01.009

    [75]

    NAWROCKA A, MIŚ A, SZYMAŃSKA-CHARGOT M. Characteristics of relationships between structure of gluten proteins and dough rheology-Influence of dietary fibres studied by FT-Raman spectroscopy[J]. Food Biophysics,2015,11(1):81−90.

    [76]

    MARTÍN-ESPARZA M E, RAIGÓN M D, RAGA A, et al. Functional, thermal and rheological properties of high fibre fresh pasta:Effect of tiger nut flour and xanthan gum addition[J]. Food and Bioprocess Technology,2018,11(12):2131−2141. doi: 10.1007/s11947-018-2172-8

    [77]

    MARTINS Z E, PINHO O, FERREIRA I M P L V O, et al. Development of fibre-enriched wheat breads:Impact of recovered agroindustrial by-products on physicochemical properties of dough and bread characteristics[J]. European Food Research and Technology,2017,243(11):1973−1988. doi: 10.1007/s00217-017-2903-5

    [78]

    FENG Y, ZHANG H, FU B, et al. Interactions between dietary fiber and ferulic acid change the aggregation of glutenin, gliadin and glutenin macropolymer in wheat flour system[J]. Journal of the Science of Food and Agriculture,2020,101(5):1979−1988.

    [79]

    FAN L, WANG H, LI M, et al. Impact of wheat bran dietary fiber on gluten aggregation behavior in dough during noodle processing[J]. International Journal of Biological Macromolecules,2024,257:128765. doi: 10.1016/j.ijbiomac.2023.128765

    [80]

    HUANG Z H, ZHAO Y, ZHU K X, et al. Effect of barley β-glucan on the gluten polymerization process in dough during heat treatment[J]. Journal of Agricultural and Food Chemistry,2017,65(29):6063−6069. doi: 10.1021/acs.jafc.7b02011

    [81]

    TOLVE R, SIMONATO B, RAINERO G, et al. Wheat bread fortification by grape pomace powder:Nutritional, technological, antioxidant, and sensory properties[J]. Foods,2021,10(1):75. doi: 10.3390/foods10010075

    [82]

    RACZYK M, KRUSZEWSKI B, MICHAŁOWSKA D. Effect of coconut and chestnut flour supplementations on texture, nutritional and sensory properties of baked wheat based bread[J]. Molecules,2021,26(15):4641. doi: 10.3390/molecules26154641

    [83]

    ERMINAWATI, SIDIK W, LISTANTI R, et al. Formulation and characterization of bread using coconut-pulp flour and wheat flour composite with addition of xanthan-gum[J]. IOP Conference Series:Earth and Environmental Science,2018,102:012010. doi: 10.1088/1755-1315/102/1/012010

    [84]

    LI X, GUO Y, CHEN L, et al. Texture and bio-functional characteristics of a Chinese steamed bread prepared from lotus root powder partially replacing wheat flour[J]. Scientific Reports,2021,11(1):16338. doi: 10.1038/s41598-021-95926-3

    [85]

    GUO Z, LIU M, XIANG X, et al. Effects of inulins with various molecular weights and added concentrations on the structural properties and thermal stability of heat-induced gliadin and glutenin gels[J]. LWT,2021,149:111891. doi: 10.1016/j.lwt.2021.111891

    [86]

    IUGA M, BATARIUC A, MIRONEASA S. Synergistic effects of heat-moisture treatment regime and grape peels addition on wheat dough and pasta features[J]. Applied Sciences,2021,11(12):5403. doi: 10.3390/app11125403

    [87]

    XU J, LI Y, ZHAO Y, et al. Influence of antioxidant dietary fiber on dough properties and bread qualities:A review[J]. Journal of Functional Foods,2021,80:104434. doi: 10.1016/j.jff.2021.104434

    [88]

    ZHANG S, YANG L, NIE Y, et al. Research progress on the effect of cooking and freezing processes on the quality of frozen dough steamed buns[J]. International Journal of Food Engineering,2024,20(1):1−15. doi: 10.1515/ijfe-2023-0228

    [89]

    TA T M N, HOANG C H, NGUYEN T M, et al. Effects of mulberry pomace addition and transglutaminase treatment on the quality of pasta enriched with antioxidants and dietary fiber[J]. Polish Journal of Food and Nutrition Sciences, 2023:301−310.

    [90]

    LI J X, YIN L J, LI J L. Effect of pectins on dough rheology and Chinese steamed bread quality[J]. Grain & Oil Science and Technology,2019,1(2):77−84.

