Research Progress on the Release and Functional Activity of Bound Polyphenols in Plant Foods
-
摘要: 天然多酚类化合物广泛存在于植物中,具有抗氧化、抗炎、抗癌等生物活性。按溶解特性可将多酚分为游离多酚和结合多酚,相比较于可直接萃取的游离多酚,结合多酚所占比例更高,分布更广,具有潜在的应用价值,越来越被人们关注。因此本文对结合多酚体外释放的方式进行了总结和分析,并简要综述了结合多酚在人体内释放机制,重点综述了结合多酚抗氧化、抗炎、抗癌和调节肠道环境等功能活性的作用机制和研究进展,期望能为结合多酚的未来研究和应用提供参考和指导。Abstract: Natural polyphenols are widely found in plants and have biological activities such as antioxidant, anti-inflammatory and anticancer. Polyphenols can be categorized into free polyphenols and bound polyphenols according to their solubility characteristics. Compared with free polyphenols that can be directly extracted, bound polyphenols have a higher proportion and wider distribution, which have potential application value and are increasingly being paid attention to. Therefore, this paper summarizes and analyzes the in vitro release of bound polyphenols, and briefly reviews the release mechanism of bound polyphenols in the human body, and focuses on the mechanisms and research progress of the functional activities of bound polyphenols, such as antioxidant, anti-inflammatory, anticancer, and regulate of the intestinal environment. This is expected to provide reference and guidance for future research and application of bound polyphenols.
-
Keywords:
- polyphenols /
- bound polyphenols /
- in vitro release /
- in vivo release /
- functional activity
-
多酚类物质是一种广泛分布于植物体内的次级代谢产物,含有一个芳香环以及一个或多个羟基,根据羟基的数目和位置,可分为酚酸、黄酮、二苯乙烯和木质素等[1]。酚类化合物作为植物内部生理调节剂或化学信号调节生长,因此在植物中发挥重要作用[2]。此外,近些年关于植物多酚的报导较多,因其具有抗病毒、抑菌、抗肿瘤、降血糖、降血脂等多种生物活性[3]。酚类化合物根据溶解特性可以将其分为游离多酚(Free Polyphenol,FP)和结合多酚(Bound Polyphenol,BP)[4−5]。FP主要以单体的形式存在于食品基质中,具有较好的水溶性,易溶于水和有机溶剂中[6];BP往往存在于植物细胞壁基质中,通过酯键、醚健或C-C键等以单体、二聚物或寡聚物的形式与纤维素、结构蛋白或细胞壁多糖等大分子物质相连,这类多酚更难以萃取[7]。BP主要存在于水解释放过FP的残留物中,并没有经过水解过程释放,因此经常被大多数人所忽视。现有研究表明,植物中BP不仅在含量上明显高于FP,而且具有更优越的生物活性[8−9]。
BP通常由几类酚类化合物组成,包括高分子量原花青素(PA,也称为缩合单宁)、可水解单宁、类黄酮和酚酸。化学共价键、氢键和疏水相互作用等是BP与植物食物中不溶性物质的主要连接作用力。例如多酚与膳食纤维的结合,可分为共价结合和非共价结合,见图1[10]。结合态酚类多为羟基苯丙烯酸及其衍生物(HCAS),绿原酸(Chlorogenic acid)、咖啡酸(Caffeic acid)、阿魏酸(Ferulic acid)、香豆酸(P-coumaric)、没食子酸(Gallic acid)等[11]。本文总结和分析了结合多酚的体外释放提取方式及其在人体内的释放机制,综述了结合多酚抗氧化、抗炎、抗癌和调节肠道环境等功能活性的作用机制和研究进展,期望能为结合多酚的开发利用提供理论参考。
1. 结合多酚的体外释放提取
BP通常通过酯键、醚键或C-C键连接或包埋在食品基质的大分子中,还有通过疏水相互作用或氢键与大分子物质连接。因此,应开发一种有效的提取方法,将该化合物从食品基质中彻底解离出来。BP的提取通常是通过从已提取过FP的残渣中进行,BP的常规提取流程如图2。目前,常用的有化学,如酸和碱水解法;生物,如酶水解、发酵法等;物理,如微波、超声波和超临界流体萃取等辅助技术,下文将详细介绍上述方法。
1.1 结合多酚的体外释放提取
1.1.1 化学法(碱、酸水解法)
碱水解法可以有效地裂解多酚与纤维素等细胞壁成分之间的酯键、醚键,进而从释放过FP的残基中将BP释放出来[12]。因此,碱水解法已被广泛应用于分离提取谷物、豆类及其他种子中的BP[13]。碱水解法通常采用NaOH试剂,Wang等[14]发现豆类中的BP能高效的被碱水解提取出来。刘天行[15]在分析小米BP酸、碱水解工艺后指出碱水解法损失较酸水解法更少。Guo等[16]采用4 mol/L NaOH从全谷物中成功提取了香草酸、咖啡酸、丁香酸、对香豆酸、阿魏酸和芥子酸等BP。
酸水解法主要通过破坏BP与细胞壁组分之间的糖苷键从而将其释放出来[17]。但不能释放通过酯键结合的多酚,酸水解法所采用的试剂一般为强酸(HCl或H2SO4),且该反应需要在高温条件下进行,酚类可能会发生氧化降解[18]。Wang等[17]用酸水处理已去除FP的李子残渣释放出BP的总含量高达255.5 mg/kg。Arranz等[19]对比小麦BP使用酸、碱水解法的产物提取率后得出酸水解法对小麦BP的提取更有利。研究发现石榴皮BP中的缩合单宁在碱水解法时表现出较强的惰性,只有在非常强烈的酸环境下,才能发生反应[20]。
此外,在不同的水解方法中,从释放过FP的残留物中释放BP的组成可能不同。比如,Sani等[21]对比酸水解与碱水解两种方法对芽糙米中酚类化合物的溶出规律,发现在酸水解法过程中,未发现羟基肉桂酸、咖啡酸、丁香酸、原儿茶酸等酚类化合物。还有研究发现,在小麦皮中,碱水解法主要释放阿魏酸、丁香酸、P-香豆酸等羟基肉桂酸;而酸水解法主要释放出羟基苯甲酸,如香草酸和对羟基苯甲酸[22]。在同一研究中还发现,当两种水解方法依次应用于同一样品时,仅在先碱水解后酸水解的方法中观察到酚酸产率显著提高,对于相同样品先酸水解后碱水解,产率非常低,这表明酸性条件可能导致BP不稳定。Verma等[23]通过对六个品种麦麸中BP的提取研究证实了碱水解法的高效性,他们发现碱水解法释放的酚类物质的量几乎是酸水解的两倍,特别是在释放香草酸、顺式阿魏酸和芥子酸方面。然而,Peng等[24]对黑豆分别进行了碱水解法、酶水解法和酸水解法三种方法提取BP,结果表明,对于黑豆BP提取率最高的是用酸水解法,并且花青素的含量及种类均是酸水解法效果更好。
综上所述,碱水解法通常需要较长的萃取时间以及较为复杂的预处理过程,而酸水解法通常需要在高温条件下进行,这会导致一些酚类化合物的降解,考虑到这两种化学水解方法的利弊,以及不同食品基质的复杂性,应考虑特定食品基质的BP在酸和碱中的稳定性以选择更合适的提取方式,以提高BP的提取率和回收率。
1.1.2 生物法(酶水解、发酵)
除了酸碱水解法,还有酶水解法也常用于BP的释放。酶水解法是一种从食品基质中释放BP特异性强、效率较高的处理方式。由于BP与纤维素、蛋白质、木质素、果胶等物质连接[25],故可使用相关酶法特异性将其水解释放出来。比如,淀粉酶可以使淀粉链断裂,破坏其空间结构并水解糖苷键,使被包埋在淀粉网状结构中的酚类物质得以释放;纤维素酶可通过对纤维素、半纤维素为主的细胞壁结构,使细胞壁结构得到破坏,与其连接的酚类物质持续释放到溶剂中,进而促进酚类物质提取效率[26]。酶解需要温和的条件,从而避免了酚类物质因极端 pH或高温而损失或降解。Tang等[27]采用不同种单一酶系释放藜麦BP,发现单一酶处理效果不理想,其原因可能与酶的种类、用量、BP连接的大分子以及食物基质组成等因素有关。张兴杰[28]用酶水解法高效的释放出菠萝蜜果肉冻干粉BP。酶水解法虽然具有环保、温和、高效的特点,但是酶的特异性强、通用性低及投入成本较高限制了其规模化应用。
还可利用微生物发酵改性食品基质,释放BP,常用的微生物有绿色木霉、纳豆芽孢杆菌[29−30]。霉菌等微生物会产生多种降解细胞壁的碳水化合物水解酶(如淀粉酶,果胶酶,纤维素酶等),这些酶可以有效地降解植物细胞壁的结构,破坏基质之间的各种相互作用,从而促进与基质紧密结合的BP释放,还能够一定程度上弥补酶法特异性强、成本较高的问题[31]。谢佳妍[32]与传统的碱水解提取法相比,绿色木霉固态发酵法更有利于BP从脱脂米糠不溶性膳食纤维中的释放。王储炎等[33]得出乳酸菌发酵会提高蓝莓中BP的含量和抗氧化活性。微生物发酵在一定程度上可以提高BP的含量以及其活性,但是微生物发酵有发酵周期长、产物浓度不高、菌群退化、发酵条件不易控制、污染风险高等不足之处。
1.1.3 物理辅助法
近年来,微波、超声波、亚临界水和脉冲电场等机械辅助技术已广泛应用于食品工业,具有传质高效、环境友好等优势[34]。这些技术能够将热量、机械波等能量传递给基质,破坏基质之间的各种相互作用,从而释放出结合在基质中的BP[35]。
