Loading [MathJax]/jax/output/SVG/fonts/TeX/Size1/Regular/Main.js
  • 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

天麻褐腐病病原真菌的分离鉴定及柠檬醛对其抑制效果

王秀芬, 黄添舆, 罗冬兰, 张雨, 曹森

王秀芬,黄添舆,罗冬兰,等. 天麻褐腐病病原真菌的分离鉴定及柠檬醛对其抑制效果[J]. 食品工业科技,2025,46(8):148−155. doi: 10.13386/j.issn1002-0306.2024030262.
引用本文: 王秀芬,黄添舆,罗冬兰,等. 天麻褐腐病病原真菌的分离鉴定及柠檬醛对其抑制效果[J]. 食品工业科技,2025,46(8):148−155. doi: 10.13386/j.issn1002-0306.2024030262.
WANG Xiufen, HUANG Tianyu, LUO Donglan, et al. Isolation and Identification of Brown Rot Pathogenic Fungi in Gastrodia elata and Its Inhibitory Effect by Citral[J]. Science and Technology of Food Industry, 2025, 46(8): 148−155. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030262.
Citation: WANG Xiufen, HUANG Tianyu, LUO Donglan, et al. Isolation and Identification of Brown Rot Pathogenic Fungi in Gastrodia elata and Its Inhibitory Effect by Citral[J]. Science and Technology of Food Industry, 2025, 46(8): 148−155. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030262.

天麻褐腐病病原真菌的分离鉴定及柠檬醛对其抑制效果

基金项目: 贵州省第六批千层次人才项目(筑科合同-GCC〔2022〕004);2022年贵阳学院硕士研究生科研基金项 (GYU-YJS[2022]-46)资助。
详细信息
    作者简介:

    王秀芬 (1999−),女,硕士研究生,研究方向:农产品贮藏与加工,E-mail:1429459593@qq.com

    通讯作者:

    曹森 (1988−),男,硕士,教授,研究方向:农产品贮藏与加工,E-mail:cs5638myself@126.com

  • 中图分类号: TSS255.3

Isolation and Identification of Brown Rot Pathogenic Fungi in Gastrodia elata and Its Inhibitory Effect by Citral

  • 摘要: 为了明确天麻褐腐病病原菌的种类及柠檬醛对其抑制效果。以自然发病的天麻为试材,采用组织分离法、致病性检测、形态学观察以及rDNA-ITS序列分析对病原菌进行分离鉴定,并探讨不同浓度的柠檬醛对病原菌的体外抑制效果及其对天麻诱导抗病性的影响。结果表明:引起天麻褐腐病的主要致病菌为钩状木霉(Trichoderma hamatum)和三线镰刀菌(Fusarium tricinctum);病原菌的抑制率与柠檬醛浓度呈剂量依赖关系,MIC值为0.6 μL/mL;在损伤接种3 d时,钩状木霉和三线镰刀菌的病斑直径分别为15.20、8.17 mm;确定钩状木霉为引起天麻褐腐病的主要致病菌;0.6 μL/mL柠檬醛对钩状木霉的控制效果最佳;柠檬醛能诱导天麻体内总酚和类黄酮含量累积,并促进APX、PPO、POD、SOD和CAT酶活性增加,从而增强采后天麻对钩状木霉的抗性。本研究对控制天麻褐腐病和延长其保质期具有重要意义。
    Abstract: To elucidate the types of Gastrodia elata (G. elata) brown rot pathogenic fungi and the inhibitory effect of citral on them. Tissue isolation method, pathogenicity test, morphological observation and rDNA-ITS sequence analysis were employed to isolate and identify the pathogenic fungi using naturally-occurring G. elata as test material. Furthermore, the in vitro inhibitory effect of citral on the pathogenic fungi at different concentrations and its effect on the induced disease resistance of G. elata were investigated. Results demonstrated that the primary pathogenic fungi causing brown rot of G. elata were Trichoderma hamatum and Fusarium tricinctum. The inhibition rate against the pathogenic fungi exhibited a dose-dependent relationship with the concentration of citral, with an MIC value of 0.6 μL/mL. At 3 d post-inoculation, the diameters of the spots of Trichoderma hamatum and Fusarium tricinctum were 15.20 and 8.17 mm, respectively. It was determined that Trichoderma hamatum was the main pathogenic fungi causing brown rot of G. elata. Furthermore, the optimal control of Trichoderma hamatum was achieved by 0.6 μL/mL citral. The application of citral resulted in the accumulation of total phenolic and flavonoid contents, as well as the promotion of an increase in APX, PPO, POD, SOD and CAT enzyme activities in G. elata. This enhanced the resistance of postharvest G. elata to Trichoderma hamatum. The present study is of great significance for the control of brown rot pathogenic fungi of G. elata and the prolongation of its shelf life.
  • 天麻(Gastrodia elata Bl.)为兰科多年生异养寄生植物,其球茎具有很高的药用和保健价值,是一种珍贵的药食两用植物[1]。天麻栽培技术日益成熟,全国种植面积已达60余万亩。目前栽培的天麻品主要有红天麻、乌天麻和乌红杂交天麻。乌天麻主要适宜在贵州和云南的高海拔地区种植[2]。鲜天麻在采收过程中易受到损伤,其在采后极易被病原菌侵染,导致天麻快速腐烂,降低其商品价值[3]。曹森等[4]研究发现,采后天麻含水量较高,呼吸代谢旺盛,货架期短。柳靖婷[5]研究发现引起红天麻采后腐烂的主要病原菌为天麻草酸青霉菌(Penicillium oxalicum)、天麻假单胞菌(Pseudomonas)和天麻酵母菌(Candida vartiovaarae)。余昌俊等[6]研究发现罗氏白绢小菌核菌(Sclerotiumrol fsii Sacc.)是引起湖北宜昌箭麻白绢病的病原菌。近年来,天麻感染褐腐病的情况逐年上升。从目前研究发现,引起天麻褐腐病病原菌主要有尖孢镰刀菌 (Fusarium oxysporum)、腐皮镰刀菌(Fusarium solani)和芬芳镰刀菌(Fusarium redolens[2]和土赤壳属 (Ilyonectria cyclaminicola和Ilyonectria robusta[7]。此外,灰葡萄孢 (Botrytis cinerea[8]也可引起天麻褐腐病。在生产上,天麻的褐腐病问题一直是制约其规模化发展的瓶颈。