    [91]

    SIM S Y, NOOR AZIAH A A, CHENG L H. Characteristics of wheat dough and Chinese steamed bread added with sodium alginates or konjac glucomannan[J]. Food Hydrocolloids,2011,25(5):951−957. doi: 10.1016/j.foodhyd.2010.09.009

    [92]

    LIU W, BRENNAN M, SERVENTI L, et al. Effect of wheat bran on dough rheology and final quality of chinese steamed bread[J]. Cereal Chemistry,2017,94(3):581−587. doi: 10.1094/CCHEM-09-16-0234-R

    [93]

    MAMAT H, LING Y Y, ABDUL AZIZ A H, et al. Utilization of seaweed composite flour (Kappaphycus alvarezii) in the development of steamed bun[J]. Journal of Applied Phycology,2023,35(4):1911−1919. doi: 10.1007/s10811-023-02989-y

    [94] 李晓宁, 汪丽萍, 田晓红, 等. 麦麸膳食纤维及原料麦麸对馒头品质的影响[J]. 食品工业科技,2024,45(3):75−82. [LI X N, WANG L P, TIAN X H, et al. Effects of wheat bran dietary fiber an raw wheat bran on the quality of steamed bread[J]. Science and Technology of Food Industry,2024,45(3):75−82.]

    LI X N, WANG L P, TIAN X H, et al. Effects of wheat bran dietary fiber an raw wheat bran on the quality of steamed bread[J]. Science and Technology of Food Industry, 2024, 45(3): 75−82.

    [95] 尹显婷, 范杰英, 孙洪蕊, 等. 大豆膳食纤维对小麦粉面条品质特性及血糖生成指数的影响[J]. 东北农业科学,2024,49(1):93−97. [YIN X T, FAN J Y, SUN H R, et al. Effects of soy dietary fiber on the quality characteristics and glycemic index of wheat noodles[J]. Journal of Northeast Agricultural Sciences,2024,49(1):93−97.]

    YIN X T, FAN J Y, SUN H R, et al. Effects of soy dietary fiber on the quality characteristics and glycemic index of wheat noodles[J]. Journal of Northeast Agricultural Sciences, 2024, 49(1): 93−97.

    [96] 杨烁, 赵秀杰, 蔡勇建, 等. 六种膳食纤维的功能特性及其在面包中的应用[J]. 现代食品科技,2024,40(6):189−197. [YANG S, ZHAO X J, CAI Y J, et al. Functional properties of six dietary fibers and their applicationsin bread[J]. Modern Food Science and Technology,2024,40(6):189−197.]

    YANG S, ZHAO X J, CAI Y J, et al. Functional properties of six dietary fibers and their applicationsin bread[J]. Modern Food Science and Technology, 2024, 40(6): 189−197.

    [97]

    LIU Y, ZHANG X, DING B, et al. Effect of hydrocolloids on physical, thermal and microstructure properties of par-baked baguette during frozen storage[J]. International Journal of Biological Macromolecules,2020,163:1866−1874. doi: 10.1016/j.ijbiomac.2020.09.122

    [98]

    BEGUM Y A, CHAKRABORTY S, DEKA S C. Bread fortified with dietary fiber extracted from culinary banana bract:Its quality attributes and in vitro starch digestibility[J]. International Journal of Food Science & Technology,2020,55(6):2359−2369.

    [99]

    CORREA M J, PÉREZ G T, FERRERO C. Pectins as breadmaking additives:Effect on dough rheology and bread quality[J]. Food and Bioprocess Technology,2011,5(7):2889−2898.

    [100] 宫春宇, 廉雅雯, 于洋, 等. 玉米须不溶性膳食纤维分析及其对面包品质和消化特性的影响研究[J]. 中国调味品,2024,49(1):67−73,83. [GONG C Y, LIAN Y W, YU Y, et al. Analysis of corn silk insoluble dietary fiber and its effects on quality and digestion characteristics of bread[J]. China Condiment,2024,49(1):67−73,83.] doi: 10.3969/j.issn.1000-9973.2024.01.011

    GONG C Y, LIAN Y W, YU Y, et al. Analysis of corn silk insoluble dietary fiber and its effects on quality and digestion characteristics of bread[J]. China Condiment, 2024, 49(1): 67−73,83. doi: 10.3969/j.issn.1000-9973.2024.01.011

  • 其他相关附件

图(5)  /  表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 网络出版日期:  2024-12-28
  • 刊出日期:  2025-02-28

目录

/

返回文章
返回
x 关闭 永久关闭