微波辅助提取技术是利用微波与植物细胞组织中的水分子直接接触,辐射能转化为热能,水分子受热后由液态转化为气态导致组织膨胀变大最后破裂,活性成分从细胞中渗出,从而获得目标成分[36]。通常,研究人员会将微波与酸碱水解法联用提取食品基质中的BP。Chiremba等[37]在2 mol/L NaOH中进行微波辅助技术,以改善高粱和玉米中不溶性结合酚酸的释放。孔维宝等[38]表明:微波辅助提取油橄榄果渣多酚的提取量比常规溶剂提取方法提高18%~38%。李丽等[39]使用微波辅助法提取野坝子中的总黄酮,与传统的回流法相比有较高的提取率。这些研究表明,与传统的酸碱释放相比,微波辅助提取法能够有效缩短提取时间、减少有机溶剂消耗量、提升提取效率、降低成本。微波辅助可被广泛的应用与BP的释放。
超声辅助提取技术是目前应用最广的物理加工技术,这主要得益于超声波的三大效应:机械效应、空化效应和热效应。超声波辅助被认为比传统方法更快地释放酚类化合物,并且主要用于从食品中提取BP[40]。据报道,将超声与其他水解方法如碱水解和超临界流体提取相结合,比任何其他单一提取方法更有效地释放BP[36]。Dzah等[41]表明超声辅助水解法释放苦荞BP的量要显著的高于酸碱水解的释放量。Gonzales等[36]使用超声辅助碱水解法高效的释放花椰菜中的BP。超声辅助提取技术具有提取率高、操作简便、环境友好等特点,被大量应用于食品、药物等活性成分的提取中。
水在100~374 ℃的温度范围内,会处于亚临界状态,在此状态下的水便是亚临界水。尽管亚临界水保持液体状态,但水分子内部氢键断裂、介电常数降低、极性和表面张力减弱,因而能够促进植物细胞中活性成分溶出,有效提高活性成分提取率。目前,已成功使用亚临界水辅助提取技术从开心果皮、人参根、洋葱皮和洋甘菊中得到多酚类物质[42−45]。该法具有萃取和分离的双重作用,物料无相变过程因而节能明显,工艺流程简单,萃取效率高,没有有机溶剂的残留,产品质量良好,无环境污染等优点;然而该法也有其局限性,超临界水萃取法较适合相对分子量较小的物质萃取,所用设备是高压设备,投资操作成本较大。
综上,BP体外释放的方式主要包括酸碱水解等化学方法,微波、超声波、超临界流体萃取等物理辅助技术以及酶解、发酵等生物技术,各种方法各有其优缺点。表1总结了文献报道的常见谷物和蔬果中BP的释放方式和条件。
表 1 BP的释放方式和条件Table 1. Release methods and conditions of BP释放方式 物质名称 具体释放条件 含量 优缺点 文献 化学法 碱水解法 黄豆 2 mol/L NaOH水解,6 mol/L HCl调节pH至2 2.27 mg GAE/g DW 需要在惰性气体气氛(例如氮气)以及黑暗环境下进行;水解时间较长;适用于通过酯键、醚键等与大分子连接的多酚 [26] 高粱麸皮 2 mol/L NaOH水解,12 mol/L硫酸调节至pH2~3 0.61 mg GAE/g DW [46] 麦麸 2 mol/L NaOH水解,6 mol/L HCl调节pH至1.5~2 7.58 mg GAE/g DW [47] 绿豆 8 mol/L NaOH水解,浓盐酸溶液中和pH至7 37.638 mg FAE/g [48] 菠萝蜜 8 mol/L NaOH,液固比为20 mL/g,处理4 h 6.49 mg GAE/g DW [28] 薏米 3.26 mol/L NaOH,处理4.6 h,浸提温度53 ℃ 30.16 mg GAE/100 g [49] 酸水解法 绿豆 12%硫酸溶液水解,6 mol/L NaOH中和pH至7 7.98 mg FAE/g 需在高温下进行,会导致酚类降解;适用于通过糖苷键等与大分子连接的多酚 [48] 番石榴 4 mol/L HCl,水解温度95 ℃,水解时间30 h 2.47 mg GAE/g DW [50] 菠萝蜜 9%硫酸溶液水解,液固比为20 mL/g,处理4 h 21.8 mg GAE/
10 g DM[28] 生物法 酶水解法 菠萝蜜 2.4 mg/mL酶,液固比为20 mL/g,处理90 min 25.0 mg GAE/
10 g DM环保、温和、高效;但酶的特异性强、通用性低、投入成本较高;适用于实验室提取释放,不适用
工业化[28] 苹果 单宁酶,酶活为1000 U,降解20 h 1301.90 mg/kg DP [51] 发酵法 脱脂米糠 pH4;含水量66%;接种量105 spores/g;
发酵时间4 d5.55 mg GAE/g DW 提高BP的含量及活性;微生物发酵周期长、产物浓度不高、菌群退化、发酵条件不易控制、污染
风险高[32] 蓝莓 1.0 g酵母膏补充氮源,用食品级NaOH溶液调pH至4.5,糖质量浓度为50.88 g/L 0.821 mg/g [33] 胡萝卜 接种量大小为105,初始pH为6,发酵时间为6 d,间隔时间为36 h,绿色木霉和黑曲霉接种
比例为1:28.607 mg/g GAE [52] 物理辅助法 微波辅助法 高粱麸皮 2 mol/L NaOH,700 W微波处理3 min 1.90 mg GAE/g DW 缩短提取时间、减少有机溶剂消耗量、提升提取效率、降低成本;但仪器昂贵;较适合工业化
提取释放[47] 超声辅助法 桑葚果渣 料液比1:20,提取温度80 ℃,提取时间60 min 258.19 mg/g [53] 高粱麸皮 2 mol/L NaOH,270 W、60 ℃水浴超声20 min 1.98 mg GAE/g DW [47] 亚超临界辅助法 高粱麸皮 0.8 g NaHSO3,2 mol/L NaOH,20 mL蒸馏水,
170 ℃下萃取20 min1.99 mg GAE/g DW [47] 脉冲电场 金桔 脉冲数250次,场强11.8 kV/cm,液料比0.35:1 1.5 mg/g DW [54] 微波-酶法 柚子皮 微波功率600 W、温度85 ℃、处理37 min 1.48 mg GAE/g [55] 1.2 结合多酚的体内释放
在正常生理环境下,FP可直接在肠液中溶解也可通过消化酶的作用从食物基质中释放到胃肠,并被小肠粘膜吸收。BP在食物中会与膳食纤维、蛋白质和淀粉等成分结合,形成复合物,无法直接从食物基质中释放到口腔、胃及小肠组织,而是直接被送入结肠,在结肠微生物菌群或消化酶的作用下,BP会被分解,从而在食品基质中释放并被人体所吸收[56]。相关研究[57]显示,结肠不仅是BP发生释放与吸收的关键区域,而且在该区域内,BP在肠道菌群和微生物酶的影响下,会经历糖苷键的断裂,去除糖基后转变为苷元,或进一步经过环裂解变为简单的酚类化合物,这些物质随后能被人体吸收或从体内排除[58]。
在人体内,肠道菌群与多种生化过程密切相关,其中包括对食物中复杂化合物的分解和转化。对于结合多酚类化合物,肠道菌群的作用显得尤为重要。BP在肠道菌群中的释放和转化主要通过两种机制实现。首先,结肠中的特定菌群,如能够产生鼠李糖苷酶、葡萄糖苷酶和葡萄糖醛酸酶等酶[59]的菌群,能够作用于BP,使其与糖类、有机酸、脂质等之间的酯键发生断裂,释放出BP;其二,结肠菌群还能参与酚类成分与一些聚合物(如纤维素、鞣花单宁、半纤维、果胶等)之间连接共轭基团的裂解[60]。这些聚合物与BP之间存在着复杂的连接关系,在菌群的作用下使其连接关系被破坏,从而释放出BP。这两种机制共同作用,使得BP在肠道中被释放并转化为FP。
经过转化,BP可被机体吸收,并参与到结肠微生物环境的代谢中。这意味着BP可通过调节肠道菌群结构、改善肠道环境等方式,对人体产生健康益处。因此,对BP在肠道中的释放和转化机制的研究,不仅有助于理解肠道菌群与人体健康之间的关系,还可为药物研发或营养补充提供新思路。图3描述了BP在胃肠道中的吸收和代谢途径。
2. 结合多酚的功能活性
2.1 抗氧化
BP含有大量的邻苯二酚或邻苯三酚基团,这些邻位酚羟基易被氧化成醌类结构,可提高捕获自由基和消耗氧气的能力,清除自由基、激活相关的抗氧化活性酶系、诱导氧化的过渡金属离子螯合等,从而达到抗氧化目的[60−62]。多酚能够直接或间接地清除体内的自由基,如羟基自由基、超氧阴离子自由基和DPPH自由基等。如绿茶多酚中的儿茶素类化合物能够有效清除这些自由基,从而减轻自由基对细胞的损伤[63]。Yao等[64]研究证明,薏仁种子BP通过激活Nrf2信号通路,保护HepG2细胞免受H2O2引起的氧化应激损伤,这一作用与阿魏酸有关,它能有效地增强抗氧化酶活性并提高Nrf2下游抗氧化蛋白的表达。陈琳等[65]也发现薏米BP中的主要成分阿魏酸能够通过提高抗氧化蛋白的表达来减轻细胞的氧化损伤。此外,有研究发现,黑豆和米糠中的BP对体外抗氧化活性的贡献显著优于FP[65−67]。赵惠玲等[68]研究指出,黑芝麻种皮BP能够调节抗氧化系统,具体表现为降低过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)的活性,同时增强超氧化物歧化酶(SOD)活性,表明黑芝麻种皮BP通过引发活性氧(ROS)水平的增加调节抗氧化系统。多酚还能够与金属离子形成稳定的螯合物,减少金属离子在体内引起的氧化应激。例如,多酚能够螯合铁离子,减少铁引起的过氧化作用[69]。综上所述,不同来源的BP可通过清除自由基、激活Nrf2信号通路、提高相关抗氧化酶活性或降低相关氧化酶活性,以及与金属离子形成稳定的螯合物等多种机制表现出较好的抗氧化活性,保护生物体免受氧化损伤。
2.2 抗炎活性
炎症是人体免疫系统的保护性反应,但长期持续炎症可能对人体健康造成危险,甚至引发多种疾病,如肥胖、糖尿病、动脉粥样硬化、阿尔茨海默症等[70]。在所有天然生物活性物质中,酚类物质尤其BP被认为是最有效的抗炎剂之一。例如:绿原酸能够抑制小鼠巨噬细胞中的炎症标志物表达,通过抑制NF-κB核移位发挥抗炎作用[71]。石榴皮多酚[72]被证实可以通过不同的机制减少炎症介质的合成和释放,从而缓解炎症。同时,谢文杰等[73]也表明金柑BP能调节炎症反应,发挥抗炎作用。