    目前,关于天麻贮藏保鲜技术成为研究热点。孙海燕等[3]研究发现PE20保鲜袋能有效地防止天麻的水分过度损失和腐烂变质。曹森等[9]发现,ClO2处理能够更好的延缓天麻衰老进程,保持较高的贮藏品质。于丽娟等[10]发现2%壳聚糖涂膜处理有利于天麻保存期的延长,保持天麻的水分和过氧化物酶(POD)和超氧化物歧化酶(SOD)活性,而添加薄荷精油更有利于减轻天麻色泽的变化。曹艺颖等[11]研究独脚金内酯类似物对天麻块茎的保鲜作用发现,结果表明,独脚金内酯类似物可抑制天麻赤霉素信号进而抑制其花茎芽生长,从而起到保鲜作用。但关于植物精油在天麻保鲜方面的研究比较少。

    近年来,植物精油因其广谱抗菌性受到研究者的广泛关注[12]。柠檬醛(3,7-二甲基-2,6-辛二 烯醛)是一种天然萜类化合物,呈浓郁柠檬香味[13]。有研究表明,柠檬醛作为一种新型抗菌剂,已广泛应用于果实采后保鲜及病害防控[14]。有研究发现,柠檬醛结合多种植物挥发物质处理可抑制荔枝采后黑曲霉(Aspergillus niger)生长[15]。柠檬醛可破坏黄曲霉(Aspergillus flavus)质膜通透性改变,抑制其菌丝生长和孢子萌发,导致其失去活力[16]。此外,柠檬醛处理可以抑制杨梅[17]、马铃薯[18]和生姜[19]采后致病菌的生长繁殖,从而提高果蔬抗病性。以上研究表明,柠檬醛对多种果蔬中多种致病菌都有一定的抑制作用,从而保持果蔬品质。然而,对于柠檬醛在采后天麻贮藏保鲜及病害防治作用相关研究未见报道。因此,本研究鉴定引起天麻褐腐病病原菌的种类,并探究不同浓度柠檬醛对引起天麻褐腐病的病原菌的抑制效果,以期为天麻采后病害的防控提供理论基础。

    天麻 采摘至贵州省毕节市大方县天麻种植基地;柠檬醛 上海源叶生物科技有限公司;植物基因组DNA试剂盒 北京索莱宝科技有限公司;引物ITS1(5’-TCCGTAGGTGAACCTGCGG-3’)和ITS4(5’-TCCTCCGCTTATTGATATGC-3’) 生工生物工程(上海)股份有限公司;马铃薯葡萄糖琼脂培养基 上海博微生物科技有限公司;邻苯二酚(分析纯)、邻苯三酚(分析纯)、三羟甲基氨基甲烷(分析纯)、愈创木酚(分析纯) 重庆拓世众和生物技术有限公司;盐酸(分析纯) 天津市风船化学试剂科技有限公司 ;甲醇(分析纯) 天津市富宇精细化工有限公司。

    ChemiDoc免染型蛋白印迹成像系统 成都百乐科技有限公司;CX21光学显微镜 日本奥林巴斯有限公司;UV-2550紫外分光光度计 日本Shimazhu公司;SHP-2500型恒温培养箱(CFX) 天津市泰斯特仪器有限公司。

    采用组织分离法[20]对天麻病原菌进行分离。选取自然发病的天麻,先用 75%酒精消毒 30 s,后依次使用无菌水漂洗3次,然后吸干多余水分,用无菌刀在病果的病健交界处切取5 mm×5 mm大小的病块组织,接种至PDA平板上,于28±1 ℃恒温箱中培养,待长出菌落,从不同表型的菌落边缘挑取菌丝至新的PDA平板上培养,直至得到纯化菌株。

    将纯化病原菌接种于PDA培养基上,置于28±1 ℃恒温培养箱培养5 d,观察并记录菌落的生长情况,利用显微镜观察菌丝与分生孢子的形态和结构。参考《真菌鉴定手册》内容对其种属进行初步鉴定。

    根据科赫法则[21],选取健康天麻,用75%酒精消毒30 s,无菌水漂洗3次,自然晾干。用无菌打孔器取纯化菌饼损伤接种至天麻块茎,于20±1 ℃下恒温培养。待天麻发病后,再从发病天麻中分离病原菌进行培养。

    收集纯化后的病原菌菌丝,用液氮研磨成粉末状,参照植物基因组DNA提取试剂盒提取病原菌DNA,选用真菌通用引物ITS1和ITS4对病原菌进行PCR扩增[22]。PCR产物通过琼脂糖凝胶电泳及成像后,产物送生工生物工程(上海)股份有限公司进行测序,将测序结果进行BLAST比对分析,下载同源性较高的序列,采用MEGA11 软件构建病原菌系统发育树。

    采用菌丝生长速率法[23]测定柠檬醛对天麻致病菌的抑制效果。取一定量的柠檬醛溶液分别加入灭菌PDA培养基中,获得含有0.2、0.4、0.6、0.8 μL/mL柠檬醛的PDA培养基,待培养基冷却后备用。将培养5 d菌饼放入含柠檬醛培养基中央,于28±1 ℃下培养至CK组长满,用十字交叉法测量菌落直径,计算抑菌率。最低抑菌浓度(MIC)指抑菌率达到100%的最低浓度[24]。计算公式如下:

    (%)=×100

    分别用1/2 MIC、MIC、2 MIC的柠檬醛和清水浸泡天麻15 min,置于超净工作台中自然晾干,用无菌打孔器在天麻赤道打2个孔,然后取纯化后培养5 d的菌落边缘的菌饼接种于天麻伤口处,每个处理9个天麻。接种后的天麻放入灭菌的保鲜盒中并用PE袋包装,于 20±1 ℃条件下培养,每隔2 d记录病斑直径,持续观察6 d,并间隔2 d取样,取病健交界处果肉组织,每个处理每次取样3个,取样组织经液氮冷冻后在−80 ℃保存备用,每个处理设3次重复。

    SOD活性的测定参照Ezzat等[25]的方法并稍作修改。准确称取天麻样品1.0 g,加入5 mL pH7.8 0.05 mol/L的磷酸缓冲溶液,冰浴下研磨成匀浆,于10000 r/min(4 ℃)离心15 min,收集上清液(粗酶提取液)。在离心管中加入A液2.35 mL,缓冲液1.45 mL混合均匀,以该混合液作为空白对照。调零完成,在塑料离心管中加入A液2.35 mL,缓冲液1.45 mL,B液0.7 mL混合均匀,在325 nm下读取初始值和30 s的吸光值,二者之差为邻苯三酚自氧化△A325/min。以邻苯三酚自氧化速率为对照,加入A液2.35 mL,缓冲液0.85 mL、B液0.7 mL和0.6 mL酶液,在325 nm波长处读取初始值和30 s吸光值。二者之差为样品液抑制邻苯三酚自氧化△′A325/min。酶活性以U/g表示。

    POD活性测定参照Lee等[26]的测定方法并稍作修改。准确称取1.0 g天麻样品,加入10.0 mL提取缓冲液(含1 mmol PEG、4% PVP和1% Triton X-100),冰浴条件下研磨匀浆,于10000 r/min(4 ℃)离心30 min,收集上清液(酶提取液)。加入3.0 mL愈创木酚溶液(25 mmol/L)和0.5 mL酶提取液,0.2 mL H2O2溶液(5 mol/L)迅速混合启动反应,在波长470 nm处测吸光度值。酶活性以U/g表示。

    PPO活性测定参照Colak等[27]的测定方法并稍作修改。称取1.0 g天麻样品,加入5 mL 0.05 mol/L pH7.8磷酸缓冲液,冰浴中迅速充分研磨后转入离心管,于10000 r/min(4 ℃)离心15 min,收集上清液保存备用。取3.9 mL 0.05 mol/L pH7.8的磷酸缓冲液,加入1 mL 0.1 mol/L 儿茶酚和3 mL酶提取液,37 ℃水浴保温10 min,在420 nm下测定其吸光度值。酶活性以U/g 表示。

    APX活性测定参照Ge等[28]的方法并稍作修改。称取1.0 g天麻样品,加入5 mL提取缓冲液(含0.1 mmol/L EDTA、1 mmol/L 抗环血酸和2% PVPP),冰浴研磨匀浆后倒入离心管中,于10000 r/min(4 ℃)离心15 min,上清液即为酶提取液。依次加入2.6 mL反应缓冲液(含0.1 mmol/L EDTA和0.5 mmol/L 抗环血酸)和0.3 mL酶提取液,最后加入0.5 mL 2 mmol/L H2O2 溶液启动酶促反应,混匀,在290 nm下测吸光度值。酶活性以U/g表示。

    根据Li等[29]的方法测定CAT活性并稍作修改。准确称取1.0 g天麻样品,分两次加入10 mL缓冲溶液(含5 mmol/L DTT和5% PVP),冰浴条件下研磨匀浆,转入离心管;于10000 r/min(4℃)离心15 min,上清液即待测粗酶液。依次加入2.9 mL H2O2(20 mmol/L)溶液、0.1 mL待测粗酶液,立即混匀,迅速测定在240 nm波长处测吸光度值。酶活性以U/g表示。

    总酚和类黄酮含量参照曹建康等[30]的方法稍作修改,准确称取1.0 g天麻样品,加入4.0 mL经预冷的1% 的盐酸-甲醇溶液,冰浴条件下研磨匀浆后转入20 mL刻度试管中,定容,于4 ℃避光提取2 h,期间摇动数次,然后在10000 r/min(4 ℃)离心15 min,收集上清液。以1% 盐酸-甲醇溶液做空白参比调零,取上清液分别于280、325 nm处测定溶液的吸光度值。总酚和类黄酮含量分别以OD280/g和OD325/g表示。

    使用Excel 2021软件对数据进行分析并计算出平均值和标准偏差,用SPSS 27.0进行统计分析,P<0.05视为具有显著差异。采用Origin 2021绘制作图。

    本研究从自然发生褐腐病的天麻中分离出2株病原菌,记作TM-1和TM-2(图1)。TM-1在PDA培养基上培养,羊毛状,生长速度中等,气生菌丝呈白色,质地干燥易挑起,基质呈米白色,经显微镜观察的分生孢子单孢,为圆形或者椭圆形,表面光滑(图1A3)。形态特征与文献[31]报道的钩状木霉MHT1134形态相似,初步鉴定为木霉属。TM-2在PDA培养基上的菌丝呈白色絮状,基质呈黄色至浅黄色。经光学显微镜观察大型分生孢子呈镰刀形,中间有多处横隔(图1B3)。形态特征与文献[32]报道的镰刀菌形态相似,初步鉴定为镰刀属。

    图  1  天麻褐腐病病原菌菌落及孢子形态特征
    Figure  1.  Morphological characteristics of colonies and spores of Gastrodia elata brown rot pathogenic fungi

    以分离得到的病原菌的DNA为模板、ITS1和ITS4为引物进行PCR扩增,PCR产物通过琼脂糖凝胶电泳检测得到300~900 bp片段(图2)。将测序得到的2个rDNA-ITS基因序列提交至NCBI,获得登录号分别为OQ976964和OQ976994,并进行BLAST比对,下载同源性超过90%的序列,用MEGA 11最大似然法构建病原菌系统发育树(图3)。结果显示菌株TM-1与钩状木霉(Trichoderma hamatum)序列的同源性为100%。菌株TM-2与三线镰刀菌(Fusarium tricinctum)同源性为100%。根据其形态特征并参照真菌分类手册及生理生化鉴定结果,最终确定天麻致病菌为钩状木霉(Trichoderma hamatum)和三线镰刀菌(Fusarium tricinctum)。

    图  2  褐腐病病原菌TM-1、TM-2的PCR凝胶电泳图
    Figure  2.  PCR gel electrophoresis of brown rot pathogenic fungi TM-1 and TM-2
    图  3  褐腐病病原菌 TM-1、TM-2 的系统发育树
    Figure  3.  Phylogenetic tree of brown rot pathogenic fungi TM-1 and TM-2

    分离纯化后共获得2株褐腐病病原菌菌株,将纯化的2株病原菌回接到健康的天麻上,20±1 ℃恒温培养5~7 d。接种5 d后,菌株TM-1、TM-2损伤接种部位均出现病斑(图4),呈圆形或椭圆形,TM-1损伤接种横切面可见病部干缩凹陷,干枯,病部果肉由白变浅绿。将接种7 d后发病果实再次进行组织分离培养,并将其与回接前菌株形态特征和培养性状进行比对,其结果一致则确定为致病菌。由图4回接第5 d天麻及天麻切面图可以看出,TM-1的致病性强于TM-2,故选择TM-1菌株(Trichoderma hamatum)做后续实验。

    图  4  天麻褐腐病病原菌的致病性
    Figure  4.  Pathogenicity of Gastrodia elata brown rot pathogenic fungi

    柠檬醛对钩状木霉的抑菌效果如图5所示。钩状木霉的菌落直径均随着培养时间的延长呈上升的趋势,柠檬醛在0.0~0.8 μL/mL浓度范围内,随浓度增加,抑菌活性增强,柠檬醛对钩状木霉的MIC为0.6 μL/mL。在PDA培养3 d后,不同浓度柠檬醛均能显著抑制病原菌生长(P<0.05),在培养期间(1~4 d),0.6 μL/mL柠檬醛对钩状木霉的抑制率分别为100%、95.16%、81.07%和52.87%(表1)。