酚类物质发挥抗炎活性有三种机制[17]:抑制促炎症细胞因子的表达,例如白细胞介素-1β(Interleukin-1β,IL-1β)和肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)等。Han等[74]研究发现蔓越莓BP能显著降低iNOS(Inducible nitric oxide synthase)的炎症因子活性,展现出抗炎特性[75];同时,BP也促进了HO-1(Heme oxygenase-1)抗氧化酶的产生,增强了细胞的抗氧化防御[76];促进抗炎细胞因子的表达,如白细胞介素-10(Interleukin 10,IL-10);王贵佐等[77]发现对和厚朴酚能够增加IL-10的表达及HO-1的上调,从而对小鼠急性肺损炎症发挥保护作用;调节炎症相关的信号通路(如NF-κB和MAPK途径)。例如,小米麸皮中提取的BP通过阻断NF-κB-p65核转位,抑制白细胞介素1β(IL-1β)等多种促炎细胞因子的水平并增强IL-10等抗炎细胞因子的表达水平从而抑制脂多糖(Lipopolysaccharides,LPS)刺激的HT-29细胞的炎症反应[78]。综上所述,BP通过抑制促炎症细胞因子、促进抗炎细胞因子的表达和调节炎症相关信号通道来发挥抗炎活性,对维护健康和预防炎症相关疾病具有重要意义。
2.3 抗癌活性
抑制或延缓癌细胞的迅速生长是抗癌药物研发的关键,通过诱导癌细胞凋亡,则能有效地减少肿瘤的恶性转变。诸多研究表明植物BP具有预防和改善癌症的作用。Okarter[79]研究表示小麦BP可明显降低Caco-2细胞的数量并抑制结肠癌细胞的扩散。沙棘果BP可抑制多种癌细胞的增殖,对结肠癌细胞的抑制作用最为显著;沙棘叶BP对人结肠癌细胞 HCT-116 具有明显的抑制增殖的作用,而且抑制作用BP要优于FP[80−81]。李帅涛[82]研究表明,谷糠BP可以诱导乳腺癌细胞PCYT1A基因的表达,导致甘油磷脂在乳腺癌细胞中积累,进而增强细胞中的自噬水平,最终诱导乳腺癌细胞自噬性死亡。王青等[83]研究发现,胡萝卜BP能有效抑制HepG-2细胞的增殖,并诱导其凋亡。
多酚类化合物在抗癌中的具体作用机制主要涉及以下几方面:影响细胞分化、增殖和凋亡:多酚类化合物能够通过影响细胞周期的各个阶段,特别是阻滞肿瘤细胞于G0/G1期,从而抑制其进入S期及G2/M期,进而抑制癌细胞的增殖,同时,这些化合物还能诱导癌细胞的凋亡,这在茶多酚对人肺癌细胞的研究中得到了证实[84];调节信号通路:特别是通过MAPK信号通路的调控,多酚类化合物能够显著地调节肿瘤细胞的生物学过程,包括增殖、分化、侵袭和迁移等[85]。这表明多酚类化合物通过影响特定的信号传导途径来发挥其抗肿瘤作用;抑制肿瘤免疫逃逸:茶多酚还被发现可以通过抑制肿瘤微环境中的免疫抑制细胞来阻滞肿瘤免疫逃逸,这对于肿瘤的发生和发展过程中的免疫逃逸机制具有重要意义[86]。除了上述机制外,多酚类化合物还可能通过其他各种机制发挥作用,如改变免疫功能和化学代谢等[87]。BP在抗癌中的作用机制是多方面的,这使BP成为潜在抗癌药物的候选物。
2.4 调节肠道环境
肠道微环境包括肠道组织、肠道内容物、短链脂肪酸和肠道菌群等。多酚类物质通过为肠道微生物提供代谢底物及发挥自身特性,从而抑制肠道内有害菌群的生长、降低病原菌的危害[88−89];同时,多酚类化合物还能通过抑制某些酶的活性,从而对肠道中一系列的酶解作用产生影响[59]。近年来,研究逐渐揭示了多酚通过调节肠道环境对宿主健康产生积极影响的机制:调节肠道屏障功能,多酚能够改善肠道黏膜屏障的功能,这与它们的抗氧化和抗炎作用密切相关。例如,茶多酚被发现能够通过TLR4/p38 MAPK/Nrf2通路改善肠道氧化应激反应[90],而蓝靛果多酚具有增加免疫、抑制小鼠肠道菌群种类、调节肠道菌群结构分布的作用[91];影响肠道微生物组成,多酚通过与肠道微生物相互作用,影响其组成和功能。这种相互作用既可以促进有益菌的增长,也可以抑制有害菌的增殖。例如,多酚能够选择性地促进有益菌群(如乳酸菌)生长,抑制有害菌的增殖[92]。此外,多酚及其代谢产物还能通过影响肠道微生物菌相进而影响人体健康[59];调节能量代谢,多酚及其代谢产物能够通过多种机制影响宿主的能量代谢。这包括改变肠道中易感微生物的生长,从而影响微生物代谢及产酶的种类和数量;抑制细菌细胞表面酶的活性,从而影响能量代谢;以及通过干预人体肠道菌群调整能量代谢[93];改善肠道微生态:多酚能够通过调节肠道微生态来发挥其健康益处。例如,姜黄素能够通过模式识别受体、核受体等信号通路发挥其生理作用,还能够通过细胞能量代谢调控细胞增殖与分化[94];促进肠道吸收和代谢:多酚不仅能够改善肠道屏障功能,还能够促进肠道中的营养物质吸收和代谢。例如,茶多酚在模拟胃肠消化过程中含量及活性的变化规律表明,其对肠道细菌生长的影响显著[95]。
多酚通过调节肠道屏障功能、影响肠道微生物组成、调节能量代谢、改善肠道微生态以及促进肠道吸收和代谢等多种机制,对宿主健康产生积极影响。这些机制的共同点在于它们都涉及到多酚与肠道环境之间的相互作用,从而揭示了多酚在调节肠道健康方面的重要作用。
2.5 其他作用
释放的单酚类化合物(包括酚酸和黄酮类化合物),已被在细胞培养和体内模型中广泛研究,其对糖尿病、心血管疾病、神经退行性疾病和癌症有生物活性[96−98]。谢星[99]发现海蒿子BP能显著抑制体外α-葡萄糖苷酶活性,并在体内通过激活PI3K/FOXO1/GLUT2信号通路来调节肝脏糖脂代谢和血糖稳态。此外,还有研究报道BP具有抗衰老功能,这可能与其抗炎和抗氧化功能有关。廖望[52]的研究发现,胡萝卜BP可以显著延长其寿命,提高抗氧化酶活性,降低脂肪酸氧化损伤产生的MDA含量。以上研究表明,BP在保护心血管系统、降血糖、抗衰老等方面具有积极作用,在功能性食品和相关医学的应用上具有较大的潜力。
3. 总结与展望
植物结合多酚是一类具有广泛生物活性的天然化合物,具有重要的营养价值和药用潜力,近年来备受关注,诸多研究者在植物结合多酚的体外释放提取分离方面,已开发出多种高效的方法,如酸碱法、酶解法、发酵法、微波和超声波辅助提取法等。在结合多酚的生物活性方面,大量的研究结果表明,植物结合多酚具有显著的抗氧化、抗炎、抗癌和调节肠道环境等多种生物活性。此外,结合多酚在肠道中的释放和转化机制及其在调节肠道菌群结构、改善肠道环境等方面的研究也不断深入。然而,尽管有关植物结合多酚的研究已经取得了显著成果,但仍存在一些不足,比如,结合多酚的释放分离技术仍有待提高,其功能活性作用机制仍需进一步深入研究。未来的研究可更多关注不同来源植物结合多酚的特性,以便去使用合适且先进的释放技术,释放更多具有独特生物活性的植物结合多酚;其次,需要进一步深入研究其功能活性在释放过程中的变化以及在体内释放的作用机制等,以便更好地评估其在预防和治疗疾病方面的实际效果和安全性,以及更有效地将其应用于预防和治疗疾病中。同时也要加强其在功能食品、保健品和药品等领域的应用研究。
-
表 1 BP的释放方式和条件
Table 1 Release methods and conditions of BP
释放方式 物质名称 具体释放条件 含量 优缺点 文献 化学法 碱水解法 黄豆 2 mol/L NaOH水解,6 mol/L HCl调节pH至2 2.27 mg GAE/g DW 需要在惰性气体气氛(例如氮气)以及黑暗环境下进行;水解时间较长;适用于通过酯键、醚键等与大分子连接的多酚 [26] 高粱麸皮 2 mol/L NaOH水解,12 mol/L硫酸调节至pH2~3 0.61 mg GAE/g DW [46] 麦麸 2 mol/L NaOH水解,6 mol/L HCl调节pH至1.5~2 7.58 mg GAE/g DW [47] 绿豆 8 mol/L NaOH水解,浓盐酸溶液中和pH至7 37.638 mg FAE/g [48] 菠萝蜜 8 mol/L NaOH,液固比为20 mL/g,处理4 h 6.49 mg GAE/g DW [28] 薏米 3.26 mol/L NaOH,处理4.6 h,浸提温度53 ℃ 30.16 mg GAE/100 g [49] 酸水解法 绿豆 12%硫酸溶液水解,6 mol/L NaOH中和pH至7 7.98 mg FAE/g 需在高温下进行,会导致酚类降解;适用于通过糖苷键等与大分子连接的多酚 [48] 番石榴 4 mol/L HCl,水解温度95 ℃,水解时间30 h 2.47 mg GAE/g DW [50] 菠萝蜜 9%硫酸溶液水解,液固比为20 mL/g,处理4 h 21.8 mg GAE/
10 g DM[28] 生物法 酶水解法 菠萝蜜 2.4 mg/mL酶,液固比为20 mL/g,处理90 min 25.0 mg GAE/
10 g DM环保、温和、高效;但酶的特异性强、通用性低、投入成本较高;适用于实验室提取释放,不适用
工业化[28] 苹果 单宁酶,酶活为1000 U,降解20 h 1301.90 mg/kg DP [51] 发酵法 脱脂米糠 pH4;含水量66%;接种量105 spores/g;
发酵时间4 d5.55 mg GAE/g DW 提高BP的含量及活性;微生物发酵周期长、产物浓度不高、菌群退化、发酵条件不易控制、污染
风险高[32] 蓝莓 1.0 g酵母膏补充氮源,用食品级NaOH溶液调pH至4.5,糖质量浓度为50.88 g/L 0.821 mg/g [33] 胡萝卜 接种量大小为105,初始pH为6,发酵时间为6 d,间隔时间为36 h,绿色木霉和黑曲霉接种
比例为1:28.607 mg/g GAE [52] 物理辅助法 微波辅助法 高粱麸皮 2 mol/L NaOH,700 W微波处理3 min 1.90 mg GAE/g DW 缩短提取时间、减少有机溶剂消耗量、提升提取效率、降低成本;但仪器昂贵;较适合工业化
提取释放[47] 超声辅助法 桑葚果渣 料液比1:20,提取温度80 ℃,提取时间60 min 258.19 mg/g [53] 高粱麸皮 2 mol/L NaOH,270 W、60 ℃水浴超声20 min 1.98 mg GAE/g DW [47] 亚超临界辅助法 高粱麸皮 0.8 g NaHSO3,2 mol/L NaOH,20 mL蒸馏水,