    图  5  不同浓度柠檬醛处理对钩状木霉的抑菌效果
    注:不同小写字母表示不同处理在同一天的差异显著(P< 0.05),图6~图8同。
    Figure  5.  Inhibitory effect of different concentrations of citral treatments on Trichoderma hamatum
    表  1  柠檬醛最低抑菌浓度(MIC)对钩状木霉的抑制效果
    Table  1.  Inhibitory effect of citral on the minimum inhibitory concentration (MIC) of Trichoderma hamatum
    指标 培养时间(d) 菌丝生长抑制率(%)

    MIC
    (0.6 μL/mL)
    1 100±0.00a
    2 95.16±1.01b
    3 81.07±1.73c
    4 52.87±1.80d
    注:不同小写字母表示同一处理在不同培养时间的差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    图6可知,柠檬醛处理对接种钩状木霉的天麻病斑扩展具有一定的控制效果,在接种贮藏2 d时,天麻开始出现病症,其中,MIC柠檬醛完全抑制病原菌病斑的扩展。在接种贮藏6 d时,接种钩状木霉菌的CK组天麻病斑直径显著大于1/2MIC、MIC和2MIC柠檬醛处理(P<0.05),其病斑直径为22.58 mm,分别为柠檬醛处理组的1.16、1.85和2.36倍。MIC柠檬醛处理的病斑直径为CK组的54.03%。

    图  6  柠檬醛对天麻褐腐病病原菌的体内抑制效果
    Figure  6.  In vivo inhibitory effect of citral on Gastrodia elata brown rot pathogens

    PPO、CAT、POD、SOD 和 APX 是果实中非常重要的抗病相关酶,酶活性的提高与植物的抗病性相关[33]。SOD是一种重要的抗氧化酶,能够将超氧阴离子自由基(O2·)歧化为过氧化氢(H2O2),从而减少自由基对果实的氧化损伤[34]。由图7A可以看出,柠檬醛处理组和CK组天麻的SOD酶活性都随着时间增加先升高后下降,柠檬醛处理使SOD酶活性保持在相对较高的活性水平上,显著高于CK组(P<0.05),接种后0~2 d,柠檬醛处理组SOD活性开始达到高峰,为CK组的1.09倍。

    图  7  柠檬醛处理对接种钩状木霉天麻SOD(A)、POD(B)、PPO(C)、CAT(D) 和APX(E) 活性的影响
    注:A:SOD超氧化物歧化酶;B:POD过氧化物酶;C:PPO 多酚氧化酶;D:CAT 过氧化氢酶;E:APX 抗坏血酸过氧化物酶。
    Figure  7.  Effects of citral treatment on the activities of SOD (A), POD (B), PPO (C), CAT (D), and APX (E) in Gastrodia elata inoculated with Trichoderma hamatum

    果蔬在受到病原菌侵染时, 果蔬组织中POD和PPO酶活性会做出相应的应答反应[3536]。POD酶活性如图7B所示,CK组和柠檬醛处理组天麻的POD酶活性先升高后下降。除6 d外,柠檬醛处理组POD活性都显著高于CK组(P<0.05),且在接种2 d后达到峰值,为CK组的1.23倍。如图7C所示,柠檬醛处理组天麻PPO活性随时间增加先升高后下降,贮藏期间显著高于CK组(P<0.05),在接种第4 d,柠檬醛处理组天麻PPO活性达到峰值,高于CK组的 17.45%。

    CAT和APX是植物活性氧代谢中重要的抗氧化酶,CAT酶可通过清除植物自身在光合作用或呼吸代谢等途径中所产生的H2O2,来减少果蔬组织造成的氧化伤害[37]。APX酶能有效提高植物的活性氧代谢水平,能有效清除植物体内过多的活性氧[38]。如图7D所示,整个贮藏期间,柠檬醛处理组天麻CAT活性呈先升后降趋势,且显著高于CK组(P<0.05),接种后2 d,柠檬醛处理组天麻CAT活性达到高峰,比CK组高12.50%。柠檬醛处理的天麻APX活性随着时间的增加先升高后下降,且始终高于CK组,接种2 d后,柠檬醛处理组达到高峰,比CK组高52.98%。以上结果共同表明,柠檬醛诱导了SOD、POD、PPO、CAT和APX活性的提高,从而响应了病原菌接种引起的发病过程,抑制了病斑直径的扩大。以上研究结果与黄俊宝等[39]、魏玲[40]和陈少阳[41]的研究结果类似。

    图8所示,天麻中总酚和类黄酮含量随着贮藏时间的增加先升高后降低,柠檬醛处理组总酚含量都显著高于CK组(P<0.05),在贮藏第4 d出现高峰,为CK组的1.09倍(图8A)。类黄酮含量除6 d外,柠檬醛处理组显著高于CK组(P<0.05),总酚和类黄酮都在贮藏第4 d急剧上升,后呈下降趋势(图8B)。总酚和类黄酮是苯丙烷代谢的最终产物,具有抗氧化及抗病性。酚类物质氧化成的醌类物质是潜在的抗病因子,因此酚类物质具有抗菌性,其含量积累可以抵抗病原物的侵染、增强果实的表皮结构,其含量越高,抗氧化和抗菌防病能力越强[42]。本研究结果与Han等[43]的研究结果相似。

    图  8  柠檬醛处理对接种钩状木霉天麻总酚和类黄酮含量的影响
    Figure  8.  Effects of citral treatment on the contents of total phenols and flavonoids in Gastrodia elata inoculated with Trichoderma hamatum

    本试验通过对天麻褐腐病病原菌进行分离鉴定,分别是钩状木霉(Trichoderma hamatum)和三线镰刀菌(Fusarium tricinctum)。通过致病性研究发现,Trichoderma hamatum致病性更强。病原菌侵染是导致果蔬采后劣变的主要因素之一[44],大量研究表明,化学药物可有效杀死病原菌,但化学药物的安全性很难评定,因而亟需开发天然、高效、安全的贮藏技术,提高果实采后品质,延长果实的贮藏期。柠檬醛是一种植物精油,可激活果蔬病害对采后生物胁迫的反应以及系统获得性抗性[45]。接种钩状木霉菌后,柠檬醛显著抑制了20 ℃贮藏期间天麻块茎的病斑面积。同样,据报道,柠檬醛及其衍生物可以抑制病原体引起的病变,并减少果蔬采后腐烂。魏玲[40]研究发现柠檬醛可以控制采后猕猴桃葡萄座腔(Botryosphaeria dothidea)、灰霉菌(Botrytis cinerea)两种病原菌的病斑扩散,诱导增强采后猕猴桃抗氧化酶SOD、CAT、APX和防御有关酶PAL、CHI和GLU的活性,促进总酚和类黄酮的含量积累,从而增强果实抗氧化能力和抗病性。Wei等[46]研究证明柠檬醛能有效抑制猕猴桃指状青霉、橙地霉和意大利青霉菌丝生长,从而提高果实品质。陈少阳[41]研究发现,柠檬醛结合1-MCP处理能对灰霉菌病害的发生起到一定的抑制作用,从而提高番茄果实体POD和CAT活性和促进总酚和类黄酮含量积累,达到提高番茄果实抗病性的目的。本试验结果表明,柠檬醛处理抑制钩状木霉的菌丝生长,并显著抑制接种钩状木霉天麻的病斑扩展,并提高天麻SOD、PPO、POD、APX和CAT活性和促进天麻总酚和类黄酮含量积累,此结果与前人结果相似。但是,在研究柠檬醛对天麻钩状木霉抑菌活性的基础上,要进一步提高其对天麻钩状木霉的防治效果,还应通过分子层面上探索其对天麻钩状木霉菌的作用机理, 了解其作用靶点,为田间防治提供科学依据。

    本研究通过形态学、rDNA-ITS序列分析以及致病性试验研究,确定钩状木霉(Trichoderma hamatum)和三线镰刀菌(Fusarium tricinctum)为引起天麻褐腐病的主要致病真菌。柠檬醛处理对采后天麻块茎损伤接种钩状木霉的病斑扩展具有显著抑制效果。柠檬醛处理激活了超氧化物歧化酶、过氧化物酶、抗坏血酸过氧化物酶、过氧化氢酶和多酚氧化酶活性,还提高了总酚和类黄酮含量,从而保护天麻免受氧化损伤,并保持较高的抗病性。这些结果表明,柠檬醛处理可能通过提高防御酶活性,增加抗性物质积累,从而提高天麻块茎对致病菌侵染的防御能力。该研究对控制天麻褐腐病发生和延长鲜天麻贮藏期具有重要意义。

  • 图  1   天麻褐腐病病原菌菌落及孢子形态特征

    Figure  1.   Morphological characteristics of colonies and spores of Gastrodia elata brown rot pathogenic fungi

    图  2   褐腐病病原菌TM-1、TM-2的PCR凝胶电泳图

    Figure  2.   PCR gel electrophoresis of brown rot pathogenic fungi TM-1 and TM-2

    图  3   褐腐病病原菌 TM-1、TM-2 的系统发育树

    Figure  3.   Phylogenetic tree of brown rot pathogenic fungi TM-1 and TM-2

    图  4   天麻褐腐病病原菌的致病性

    Figure  4.   Pathogenicity of Gastrodia elata brown rot pathogenic fungi

    图  5   不同浓度柠檬醛处理对钩状木霉的抑菌效果

    注:不同小写字母表示不同处理在同一天的差异显著(P< 0.05),图6~图8同。

    Figure  5.   Inhibitory effect of different concentrations of citral treatments on Trichoderma hamatum

    图  6   柠檬醛对天麻褐腐病病原菌的体内抑制效果

    Figure  6.   In vivo inhibitory effect of citral on Gastrodia elata brown rot pathogens

    图  7   柠檬醛处理对接种钩状木霉天麻SOD(A)、POD(B)、PPO(C)、CAT(D) 和APX(E) 活性的影响

    注:A:SOD超氧化物歧化酶;B:POD过氧化物酶;C:PPO 多酚氧化酶;D:CAT 过氧化氢酶;E:APX 抗坏血酸过氧化物酶。

    Figure  7.   Effects of citral treatment on the activities of SOD (A), POD (B), PPO (C), CAT (D), and APX (E) in Gastrodia elata inoculated with Trichoderma hamatum

    图  8   柠檬醛处理对接种钩状木霉天麻总酚和类黄酮含量的影响

    Figure  8.   Effects of citral treatment on the contents of total phenols and flavonoids in Gastrodia elata inoculated with Trichoderma hamatum

    表  1   柠檬醛最低抑菌浓度(MIC)对钩状木霉的抑制效果

    Table  1   Inhibitory effect of citral on the minimum inhibitory concentration (MIC) of Trichoderma hamatum

    指标 培养时间(d) 菌丝生长抑制率(%)

    MIC
    (0.6 μL/mL)
    1 100±0.00a
    2 95.16±1.01b
    3 81.07±1.73c
    4 52.87±1.80d
    注:不同小写字母表示同一处理在不同培养时间的差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 苏建云, 唐晶莹, 董鲜, 等. 天麻块茎腐烂病病原鉴定及其致病性测定[J]. 植物病理学报,2023,53(6):1241−1245. [SU J Y, TANG J Y, DONG X, et al. Taxonomic identification and pathogenicity determination of the causal agent for tuber rot of Gastrodia elata[J]. Acta Phytopathologica Sinica,2023,53(6):1241−1245.]

    SU J Y, TANG J Y, DONG X, et al. Taxonomic identification and pathogenicity determination of the causal agent for tuber rot of Gastrodia elata[J]. Acta Phytopathologica Sinica, 2023, 53(6): 1241−1245.

    [2] 李锦绍. 天麻褐腐病病原菌分离鉴定、生物学特性研究及全基因组测序分析[D]. 贵阳:贵州大学, 2023. [LI J S. Isolation, identification, biological characteristics, and whole genome sequencing analysis of the pathogen of Gastrodia elata[D]. Guiyang:Guizhou University, 2023.]

    LI J S. Isolation, identification, biological characteristics, and whole genome sequencing analysis of the pathogen of Gastrodia elata[D]. Guiyang: Guizhou University, 2023.

    [3] 孙海燕, 马骏, 钟爱民, 等. 不同保鲜包装对天麻贮藏生理和效果的影响[J]. 食品工业科技,2016,37(12):329−333. [SUN H Y, MA J, ZHONG A M, et al. Effect of different packing bags on quality of Gastrodia elata[J]. Science and Technology of Food Industry,2016,37(12):329−333.]

    SUN H Y, MA J, ZHONG A M, et al. Effect of different packing bags on quality of Gastrodia elata[J]. Science and Technology of Food Industry, 2016, 37(12): 329−333.

    [4] 曹森, 雷霁卿, 吉宁, 等. 鲜天麻采后生理品质变化规律及病原菌鉴定的研究[J]. 食品工业科技,2019,40(17):285−293. [CAO S, LEI J Q, JI N, et al. Study on the physiological quality changes and identification of pathogen pathogenicity of Gastrodia elata after harvest[J]. Science and Technology of Food Industry,2019,40(17):285−293.]

    CAO S, LEI J Q, JI N, et al. Study on the physiological quality changes and identification of pathogen pathogenicity of Gastrodia elata after harvest[J]. Science and Technology of Food Industry, 2019, 40(17): 285−293.

    [5] 柳靖婷. 天麻内生菌与病原菌的分离鉴定及其相互作用的研究[D]. 长春:吉林农业大学, 2019. [LIU J T. Study on isolation, identification and interaction of Gastrodia elata endophytes and pathogens[D]. Changchun:Jilin Agricultural University, 2019.]