170 ℃下萃取20 min1.99 mg GAE/g DW [47] 脉冲电场 金桔 脉冲数250次,场强11.8 kV/cm,液料比0.35:1 1.5 mg/g DW [54] 微波-酶法 柚子皮 微波功率600 W、温度85 ℃、处理37 min 1.48 mg GAE/g [55] -
[1] OLAGARAY K E, BRADFOED B J. Plant flavonoids to improve productivity of ru-minants–A review[J]. Animal Feed Science and Technology,2019,251:21−36. doi: 10.1016/j.anifeedsci.2019.02.004
[2] CHEYNIER V, COMTE G, DAVIES K M, et al. Plant phenolics:recent advances on their biosynthesis, genetics, and ecophysiology[J]. Plant Physiology and Piochemistry,2013,72:1−20. doi: 10.1016/j.plaphy.2013.05.009
[3] 翁蔚, 张琴梅, 李书魁, 等. 植物多酚抗病毒功效及机制研究进展[J]. 中华中医药杂志,2020,35(12):6236−6240. [WENG W, ZHANG Q M, LI S K, et al. Research progress on antiviral efficacy and mechanism of plant polyphenols[J]. Chinese Journal of Traditional Chinese Medicine,2020,35(12):6236−6240.] WENG W, ZHANG Q M, LI S K, et al. Research progress on antiviral efficacy and mechanism of plant polyphenols[J]. Chinese Journal of Traditional Chinese Medicine, 2020, 35(12): 6236−6240.
[4] GORZYNIK-DEBICKA M, PRZYCHODZEN P, CAP-PELLO F, et al. Potential health benefits of olive oil and plant poly-phenols[J]. International Journal of Molecular Sciences,2018,19(3):686. doi: 10.3390/ijms19030686
[5] PHAN A D, NETZEL G, WANG D, et al. Binding of dietarypolyphenols to cellulose:Structural and nutritional aspects[J]. Food Chemistry,2015,171(15):388−396.
[6] 颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15):249−254. [YAN C Z, YE F Y, ZHAO G H. Research progress of polyphenols in food[J]. Food Science,2015,36(15):249−254.] doi: 10.7506/spkx1002-6630-201515046 YAN C Z, YE F Y, ZHAO G H. Research progress of polyphenols in food[J]. Food Science, 2015, 36(15): 249−254. doi: 10.7506/spkx1002-6630-201515046
[7] 张名位. 全谷物酚类物质及其抗氧化活性研究进展[J]. 粮食加工,2016,41(1):28−36. [ZHNAG M W. Research progress on phenolic compounds and their antioxidant activity in whole grains[J]. Food Processing,2016,41(1):28−36.] ZHNAG M W. Research progress on phenolic compounds and their antioxidant activity in whole grains[J]. Food Processing, 2016, 41(1): 28−36.
[8] MORA-ROCHIN S, GUTIÉRREZ-URIBE J A, SERNA-SALDIVAR S O, et al. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking[J]. Journal of Cereal Science,2010,52(3):502−508. doi: 10.1016/j.jcs.2010.08.010
[9] ZHOU Z K, ROBARDS K, HELLIWELL S, et al. The distribution of phenolic acids in rice[J]. Food Chemistry,2003,87(3):401−406.
[10] 刘甜甜, 吴晓娟, 吴伟. 多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J]. 中国粮油学报,2022,37(7):179−187. [LIU T T, WU X J, WU W. Research progress on polyphenol-dietary fiber interaction and its effect on polyphenol bioavailability[J]. Chinese Journal of Grain and Oil,2022,37(7):179−187.] LIU T T, WU X J, WU W. Research progress on polyphenol-dietary fiber interaction and its effect on polyphenol bioavailability[J]. Chinese Journal of Grain and Oil, 2022, 37(7): 179−187.
[11] 庄国栋, 汤丹, 陈永生. 结合态多酚改善肠道氧化应激与肠道屏障的研究进展[J]. 食品工业科技,2022,43(11):440−448. [ZHUANG G D, TANG D, CHEN Y S. Research progress of conjugated polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry,2022,43(11):440−448.] ZHUANG G D, TANG D, CHEN Y S. Research progress of conjugated polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry, 2022, 43(11): 440−448.
[12] PACHECO-ORDAZ R, ANTUNES-RICARDO M, GUTIÉRREZ-URIBE J A, et al. Intestinal permeability and cellular antioxidant activity of phenolic compounds from Mango (Mangifera indica cv. Ataulfo) peels[J]. International Journal of Molecular Sciences,2018,19(2):514. doi: 10.3390/ijms19020514
[13] ALSHIKH N, CAMARGO D C A, SHAHIDI F. Phenolics of selected lentil cultivars:Antioxidant activities and inhibition of low-density lipoprotein and DNA damage[J]. Journal of Functional Foods,2015,18:1022−1038. doi: 10.1016/j.jff.2015.05.018
[14] WANG Y K, ZHANG X, CHEN G L, et al. Antioxidant property and their free, solubleconjugate and insoluble-bound phenolic contents in selected beans[J]. Journal of Functional Foods,2016,24:359−372. doi: 10.1016/j.jff.2016.04.026
[15] 刘天行. 小米结合型酚类化合物的分离鉴定及抗氧化活性评价[D]. 南京:南京农业大学, 2015. [LIU T X. Isolation identification and antioxidant activity evaluation of millet bound phenolic compounds[D]. Nanjing:Nanjing Agricultural University, 2015.] LIU T X. Isolation identification and antioxidant activity evaluation of millet bound phenolic compounds[D]. Nanjing: Nanjing Agricultural University, 2015.