    LIU J T. Study on isolation, identification and interaction of Gastrodia elata endophytes and pathogens[D]. Changchun: Jilin Agricultural University, 2019.

    [6] 余昌俊, 王绍柏. 天麻白绢病致病菌鉴定研究[J]. 安徽农业学报,2010,38(15):7902−7903. [YU C J, WANG S B. ldentification of Gastrodia elata white silk disease pathogen[J]. Journal of Anhui Agricultural Sciences,2010,38(15):7902−7903.]

    YU C J, WANG S B. ldentification of Gastrodia elata white silk disease pathogen[J]. Journal of Anhui Agricultural Sciences, 2010, 38(15): 7902−7903.

    [7] 李诚, 李锦绍, 陈旭君, 等. 贵州天麻褐腐病病原菌鉴定[J]. 植物病理学报,2022,52(4):699−701. [LI C, LI J S, CHENG X J, et al. ldentification of the pathogen causing brown rot on Gastrodia elata in Guizhou province[J]. Acta Phytopathologica Sinica,2022,52(4):699−701.]

    LI C, LI J S, CHENG X J, et al. ldentification of the pathogen causing brown rot on Gastrodia elata in Guizhou province[J]. Acta Phytopathologica Sinica, 2022, 52(4): 699−701.

    [8] 吴大椿, 秦亚平, 秦锋. 天麻褐腐病的研究[J]. 湖北农学院学报,2002(3):196−198. [WU D C, QIN Y P, QIN F. Study on Gastrodia elata brown rot[J]. Journal of Hubei Agricultural College,2002(3):196−198.]

    WU D C, QIN Y P, QIN F. Study on Gastrodia elata brown rot[J]. Journal of Hubei Agricultural College, 2002(3): 196−198.

    [9] 曹森, 王瑞, 李莹, 等. 不同保鲜剂处理对鲜天麻贮藏品质的影响[J]. 食品研究与开发,2019,40(23):71−76. [CAO S, WANG R, LI Y, et al. Effect of different preservatives on the storage of Gastrodia elata[J]. Food Research and Development,2019,40(23):71−76.] doi: 10.12161/j.issn.1005-6521.2019.23.012

    CAO S, WANG R, LI Y, et al. Effect of different preservatives on the storage of Gastrodia elata[J]. Food Research and Development, 2019, 40(23): 71−76. doi: 10.12161/j.issn.1005-6521.2019.23.012

    [10] 于丽娟, 普红梅, 李雪瑞, 等. 不同涂膜处理对云南新鲜天麻保鲜效果的影响[J]. 西南农业学报,2020,33(6):1285−1290. [YU L J, PU H M, LI X R, et al. Effects of different coating treatments on preservation of fresh Gastrodia elata in Yunnan province[J]. Southwest China Journal of Agricultural Sciences,2020,33(6):1285−1290.]

    YU L J, PU H M, LI X R, et al. Effects of different coating treatments on preservation of fresh Gastrodia elata in Yunnan province[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(6): 1285−1290.

    [11] 曹艺颖, 陈虞超, 刘天睿, 等. 独脚金内酯类似物在天麻贮藏保鲜中的应用研究[J]. 中国中药杂志,2023,48(12):3149−3155. [CAO Y Y, CHENG Y C, LIU T R, et al. Application of strigolactone analogs in storage of Gastrodia elata[J]. China Journal of Chinese Materia Medica,2023,48(12):3149−3155.]

    CAO Y Y, CHENG Y C, LIU T R, et al. Application of strigolactone analogs in storage of Gastrodia elata[J]. China Journal of Chinese Materia Medica, 2023, 48(12): 3149−3155.

    [12]

    ZHOU H E, TAO N G, JIA L. Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii[J]. Food Control, 2014, 37: 277-283.

    [13] 常春梅. 柠檬醛抑制鲜切马铃薯和莴笋褐变的效果及机理研究[D]. 南昌:江西农业大学, 2022. [CHANG C M. Effect and mechanism of citral on browning inhibition of fresh cut potato and lettuce[D]. Nanchang:Jiangxi Agricultural University, 2022.]

    CHANG C M. Effect and mechanism of citral on browning inhibition of fresh cut potato and lettuce[D]. Nanchang: Jiangxi Agricultural University, 2022.

    [14] 王新伟, 刘欢, 魏静, 等. 牛至油、香芹酚、柠檬醛和肉桂醛抑菌作用研究[J]. 食品工业, 2010, 31(5):13−16. [WANG X W, LIU H, WEI J, et al. Antibacterial effects of oregano ossential oil, carvacrol, citral and cinnamaldehyde[J]. The Food Industry, 2010, 31(5):13−16.]

    WANG X W, LIU H, WEI J, et al. Antibacterial effects of oregano ossential oil, carvacrol, citral and cinnamaldehyde[J]. The Food Industry, 2010, 31(5): 13−16.

    [15] 钟业俊, 徐欣源, 刘成梅, 等. 茶树油、丁香酚和柠檬醛对荔枝黑曲霉的抑制作用[J]. 食品科学,2012,33(11):21−24. [ZHONG Y J, XU X Y, LIU C M, et al. Inhibitory effects of tea tree oil, eugenol and citral on Aspergillus niger in litchi[J]. Food Science,2012,33(11):21−24.]

    ZHONG Y J, XU X Y, LIU C M, et al. Inhibitory effects of tea tree oil, eugenol and citral on Aspergillus niger in litchi[J]. Food Science, 2012, 33(11): 21−24.

    [16] 罗曼, 林丽娟, 蒋立科, 等. 柠檬醛顺反异构体对黄曲霉超微结构及膜功能的影响[J]. 中国生物化学与分子生物学报,2007(9):770−778. [LUO M, LIN L J, JIANG L K, et al. Effect of cis-trans isomer of citral on microstructure and membrane function of A. flavus[J]. Chinese Journal of Biochemistry and Molecular Biology,2007(9):770−778.] doi: 10.3969/j.issn.1007-7626.2007.09.012

    LUO M, LIN L J, JIANG L K, et al. Effect of cis-trans isomer of citral on microstructure and membrane function of A. flavus[J]. Chinese Journal of Biochemistry and Molecular Biology, 2007(9): 770−778. doi: 10.3969/j.issn.1007-7626.2007.09.012

    [17] 叶美娟, 余柯达, 邵俊怡, 等. 柠檬醛对杨梅采后保鲜的作用研究[J]. 微生物学杂志,2016(3):24−31. [YE M J, YU K D, SHAO J Y, et al. Effects of citral treatment on post harvest preservation of chinese bayberry[J]. Journal of Microbiology,2016(3):24−31.] doi: 10.3969/j.issn.1005-7021.2016.03.005

    YE M J, YU K D, SHAO J Y, et al. Effects of citral treatment on post harvest preservation of chinese bayberry[J]. Journal of Microbiology, 2016(3): 24−31. doi: 10.3969/j.issn.1005-7021.2016.03.005

    [18] 魏娟. 柠檬醛和肉桂醛抑制接骨木镰刀菌生长和产毒的机理[D]. 兰州:甘肃农业大学, 2020. [WEI J. The antifungal and anti-mycotoxin mechanisms of citral and cinnamaldehyde against Fusarium sambucinum[D]. Lanzhou:Gansu Agricultural University, 2020.]

    WEI J. The antifungal and anti-mycotoxin mechanisms of citral and cinnamaldehyde against Fusarium sambucinum[D]. Lanzhou: Gansu Agricultural University, 2020.

    [19] 周丽荣, 熊诗洁, 张玲玲, 等. 姜精油和柠檬醛对生姜枯萎病菌的抑菌作用及盆栽防效[J]. 中国生态农业学报(中英文),2024,32(1):130−140. [ZHOU L R, XIONG S J, ZHANG LL, et al. Control effect and mechanism of ginger essential oil and citral on ginger Fusarium wilt[J]. Chinese Journal of Eco-Agriculture,2024,32(1):130−140.]

    ZHOU L R, XIONG S J, ZHANG LL, et al. Control effect and mechanism of ginger essential oil and citral on ginger Fusarium wilt[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 130−140.

    [20] 王荣波, 陈姝樽, 李本金, 等. 福建省彩叶草叶斑病病原菌的分离鉴定与室内药剂筛选[J]. 福建农业学报, 2021, 36(12):1471. [WANG R B, CHEN S Z, LI B J, et al. Isolation, identification and screening of pathogens for leaf spot disease of Plectranthus scutellarioides in Fujian province[J]. Fujian Journal of Agricultural Sciences, 2021, 36(12):1471.]

    WANG R B, CHEN S Z, LI B J, et al. Isolation, identification and screening of pathogens for leaf spot disease of Plectranthus scutellarioides in Fujian province[J]. Fujian Journal of Agricultural Sciences, 2021, 36(12): 1471.

    [21] 刘志恒, 郑川, 黄欣阳, 等. 茄子绒菌斑病病原菌鉴定及生物学特性研究[J]. 植物保护,2014,40(3):58−64,69. [LIU Z H, ZHENG C, HUANG X Y, et al. Pathogen identification and biological characteristies of eggplant leaf mold[J]. Plant Protection,2014,40(3):58−64,69.] doi: 10.3969/j.issn.0529-1542.2014.03.010

    LIU Z H, ZHENG C, HUANG X Y, et al. Pathogen identification and biological characteristies of eggplant leaf mold[J]. Plant Protection, 2014, 40(3): 58−64,69. doi: 10.3969/j.issn.0529-1542.2014.03.010

    [22] 燕勇, 李卫平, 高雯洁, 等. rDNA-ITS序列分析在真菌鉴定中的应用[J]. 中国卫生检验杂志,2008(10):1958−1961. [YAN Y, LI W P, GAO W J, et al. Application of rDNA ITS sequence analysis in fungus identification[J]. Chinese Journal of Health Laboratory Technology,2008(10):1958−1961.] doi: 10.3969/j.issn.1004-8685.2008.10.007

    YAN Y, LI W P, GAO W J, et al. Application of rDNA ITS sequence analysis in fungus identification[J]. Chinese Journal of Health Laboratory Technology, 2008(10): 1958−1961. doi: 10.3969/j.issn.1004-8685.2008.10.007

    [23]

    EDWARDS S G, SEDDON B. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro[J]. Journal of Applied Microbiology,2001,91(4):652−659. doi: 10.1046/j.1365-2672.2001.01430.x

    [24]

    SHARMA N, TRPATHI A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem[J]. Microbiological Research, 2008, 163(3):337−341.

    [25]

    EZZAT A, SZABO S, SZABO Z, et al. Temporal patterns and inter-correlations among physical and antioxidant attributes and enzyme activities of apricot fruit inocu lated with monilinia laxa under salicylic acid and methyl jasmonate treatments under shelf-life conditions[J]. Journal of Fungi,2021,7(5):341. doi: 10.3390/jof7050341

    [26]

    LEE J H J, KASOTE D M, JAYAPRAKASHA G K, et al. Effect of production system and inhibitory potential of aroma volatiles on polyphenol oxidase and peroxidase activity in tomatoes[J]. Journal of the Science of Food and Agriculture,2021,101(1):307−341. doi: 10.1002/jsfa.10644

    [27]

    COLAK A, SAHIN E, YILDIRIM M, et al. Polyphenol oxidase potentials of three wildmushroom species harvested from Lier High Plateau, Trabzon[J]. Food Chemistry,2007,103(4):1426−1433. doi: 10.1016/j.foodchem.2006.10.059

    [28]

    GE Y H, LI X, LI C Y, et al. Effect of sodium nitroprusside on antioxidative enzymes and the phenylpropanoid pathway pathway in blueberry fruit[J]. Food Chemistry,2019,295:607−612. doi: 10.1016/j.foodchem.2019.05.160

    [29]

    LI C Y, WEI M L, GE Y H, et al. The role of glucose-6-phosphate dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl[J]. Food Chemistry,2020,308:125663. doi: 10.1016/j.foodchem.2019.125663

    [30] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. [CAO J K, JIANG W B, ZHAO Y M. Guidance on post harvest physiological and biochemical experiments of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007.]

    CAO J K, JIANG W B, ZHAO Y M. Guidance on post harvest physiological and biochemical experiments of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007.

    [31] 卯婷婷. 钩状木霉MHT1134对辣椒枯萎病的生防作用及其机制研究[D]. 贵阳:贵州大学, 2021. [MAO T T. Study on the biocontrol effect and mechanism of Trichoderma hamatum MHT1134 on pepper wilt disease[D]. Guiyang:Guizhou University. 2021.]

    MAO T T. Study on the biocontrol effect and mechanism of Trichoderma hamatum MHT1134 on pepper wilt disease[D]. Guiyang: Guizhou University. 2021.

    [32] 傅岳峰, 徐铖, 魏巍, 等. 东北红豆杉内生真菌Fusarium tricinctum J8的鉴定及抗菌活性研究[J]. 黑龙江医药,2023,36(3):497−501. [FU Y F, XU C, WEI W, et al. ldentification and antimicrobial activity of endophytic fungus Fusarium tricinctum J8 from taxus cuspidate[J]. Heilongjiang Medicine Journal,2023,36(3):497−501.]