[16] GUO W, BETA T. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals[J]. Food Research International,2013,51(2):518−525. doi: 10.1016/j.foodres.2013.01.008
[17] WANG Z, LI S, GE S, et al. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants[J]. Journal of Agricultural and Food Chemistry,2020,68(11):3330−3343. doi: 10.1021/acs.jafc.9b06574
[18] ZHANG B, ZHANG Y, LI H, et al. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives[J]. Trends in Food Science & Technology,2020,105:347−362.
[19] ARRANZ S, CALIXTO F S. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis:A study in wheat flour and wheat bran and cereals of the diet[J]. Journal of Cereal Science,2010,51(3):313−318. doi: 10.1016/j.jcs.2010.01.006
[20] 田旭坤. 植物多酚的提取工艺研究[D]. 哈尔滨:哈尔滨理工大学, 2019. [TIAN X K. Research on the extraction process of plant polyphenols[D]. Harbin:Harbin Institute of Technology, 2019.] TIAN X K. Research on the extraction process of plant polyphenols[D]. Harbin: Harbin Institute of Technology, 2019.
[21] SANI I M, IQBAL S, CHAN K W, et al. Effect of acid and base catalyzed hydrolysis on the yield of phenolics and antioxidant activity of extracts from germinated brown rice (GBR)[J]. Molecules,2012,17(6):7584−7594. doi: 10.3390/molecules17067584
[22] KIM K H, TSAO R, YANG R, et al. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions[J]. Food Chemistry,2006,95(3):466−473. doi: 10.1016/j.foodchem.2005.01.032
[23] VERMA B, HUCL P, CHIBBAR R N. Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions[J]. Food Chemistry,2009,116(4):947−954. doi: 10.1016/j.foodchem.2009.03.060
[24] PENG H, LI W, LI H, et al. Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) merr)[J]. Journal of Functional Foods,2017,32:296−312. doi: 10.1016/j.jff.2017.03.003
[25] WONG D W S. Feruloyl esterase:A key enzyme in biomass degradation[J]. Applied Biochemistry and Biotechnology,2006,133:87−112. doi: 10.1385/ABAB:133:2:87
[26] 李文婷. 六种豆类中不同结合态多酚组成、胃肠道生物可接受率及其抗氧化活性研究[D]. 南昌:南昌大学, 2018. [LI W T. Study on the composition of different bound polyphenols, gastrointestinal bioacceptability rate and antioxidant activity in six kinds of legumes[D]. Nanchang:Nanchang University, 2018.] LI W T. Study on the composition of different bound polyphenols, gastrointestinal bioacceptability rate and antioxidant activity in six kinds of legumes[D]. Nanchang: Nanchang University, 2018.
[27] TANG Y, ZHANG B, LI X, et al. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects[J]. Journal of Agricultural and Food Chemistry,2016,64(8):1712−1719. doi: 10.1021/acs.jafc.5b05761
[28] 张兴杰. 菠萝蜜膳食纤维中结合多酚的提取工艺优化及其消化酵解特性的研究[D]. 南昌:南昌大学, 2022. [ZHANG X J. Optimization of the extraction process of combined polyphenols from dietary fiber of pineapple honey and its digestive and enzymatic properties[D]. Nanchang:Nanchang University, 2022.] ZHANG X J. Optimization of the extraction process of combined polyphenols from dietary fiber of pineapple honey and its digestive and enzymatic properties[D]. Nanchang: Nanchang University, 2022.
[29] XIE J, LIU S, DONG R, et al. Bound polyphenols from insoluble dietary fiber of defatted rice bran by Solid-State fermentation with trichoderma viride:Profile, activity, and release mechanism[J]. Journal of Agricultural and Food Chemistry,2021,69(17):5026−5039. doi: 10.1021/acs.jafc.1c00752
[30] CHU J, ZHAO H, LU Z, et al. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto[J]. Food Chemistry, 2019, 294:79−86.
[31] TORRES-LEÓN C, RAMÍREZ-GUZMÁN N, ASCACIO-VALDES J, et al. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed:A promising source of natural antioxidants[J]. LWT-Food Science and Technology,2019,112:108236. doi: 10.1016/j.lwt.2019.06.003
[32] 谢佳妍. 绿色木霉固态发酵释放脱脂米糠不溶性膳食纤维结合多酚及其延缓秀丽隐杆线虫衰老的机制研究[D]. 南昌:南昌大学, 2023. [XIE J Y. Solid-state fermentation of Trichoderma viride to release insoluble dietary fiber-bound polyphenols from defatted rice bran and its mechanism of delaying the aging of Caenorhabditis elegans[D]. Nanchang:Nanchang University, 2023.] XIE J Y. Solid-state fermentation of Trichoderma viride to release insoluble dietary fiber-bound polyphenols from defatted rice bran and its mechanism of delaying the aging of Caenorhabditis elegans[D]. Nanchang: Nanchang University, 2023.
[33] 王储炎, 张继刚, 杨柳青, 等. 3种乳酸菌发酵对蓝莓多酚、原花青素含量及抗氧化活性的影响[J]. 食品科学,2020,41(24):87−94. [WANG C Y, ZHANG J G, YANG L Q, et al. Comparative effects of fermentation with three species of lactic acid bacteria on polyphenol and proanthocyanidin contents and antioxidant activity of blueberry fruit[J]. Food Science,2020,41(24):87−94.] doi: 10.7506/spkx1002-6630-20200326-387 WANG C Y, ZHANG J G, YANG L Q, et al. Comparative effects of fermentation with three species of lactic acid bacteria on polyphenol and proanthocyanidin contents and antioxidant activity of blueberry fruit[J]. Food Science, 2020, 41(24): 87−94. doi: 10.7506/spkx1002-6630-20200326-387
[34] CHEMAT F, VIAN M A, FABIANO-TIXIER A-S, et al. A review of sustainable and intensified techniques forextraction of food and natural products[J]. Green Chemistry,2020,22(8):2325−2353. doi: 10.1039/C9GC03878G
[35] AMEER K, SHAHBAZ H M, KWON J H. Green extraction methods for polyphenols from plant matrices and their byproducts:A review[J]. Comprehensive Reviews in Food Science and Food Safety,2017,16(2):295−315. doi: 10.1111/1541-4337.12253
[36] GONZALES G B, SMAGGHE G, RAES K, et al. Combined alkaline hydrolysis and ultrasound-assisted extraction for the release of nonextractable phenolics from cauliflower (Brassica oleracea var. botrytis) waste[J]. Journal of Agricultural and Food Chemistry,2014,62(15):3371−3376. doi: 10.1021/jf500835q
[37] CHIREMBA C, ROONEY L W, BETA T. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness[J]. Journal of Agricultural and Food Chemistry,2012,60(18):4735−4742. doi: 10.1021/jf300279t
[38] 孔维宝, 李阳, 白万明, 等. 微波辅助提取油橄榄果渣多酚[J]. 食品与发酵工业,2011,37(4):233−237. [KONG W B, LI Y, BAI W M, et al. Microwave-assisted extraction of polyphenols from olive pomace[J]. Food and Fermentation Industry,2011,37(4):233−237.] KONG W B, LI Y, BAI W M, et al. Microwave-assisted extraction of polyphenols from olive pomace[J]. Food and Fermentation Industry, 2011, 37(4): 233−237.
[39] 李丽, 余丽, 彭先陈, 等. 微波辅助提取野坝子中总黄酮及其抑菌性能研究[J]. 云南化工,2015,42(6):11−15. [LI L, YU L, PENG X C, et al. Microwave-assisted extraction of total flavonoids from wild damselfly and its antibacterial properties[J]. Yunnan Chemical Industry,2015,42(6):11−15.] LI L, YU L, PENG X C, et al. Microwave-assisted extraction of total flavonoids from wild damselfly and its antibacterial properties[J]. Yunnan Chemical Industry, 2015, 42(6): 11−15.
[40] ERSAN S, ÜSTÜNDAĞ Ö G, CARLE R, et al. Determination of pistachio (Pistacia vera L.) hull (exo-and mesocarp) phenolics by HPLC-DAD-ESI/MSn and UHPLC-DAD-ELSD after ultrasound-assisted extraction[J]. Journal of Food Composition and Analysis,2017,62:103−114. doi: 10.1016/j.jfca.2017.04.013
[41] DZAH C S, DUAN Y, ZHANG H, et al. Effects of pretreatment and type of hydrolysis on the composition, antioxidant potential and HepG2 cytotoxicity of bound polyphenols from Tartary buckwheat (Fagopyrum tataricum L. Gaerth) hulls[J]. Food Research International,2021,142:110187. doi: 10.1016/j.foodres.2021.110187
[42] ERSAN S, USTUNDAG O G, CARELE R, et al. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls[J]. Food Chemistry,2018,253(1):46−54.