    FU Y F, XU C, WEI W, et al. ldentification and antimicrobial activity of endophytic fungus Fusarium tricinctum J8 from taxus cuspidate[J]. Heilongjiang Medicine Journal, 2023, 36(3): 497−501.

    [33]

    ZHOU H W, YUAN B, CHEN W, et al. Effect of monooxygenase purified from Mycobacterium JS60 combined with sodium alginate on the preservation of banana[J]. Postharvest Biology and Technology,2020,161:111079. doi: 10.1016/j.postharvbio.2019.111079

    [34]

    LOAY A A, EL-KHATEED A Y. Antioxidant enzyme activities and exogenous ascorbic acid treatment of 'Williams' banana during long-term cold storage stress[J]. Scientia Horticulturae,2018,234:210−219. doi: 10.1016/j.scienta.2018.02.038

    [35]

    WOO J J, YU L J, YOUNG C K, et al. Inoculation of Paenibacillus illinoisensis alleviates root mortality, activates of lignification-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici[J]. Biological Control,2004,30(3):645−652. doi: 10.1016/j.biocontrol.2004.03.006

    [36]

    YINGSANGA P, SRILAONG V, KANLAYANARAT S, et al. Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. rongrien and see-chompoo[J]. Postharvest Biology and Technology,2008,50(2-3):164−168. doi: 10.1016/j.postharvbio.2008.05.004

    [37]

    LI S G, TAO S H, ZHANG J, et al. Effect of calcium treatment on the storability and disease resistance in preharvest bagging mango fruit during room temperature storage[J]. Journal of Food Processing and Preservation,2020,44(10):e14803.

    [38]

    CAO S F, ZHENG Y H. Effect of 1-methylcyclopropene on anthracnose rot caused by Colletotrichum acutatum and disease resistance in loquat fruit[J]. Journal of the Science of Food and Agriculture,2010,90(13):2289−2294. doi: 10.1002/jsfa.4084

    [39] 黄俊宝, 陈立才, 曹中盛, 等. 茉莉酸甲酯对水稻纹枯病的诱导抗性及防御酶活性影响的研究[J]. 江西农业学报,2023,35(8):82−87. [HUANG J B, CHENG L C, CAO Z S, et al. Effect of methyl jasmonate on rice induced resistance to sheath blight and activity of related defense enzymes[J]. Jiangxi Agricultural Journal,2023,35(8):82−87.]

    HUANG J B, CHENG L C, CAO Z S, et al. Effect of methyl jasmonate on rice induced resistance to sheath blight and activity of related defense enzymes[J]. Jiangxi Agricultural Journal, 2023, 35(8): 82−87.

    [40] 魏玲. 柠檬醛对猕猴桃采后软腐病的防治机理及保鲜效果研究[D]. 南昌:江西农业大学, 2021. [WEI L. Studies on mechanism of citral in preventing and controlling soft rot of kiwifruit and its effect on Kiwifruit postharvest preservation[D]. Nanchang:Agricultural University Of Jiangxi, 2021.]

    WEI L. Studies on mechanism of citral in preventing and controlling soft rot of kiwifruit and its effect on Kiwifruit postharvest preservation[D]. Nanchang: Agricultural University Of Jiangxi, 2021.

    [41] 陈少阳. 1-MCP与紫外以及柠檬醛组合处理对采后番茄保鲜和抑制灰霉病效果研究[D]. 湘潭:湘潭大学, 2018. [CHEN S Y. Effect of combined treatment of 1-MCP, UV-C and citral on postharvest tomography preservation and inhibition Botrytis cinerea (Solanum lycopersicum)[D]. Xiangtan:Xiangtan Universty, 2018.]

    CHEN S Y. Effect of combined treatment of 1-MCP, UV-C and citral on postharvest tomography preservation and inhibition Botrytis cinereaSolanum lycopersicum)[D]. Xiangtan: Xiangtan Universty, 2018.

    [42] 李姚瑶, 曹毛毛, 王小璐, 等. 外源p-香豆酸处理对采后桃果实苯丙烷代谢和抗氧化能力的影响[J]. 食品科学,2019,40(23):227−232. [LI Y Y, CAO M M, WANG X L, et al. Effect of exogenous p-coumaric acid on phenylpropanoid metabolism and antioxidant capacity of postharvest peach fruit[J]. Food Science,2019,40(23):227−232.] doi: 10.7506/spkx1002-6630-20181130-367

    LI Y Y, CAO M M, WANG X L, et al. Effect of exogenous p-coumaric acid on phenylpropanoid metabolism and antioxidant capacity of postharvest peach fruit[J]. Food Science, 2019, 40(23): 227−232. doi: 10.7506/spkx1002-6630-20181130-367

    [43]

    HAN P P, WEI Y Y, JIANG S, et al. N-Acetyl-d-glucosamine inhibition of hexokinase results in downregulation of the phenylpropanoid metabolic pathway and decreased resistance to brown rot in peach fruit[J]. Journal of Agricultural and Food Chemistry,2022,70(12):3917−3928. doi: 10.1021/acs.jafc.1c06573

    [44] 瞿光凡, 巴良杰, 雷霁卿, 等. 茉莉酸甲酯对脆红李采后病原菌的抑制作用[J]. 食品研究与开发,2022,43(24):95. [QU G F, BA L J, LEI J Q, et al. Inhibitory effect of methyl jasmonate on postharvest pathogenic bacteria of plum crisper[J]. Food Research and Development,2022,43(24):95.] doi: 10.12161/j.issn.1005-6521.2022.24.014

    QU G F, BA L J, LEI J Q, et al. Inhibitory effect of methyl jasmonate on postharvest pathogenic bacteria of plum crisper[J]. Food Research and Development, 2022, 43(24): 95. doi: 10.12161/j.issn.1005-6521.2022.24.014

    [45] 夏诗琪, 邓绍勇, 范国荣, 等. 柠檬醛抑菌特性及其缓释制剂研究进展[J]. 食品研究与开发, 2022, 43(21):200−207. [XIA S Q, DENG S Y, FAN G R, et al. Research progress on antibacterial properties and sustained-release preparation of citral[J]. Food Research and Development, 2022, 43(21):200−207.]

    XIA S Q, DENG S Y, FAN G R, et al. Research progress on antibacterial properties and sustained-release preparation of citral[J]. Food Research and Development, 2022, 43(21): 200−207.

    [46]

    WEI L, CHEN C Y, CHEN J Y, et al. Possible fungicidal effect of citral on kiwifruit pathogens and their mechanisms of actions[J]. Physiological and Molecular Plant Pathology,2021,114:101631. doi: 10.1016/j.pmpp.2021.101631

  • 其他相关附件

图(8)  /  表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-17
  • 网络出版日期:  2025-02-09
  • 刊出日期:  2025-04-14

目录

/

返回文章
返回
x 关闭 永久关闭