[43] ZHANG Y, ZHANG Y, TAHA A A, et al. Subcritical water extraction of bioactive components from ginseng roots (Panax ginseng CA Mey)[J]. Industrial Crops and Products,2018,117:118−127. doi: 10.1016/j.indcrop.2018.02.079
[44] MUNIR M T, KHEIRKHAH H, BAROUTIAN S, et al. Subcritical water extraction of bioactive compounds from waste onion skin[J]. Journal of Cleaner Production,2018,183(10):487−494.
[45] CVETANOVIC A, SVARC-GAJIC J, ZEKOVIC Z, et al. Subcritical water extraction as a cutting edge technology for the extraction of bioactive compounds from chamomile:Influence of pressure on chemical composition and bioactivity of extracts[J]. Food Chemistry,2018,266(15):389−396.
[46] 卫鸣. 高粱麸皮结合多酚的提取及其对衰老小鼠肠道微环境的调节作用[D]. 镇江:江苏大学, 2023. [WEI M. Extraction of sorghum bran-bound polyphenols and its regulatory effect on intestinal microenvironment of aging mice[D]. Zhenjiang:Jiangsu University, 2023.] WEI M. Extraction of sorghum bran-bound polyphenols and its regulatory effect on intestinal microenvironment of aging mice[D]. Zhenjiang: Jiangsu University, 2023.
[47] 张玲. 麦麸膳食纤维中结合多酚的释放研究[D]. 天津:天津科技大学, 2022. [ZHANG L. Study on the release of bound polyphenols from wheat bran dietary fiber[D]. Tianjin:Tianjin University of Science and Technology, 2022.] ZHANG L. Study on the release of bound polyphenols from wheat bran dietary fiber[D]. Tianjin: Tianjin University of Science and Technology, 2022.
[48] 郑玉婷. 绿豆皮膳食纤维中结合多酚的提取优化和抗氧化活性及其对淀粉酶活性的影响[D]. 南昌:南昌大学, 2022. [ZHENG Y T. Extraction optimization and antioxidant activity of bound polyphenols from mung bean skin dietary fiber and its effect on amylase activity[D]. Nanchang:Nanchang University, 2022.] ZHENG Y T. Extraction optimization and antioxidant activity of bound polyphenols from mung bean skin dietary fiber and its effect on amylase activity[D]. Nanchang: Nanchang University, 2022.
[49] 姚轶俊, 鞠兴荣, 张怡一, 等. 响应面法优化薏米中结合型多酚的提取工艺[J]. 食品工业科技,2018,39(23):164−168. [YAO Y J, JU X R, ZHANG Y Y, et al. Response surface methodology for optimizing the extraction process of bound polyphenols from Job's tears[J]. Food Industry Science and Technology,2018,39(23):164−168.] YAO Y J, JU X R, ZHANG Y Y, et al. Response surface methodology for optimizing the extraction process of bound polyphenols from Job's tears[J]. Food Industry Science and Technology, 2018, 39(23): 164−168.
[50] 骆亚丽, 杨聪颖, 肖航, 等. 番石榴中结合多酚碱水解与酸水解法提取工艺优化的比较[J]. 天然产物研究与开发,2018,30(7):1242−1251. [LUO Y L, YANG C Y, XIAO H, et al. Comparison of optimization of extraction process of combined polyphenols from guava by alkali hydrolysis and acid hydrolysis[J]. Research and development of natural products,2018,30(7):1242−1251.] LUO Y L, YANG C Y, XIAO H, et al. Comparison of optimization of extraction process of combined polyphenols from guava by alkali hydrolysis and acid hydrolysis[J]. Research and development of natural products, 2018, 30(7): 1242−1251.
[51] 张金宏. 苹果渣中游离酚和结合酚的提取及其功能特性的研究[D]. 咸阳:西北农林科技大学, 2016. [ZHANG J H. Extraction of free and bound phenols from apple pomace and research on their functional properties[D]. Xianyang:Northwest Agriculture and Forestry University, 2016.] ZHANG J H. Extraction of free and bound phenols from apple pomace and research on their functional properties[D]. Xianyang: Northwest Agriculture and Forestry University, 2016.
[52] 廖望. 混合发酵释放胡萝卜膳食纤维中结合多酚及可溶性膳食纤维在速食面条中的应用[D]. 南昌:南昌大学, 2023. [LIAO W. Application of polyphenols and soluble dietary fiber released from carrot dietary fiber by mixed fermentation in instant noodles[D]. Nanchang:Nanchang University, 2023.] LIAO W. Application of polyphenols and soluble dietary fiber released from carrot dietary fiber by mixed fermentation in instant noodles[D]. Nanchang: Nanchang University, 2023.
[53] 周冰怡, 张波, 曹艳. 桑葚果渣中结合态多酚提取工艺优[J]. 现代食品,2020(9):84−87. [ZHOU B Y, ZHANG B, CAO Y. Optimization of extraction process of bound polyphenols from mulberry fruit pomace[J]. Modern Food,2020(9):84−87.] ZHOU B Y, ZHANG B, CAO Y. Optimization of extraction process of bound polyphenols from mulberry fruit pomace[J]. Modern Food, 2020(9): 84−87.
[54] 朱雅雯. 金柑结合态多酚的提取、体外消化吸收及对结肠炎的活性研究[D]. 长沙:湖南农业大学, 2023. [ZHU Y W. Study on the extraction,in vitro digestion and absorption of kumquat-bound polyphenols and their activity against colitis[D]. Changsha:Hunan Agricultural University, 2023.] ZHU Y W. Study on the extraction, in vitro digestion and absorption of kumquat-bound polyphenols and their activity against colitis[D]. Changsha: Hunan Agricultural University, 2023.
[55] 彭莞仪. 微波-酶法制备柚皮膳食纤维和结合多酚及产品开发研究[D]. 南昌:南昌大学, 2023. [PENG G Y. Preparation of pomelo peel dietary fiber and bound polyphenols by microwave-enzymatic method and product development research[D]. Nanchang:Nanchang University, 2023.] PENG G Y. Preparation of pomelo peel dietary fiber and bound polyphenols by microwave-enzymatic method and product development research[D]. Nanchang: Nanchang University, 2023.
[56] MOSELE J I, MACIÀ A, ROMERO M P, et al. Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study he stability and catabolism of phenolic compounds[J]. Journal of Functional Foods,2015,14:529−540. doi: 10.1016/j.jff.2015.02.026
[57] 左丹, 廖霞, 李瑶, 等. 基于肠道吸收机制的膳食多酚代谢研究进展[J]. 食品科学,2017,38(7):266−271. [ZUO D, LIAO X, LI Y, et al. Research progress of dietary polyphenol metabolism based on intestinal absorption mechanism[J]. Food Science,2017,38(7):266−271.] ZUO D, LIAO X, LI Y, et al. Research progress of dietary polyphenol metabolism based on intestinal absorption mechanism[J]. Food Science, 2017, 38(7): 266−271.
[58] SERRA A, MACIÀ A, ROMERO M P, et al. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids[J]. Food Chemistry,2012,130(2):383−393. doi: 10.1016/j.foodchem.2011.07.055
[59] 杨华, 叶发银, 赵国华. 膳食多酚与肠道微生物相互作用研究进展[J]. 食品科学,2015,36(3):223−227. [YANG H, YE F Y, ZHAO G H. Research progress on the interaction between dietary polyphenols and intestinal microorganisms[J]. Food Science,2015,36(3):223−227.] YANG H, YE F Y, ZHAO G H. Research progress on the interaction between dietary polyphenols and intestinal microorganisms[J]. Food Science, 2015, 36(3): 223−227.
[60] SAURA-CALIXTO F, SERRANO J, GONI I. Intake and bioaccessibility of total polyphenols in a whole diet[J]. Food Chemistry,2007,101(2):492−501. doi: 10.1016/j.foodchem.2006.02.006
[61] 王雪飞, 张华. 多酚类物质生理功能的研究进展[J]. 食品研究与开发,2012,33(2):211−214. [WANG X F, ZHANG H. Research progress on physiological functions of polyphenols[J]. Food Research and Development,2012,33(2):211−214.] WANG X F, ZHANG H. Research progress on physiological functions of polyphenols[J]. Food Research and Development, 2012, 33(2): 211−214.
[62] 何强, 姚开, 石碧. 植物单宁的营养学特性[J]. 林产化学与工业,2001(1):80−85. [HE Q, YAO K, SHI B. Nutritional characteristics of plant tannins[J]. Forest Chemistry and Industry,2001(1):80−85.] HE Q, YAO K, SHI B. Nutritional characteristics of plant tannins[J]. Forest Chemistry and Industry, 2001(1): 80−85.
[63] 高文波, 翁国斌. 绿茶多酚抗氧化作用及其机制研究进展[J]. 国际药学研究杂志,2009,36(5):332−335,361. [GAO W B, WENG G B. Progress in the study of antioxidant effects of green tea polyphenols and their mechanisms[J]. International Journal of Pharmaceutical Research,2009,36(5):332−335,361.] GAO W B, WENG G B. Progress in the study of antioxidant effects of green tea polyphenols and their mechanisms[J]. International Journal of Pharmaceutical Research, 2009, 36(5): 332−335,361.
[64] YAO Y, WANG H, XU F, et al. Insoluble-bound polyphenols of adlay seed ameliorate H2O2- induced oxidative stress in HepG2 cells via Nrf2 signalling[J]. Food Chemistry,2020,325:126865. doi: 10.1016/j.foodchem.2020.126865
[65] 陈琳, 张怡一, 徐茜, 等. 薏米结合多酚分离鉴定及其抗氧化作用机制研究[C]//中国食品科学技术学会第十四届年会暨第九届中美食品业高层论坛, 2017:660−661. [CHEN L, ZHANG Y Y, XU Q, et al. Study on the separation and identification of adlay bound polyphenols and its antioxidant mechanism[C]// The 14th annual meeting of China Food Science and Technology Association and the 9th China-US Food Industry Forum, 2017:660−661.] CHEN L, ZHANG Y Y, XU Q, et al. Study on the separation and identification of adlay bound polyphenols and its antioxidant mechanism[C]// The 14th annual meeting of China Food Science and Technology Association and the 9th China-US Food Industry Forum, 2017: 660−661.
[66] 顿倩, 彭瀚, 麦琦莹, 等. 基于液相色谱-质谱联用技术定性定量分析黑豆种皮中可溶型和结合型花青素[J]. 食品科学,2019,40(10):178−186. [DUN Q, PENG H, MAI Q Y, et al. Qualitative and quantitative analysis of soluble and bound anthocyanins in black bean seed coats based on liquid chromatography-mass spectrometry[J]. Food Science,2019,40(10):178−186.] DUN Q, PENG H, MAI Q Y, et al. Qualitative and quantitative analysis of soluble and bound anthocyanins in black bean seed coats based on liquid chromatography-mass spectrometry[J]. Food Science, 2019, 40(10): 178−186.
[67] IRAKLI M, KLEISIARIS F, KADOGLIDOU K, et al. Optimizing extraction conditions of free and bound phenolic compounds from rice by-products and their antioxidant effects[J]. Foods,2018,7(6):93. doi: 10.3390/foods7060093
[68] 赵惠玲, 王浩毓, 王青, 等. 黑芝麻种皮结合态多酚通过线粒体内源性通路诱导HepG2细胞凋亡[J]. 营养学报,2020,42(4):374−381. [ZHAO H L, WANG H Y, WANG Q, et al. Black sesame seed coat-bound polyphenols induce apoptosis of HepG2 cells through mitochondrial endogenous pathway[J]. Acta Nutrimenta Sinica,2020,42(4):374−381.] ZHAO H L, WANG H Y, WANG Q, et al. Black sesame seed coat-bound polyphenols induce apoptosis of HepG2 cells through mitochondrial endogenous pathway[J]. Acta Nutrimenta Sinica, 2020, 42(4): 374−381.
[69] 王颂萍, 钟强, 杨欣悦, 等. 多酚抑制脂肪氧化的作用机理及其在肉制品中应用的研究进展[J]. 食品工业科技,2022,43(10):417−425. [WANG S P, ZHONG Q, YANG X Y, et al. Research progress on the mechanism of polyphenol inhibition of fat oxidation and its application in meat products[J]. Food Industry Science and Technology,2022,43(10):417−425.] WANG S P, ZHONG Q, YANG X Y, et al. Research progress on the mechanism of polyphenol inhibition of fat oxidation and its application in meat products[J]. Food Industry Science and Technology, 2022, 43(10): 417−425.
[70] 蔡朋举, 孙爱东, 贾国梁. 植物多酚的抗炎功效及微胶囊化研究进展[J]. 中国食品学报,2022,22(7):417−427. [CAI P J, SUN A D, JIA G L. Anti-inflammatory effects of plant polyphenols and progress of microencapsulation[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(7):417−427.] CAI P J, SUN A D, JIA G L. Anti-inflammatory effects of plant polyphenols and progress of microencapsulation[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(7): 417−427.
[71] 黄俊杰, 金英, 朴英, 等. 绿原酸对脂多糖刺激的RAW 264.7细胞的抗炎作用[J]. 炎症研究, 2014, 63:81−90. [HUANG J J, JIN Y, BU Y, et al. Anti-inflammatory effects of chlorogenic acid on lipopolysaccharide-stimulated RAW 264.7 cells[J]. Inflammation Research, 2014, 63:81−90.] HUANG J J, JIN Y, BU Y, et al. Anti-inflammatory effects of chlorogenic acid on lipopolysaccharide-stimulated RAW 264.7 cells[J]. Inflammation Research, 2014, 63: 81−90.
[72] 杜琾, 李杰, 张旭, 等. 石榴皮多酚通过抑制MAPKs活化抑制LPS诱导的RAW264.7巨噬细胞炎症[J]. 功能食品学报,2018(43):62−69. [DU J, LI J, ZHANG X, et al. Pomegranate peel polyphenols suppress LPS-induced inflammation in RAW264.7 macrophages by inhibiting MAPKs activation[J]. Journal of Functional Foods,2018(43):62−69.] DU J, LI J, ZHANG X, et al. Pomegranate peel polyphenols suppress LPS-induced inflammation in RAW264.7 macrophages by inhibiting MAPKs activation[J]. Journal of Functional Foods, 2018(43): 62−69.
[73] 谢文杰, 朱雅雯, 肖航, 等. 金柑结合态多酚体外模拟消化产物的免疫活性研究[J]. 营养学报,2023,45(5):465−473. [XIE W J, ZHU Y W, XIAO H, et al. Immune activity of in vitro simulated digestion products of conjugated polyphenols from kumquats[J]. Acta Nutrimenta Sinica,2023,45(5):465−473.] XIE W J, ZHU Y W, XIAO H, et al. Immune activity of in vitro simulated digestion products of conjugated polyphenols from kumquats[J]. Acta Nutrimenta Sinica, 2023, 45(5): 465−473.
[74] HAN Y, SONG M, GU M, et al. Dietary intake of whole strawberry inhibited colonic inflammation in dextran-sulfate-sodium-treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis[J]. Journal of Agricultural and Food Chemistry,2019,67(33):9168−9177. doi: 10.1021/acs.jafc.8b05581
[75] SZABO C. Multiple pathways of peroxynitrite cytotoxicity[J]. Toxicology Letters,2003,140:105−112.
[76] REYES-FARIAS M, CARRASCO-POZO C. The anti-cancer effect of quercetin:Molecular implications in cancer metabolism[J]. International Journal of Molecular Sciences,2019,20(13):3177. doi: 10.3390/ijms20133177
[77] 王贵佐, 刘璐, 张莹莹, 等. 和厚朴酚通过增加IL-10及HO-1表达对LPS诱导急性肺损伤小鼠的保护作用[J]. 山西医科大学学报,2022,53(4):423−427. [WANG G Z, LIU L, ZHANG YY, et al. Protective effects of and Houpalol on LPS-induced acute lung injury in mice by increasing IL-10 and HO-1 expression[J]. Journal of Shanxi Medical University,2022,53(4):423−427.] WANG G Z, LIU L, ZHANG YY, et al. Protective effects of and Houpalol on LPS-induced acute lung injury in mice by increasing IL-10 and HO-1 expression[J]. Journal of Shanxi Medical University, 2022, 53(4): 423−427.
[78] SHI J, SHAN S, LI H, et al. Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-κB signaling pathway[J]. Oncotarget,2017,8(43):74582−74594. doi: 10.18632/oncotarget.20216
[79] OKARTER N. Phenolic extracts from insoluble-bound fraction of whole wheat inhibit the proliferation of colon cancer cells[J]. Life Sciences and Medicine Research, 2011 :LSMR38.
[80] 崔米米. 沙棘果结合态多酚抗结肠癌效应的活性成分及分子机制[D]. 太原:山西大学, 2020. [CUI M M. Active components and molecular mechanism of the anti-colon cancer effect of sea buckthorn fruit-bound polyphenols[D]. Taiyuan:Shanxi University, 2020.] CUI M M. Active components and molecular mechanism of the anti-colon cancer effect of sea buckthorn fruit-bound polyphenols[D]. Taiyuan: Shanxi University, 2020.
[81] 路洋洋. 沙棘叶结合态多酚中抗肿瘤活性成分的分离纯化及成分分析[D]. 太原:山西大学, 2020. [LU Y Y. Separation purification and component analysis of anti-tumor active components in seabuckthorn leaf-bound polyphenols[D]. Taiyuan:Shanxi University, 2020.] LU Y Y. Separation purification and component analysis of anti-tumor active components in seabuckthorn leaf-bound polyphenols[D]. Taiyuan: Shanxi University, 2020.
[82] 李帅涛. 谷糠结合态多酚诱导乳腺癌细胞自噬性死亡的分子机制研究[D]. 太原:山西大学, 2020. [LI S T. Molecular mechanism of autophagic death induced by millet bran-bound polyphenols in breast cancer cells[D]. Taiyuan:Shanxi University, 2020.] LI S T. Molecular mechanism of autophagic death induced by millet bran-bound polyphenols in breast cancer cells[D]. Taiyuan: Shanxi University, 2020.
[83] 王青, 赵惠玲, 牛晋平, 等. 胡萝卜结合态多酚对HepG-2肝癌细胞增殖抑制及促进凋亡作用的研究[J]. 营养学报,2019,41(4):386−392,397. [WANG Q, ZHAO H L, NIU J P. Study on the effect of carrot bound polyphenols on the proliferation inhibition and apoptosis promotion of HepG-2 liver cancer cells[J]. Acta Nutrimenta Sinica,2019,41(4):386−392,397.] WANG Q, ZHAO H L, NIU J P. Study on the effect of carrot bound polyphenols on the proliferation inhibition and apoptosis promotion of HepG-2 liver cancer cells[J]. Acta Nutrimenta Sinica, 2019, 41(4): 386−392,397.
[84] 谢珏, 陈清勇, 周建英, 等. 茶多酚体外诱导人肺癌细胞凋亡的机理研究[J]. 中国中西医结合杂志,2005(3):244−247. [XIE J, CHEN Q Y, ZHOU J Y, et al. Mechanism of apoptosis induced by tea polyphenols in human lung cancer cells in vitro[J]. Chinese Journal of Integrative Medicine,2005(3):244−247.] doi: 10.3321/j.issn:1003-5370.2005.03.014 XIE J, CHEN Q Y, ZHOU J Y, et al. Mechanism of apoptosis induced by tea polyphenols in human lung cancer cells in vitro[J]. Chinese Journal of Integrative Medicine, 2005(3): 244−247. doi: 10.3321/j.issn:1003-5370.2005.03.014
[85] 李瑶, 廖霞, 郑少杰, 等. 植物多酚通过MAPK信号通路调控肿瘤作用机制研究进展[J]. 食品科学,2017,38(7):296−301. [LI Y, LIAO X, ZHENG S J, et al. Progress of research on the mechanism of plant polyphenols regulating tumor action through MAPK signaling pathway[J]. Food Science,2017,38(7):296−301.] doi: 10.7506/spkx1002-6630-201707047 LI Y, LIAO X, ZHENG S J, et al. Progress of research on the mechanism of plant polyphenols regulating tumor action through MAPK signaling pathway[J]. Food Science, 2017, 38(7): 296−301. doi: 10.7506/spkx1002-6630-201707047
[86] 孔德栋, 赵悦伶, 王岳飞, 等. 茶多酚对肿瘤免疫逃逸的抑制机制研究进展[J]. 浙江大学学报(农业与生命科学版),2018,44(5):539−548. [KONG D D, ZHAO Y L, WANG Y F, et al. Research progress on the inhibition mechanism of tea polyphenols on tumor immune escape[J]. Journal of Zhejiang University (Agriculture and Life Science Edition),2018,44(5):539−548.] KONG D D, ZHAO Y L, WANG Y F, et al. Research progress on the inhibition mechanism of tea polyphenols on tumor immune escape[J]. Journal of Zhejiang University (Agriculture and Life Science Edition), 2018, 44(5): 539−548.
[87] NICHENAMETLA S N, TARUSCIO T G, BARNEY D L, et al. A review of the effects and mechanisms of polyphenolics in cancer[J]. Critical Reviews in Food Science and Nutrition,2006,46(2):161−183. doi: 10.1080/10408390591000541
[88] 卢烽, 廖小军, 胡小松, 等. 多酚对肠道微生物影响的研究进展及对多酚指示菌的探讨[J]. 食品工业科技,2018,39(16):330−335. [LU F, LIAO X J, HU X S, et al. Research progress on the effects of polyphenols on intestinal microorganisms and discussion on polyphenol indicator bacteria[J]. Food Industry Science and Technology,2018,39(16):330−335.] LU F, LIAO X J, HU X S, et al. Research progress on the effects of polyphenols on intestinal microorganisms and discussion on polyphenol indicator bacteria[J]. Food Industry Science and Technology, 2018, 39(16): 330−335.
[89] 杨立娜, 吴凯为, 朱力杰, 等. 益生元, 多酚, 蛋白质和多不饱和脂肪酸对肠道健康的影响[J]. 食品工业科技,2017,38(22):336−340. [YANG L N, WU K W, ZHU L J, et al. Effects of prebiotics, polyphenols, proteins and polyunsaturated fatty acids on intestinal health[J]. Food Industry Science and Technology,2017,38(22):336−340.] YANG L N, WU K W, ZHU L J, et al. Effects of prebiotics, polyphenols, proteins and polyunsaturated fatty acids on intestinal health[J]. Food Industry Science and Technology, 2017, 38(22): 336−340.
[90] 韦铮, 贺燕, 黄先智, 等. 茶多糖-茶多酚对小鼠肠道氧化应激的改善与作用机制[J]. 食品科学,2022,43(11):149−155. [WEI Z, HE Y, HUANG X Z, et al. Improvement and mechanism of action of tea polysaccharides-tea polyphenols on intestinal oxidative stress in mice[J]. Food Science,2022,43(11):149−155.] doi: 10.7506/spkx1002-6630-20210503-015 WEI Z, HE Y, HUANG X Z, et al. Improvement and mechanism of action of tea polysaccharides-tea polyphenols on intestinal oxidative stress in mice[J]. Food Science, 2022, 43(11): 149−155. doi: 10.7506/spkx1002-6630-20210503-015
[91] 张龄予, 潘丽佳, 侯苏芯, 等. 蓝靛果多酚对免疫抑制小鼠调节肠道微生态的作用机制[J]. 食品科学,2023,44(15):147−155. [ZHANG L Y, PAN L J, HOU S X, et al. Mechanism of action of indigo fruit polyphenols in regulating intestinal microecology in immunosuppressed mice[J]. Food Science,2023,44(15):147−155.] ZHANG L Y, PAN L J, HOU S X, et al. Mechanism of action of indigo fruit polyphenols in regulating intestinal microecology in immunosuppressed mice[J]. Food Science, 2023, 44(15): 147−155.
[92] 肖俊松, 单静敏, 曹雁平, 等. 多酚通过肠道菌群调节能量代谢研究进展[J]. 食品科学,2012,33(3):300−303. [XIAO J S, SAN J M, CAO Y P, et al. Progress of polyphenols regulating energy metabolism through intestinal flora[J]. Food Science,2012,33(3):300−303.] XIAO J S, SAN J M, CAO Y P, et al. Progress of polyphenols regulating energy metabolism through intestinal flora[J]. Food Science, 2012, 33(3): 300−303.
[93] LIN S, WANG Z, LAM K L, et al. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites[J]. Food & Nutrition Research, 2019, 63.
[94] 阮栋, 王一冰, 蒋守群, 等. 姜黄素的生物活性及其调节动物肠道黏膜屏障功能的分子机制[J]. 动物营养学报,2021,33(4):1801−1810. [RUAN D, WANG Y B, JIANG S Q, et al. Bioactivity of curcumin and its molecular mechanism in regulating the barrier function of animal intestinal mucosa[J]. Journal of Animal Nutrition,2021,33(4):1801−1810.] RUAN D, WANG Y B, JIANG S Q, et al. Bioactivity of curcumin and its molecular mechanism in regulating the barrier function of animal intestinal mucosa[J]. Journal of Animal Nutrition, 2021, 33(4): 1801−1810.
[95] 李玉壬, 王瑞, 王旭捷, 等. 茶多酚在模拟胃肠消化过程中含量及活性的变化规律[J]. 现代食品科技,2021,37(7):115−120,22. [LI Y N, WANG R, WANG X J, et al. Changing law of content and activity of tea polyphenols in simulated gastrointestinal digestion[J]. Modern Food Science and Technology,2021,37(7):115−120,22.] LI Y N, WANG R, WANG X J, et al. Changing law of content and activity of tea polyphenols in simulated gastrointestinal digestion[J]. Modern Food Science and Technology, 2021, 37(7): 115−120,22.
[96] EITSUKA T, TATEWAKI N, NISHIDA H, et al. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid[J]. Biochemical and Biophysical Research Communications,2014,453(3):606−611. doi: 10.1016/j.bbrc.2014.09.126
[97] LIAO W, CHEN L, MA X, et al. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells[J]. European Journal of Medicinal Chemistry,2016,114:24−32. doi: 10.1016/j.ejmech.2016.02.045
[98] NARASIMHAN A, CHINNIYAN M, KARUNDEVI B. Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat[J]. European Journal of Pharmacology,2015,761:391−397. doi: 10.1016/j.ejphar.2015.04.043
[99] 谢星. 海蒿子中α-葡萄糖苷酶抑制剂的筛选及其抗糖尿病机制研究[D]. 广州:华南理工大学, 2021. [XIE X. Screening of α-glucosidase inhibitors from artemisia and their anti-diabetic mechanism[D]. Guangzhou:South China University of Technology, 2021.] XIE X. Screening of α-glucosidase inhibitors from artemisia and their anti-diabetic mechanism[D]. Guangzhou: South China University of Technology, 2021.
-
期刊类型引用(3)
1. 肖猛,李杨,彭毅秦,刘强,王岚,陈兴华,丁捷. 川西藏区牦牛酸醡肉在番茄汤锅中的应用及风味特征分析. 中国调味品. 2024(07): 52-59 . 百度学术
2. 刘慧雯,孙冲,孙德军,金艳,张凤翔,姚田玉,诸永志,王道营. 基于HS-SPME-GC-MS结合电子鼻分析熟制小龙虾冻藏过程中风味动态变化. 肉类研究. 2024(08): 33-41 . 百度学术
3. 古丽孜亚·吐尔斯别克,马军,祖木来提·热西提,丁相宇,巴吐尔·阿不力克木. 基于气相色谱-离子迁移谱法结合感官评价对不同药食同源处理低温风干羊肉挥发性风味物质的表征及分析. 食品与发酵工业. 2024(20): 294-302 . 百度学术
其他类型引用(0)