Lipid-lowering Efficacy of Plant Proteins and Their Application Potential
-
摘要: 近年来,由于饮食习惯的变化,肥胖、高脂血症、冠状动脉粥样硬化、非酒精性脂肪肝等疾病的患病率逐年增加,由脂质代谢紊乱引发的慢性疾病严重威胁着人类健康与生活。植物蛋白是一种优质的食品加工原辅料,除提供日常生命生存所需能量外,还具多种加工特性及营养特性,大量研究表明植物蛋白在调节脂质代谢方面发挥着关键作用。本文综述了膳食植物蛋白的体内外降脂效果,总结甘氨酸、精氨酸、亮氨酸等氨基酸在蛋白质中的组成对降脂效果的影响;以肠道内对胆汁酸、胆固醇的吸附作用,提高/抑制胆固醇合成、脂肪酸氧化、胆固醇转化为胆汁酸等过程的限速酶活力,调节PPAR、胆固醇吸收、脂质合成等途径相关基因表达,改善肠道微生物与代谢物组成这几个途径对其降脂机理进行探讨,并对植物蛋白未来发展方向及应用潜力进行分析,旨在为植物蛋白调节脂质代谢相关研究提供一定参考,以期促进植物蛋白的研发与应用。Abstract: In recent years, there has been a gradual increase in the prevalence of obesity, hyperlipidaemia, coronary atherosclerosis, non-alcoholic fatty liver disease, and other conditions attributed to shifts in dietary patterns. These chronic ailments resulting from disruptions in lipid metabolism present a significant risk to human health and longevity. Plant protein serves as a high-quality raw material for food production, offering sustenance for daily functioning along with a range of processing attributes and nutritional benefits. Numerous research studies have demonstrated the pivotal role of plant proteins in modulating lipid metabolism. To consolidate the evidence on the lipid-lowering impacts of dietary plant proteins both in vivo and in vitro, summarizes the effects of amino acid composition of glycine, arginine, leucine and other amino acids in proteins on the lipid-lowering effects, discusses their lipid-lowering mechanisms by several pathways, such as adsorption of bile acid and cholesterol in the gut tract, enhancement/inhibition of rate-limiting enzymes in the processes of cholesterol synthesis, fatty acid oxidation, and the conversion of cholesterol to bile acids, modulation of the pathways related to PPAR signaling, cholesterol absorption and lipid synthesis gene expression, and improves the composition of gut microorganisms and metabolites to explore its lipid-lowering mechanism. Furthermore, it assesses the future trajectory and application possibilities of plant proteins, aiming to offer insights for further research on the regulation of lipid metabolism by plant proteins and to advance their utilization in research and practice.
-
Keywords:
- plant proteins /
- lipid metabolism /
- lipid-lowering mechanism /
- application potential
-
植物蛋白是人类膳食蛋白的重要来源,大部分由谷物和豆类提供[1]。因资源丰富、可持续性强、成本低廉、应用广泛并对人体健康具有潜在益处,其市场需求在世界范围内迅速增长,是食品工业中增长最快的部分之一[2]。随着植物蛋白相关产品的不断开发及消费者对绿色健康生活方式的不断追求,其营养特性也逐渐受到关注,如:调节脂质代谢[3]、降低心血管疾病发病率[4]、抗肿瘤[5],影响炎症、氧化应激和生物钟相关基因的表达水平等[6],是一种极具潜力的膳食补充剂。目前,由于生活及消费水平的不断提高,越来越多人受到由脂质代谢紊乱引发的相关疾病的困扰。防治脂质代谢紊乱常用的策略包括饮食干预、体育活动和药物治疗等[7],服用药物虽有较佳治疗效果,但高昂的成本和严重的副作用导致患者依从率较低[8],使得饮食干预成为一种适用性较高的选择。随着科学膳食与健康改善、营养代谢与疾病关系、营养干预与疾病治疗等方面的研究逐渐成为营养健康领域的热点[9],开发原料丰富、食用安全、价格低廉的功能食品具有巨大的应用前景。
膳食植物蛋白是预防和治疗脂质代谢紊乱一种有效的手段,可减轻脂质代谢失调及其并发症的出现,目前已有许多临床研究表明其功效,例如:研究发现人体每天补充25 g的大豆蛋白可显著降低血清总胆固醇(total cholesterol,TC)、低密度脂蛋白胆固醇(low density lipoprotein-cholesterol,LDL-C)以及载脂蛋白b的浓度[10];Lin等[11]发现植物蛋白可能在青少年肥胖方面发挥预防作用。另外,国内外研究基于动物模型对降脂效果和机理进行了探究,结果表明大豆蛋白[12]、燕麦蛋白[13]、大米蛋白[14]等植物蛋白对血脂、肝脏脂肪、粪便脂肪等脂质代谢相关指标均有积极影响。同时,大量研究发现植物蛋白对肠道微生态环境具有改善效果,例如:高植物蛋白饮食显著改变了ApoE基因敲除小鼠肠道微生物群的组成[15];徐琪乐等[16]围绕肠道微生态环境的变化与降脂效果进行了研究,并建立了植物蛋白-肠道菌群-血脂水平影响途径和调节机制。另外,部分研究探讨了可能影响降脂特性的内外因素,如:氨基酸组成[17]、亚基组成[18]、消化性[19]、加工条件[20−21]等。
目前,针对植物蛋白降脂特点和机理已有丰富的研究基础,但缺乏系统性整理。综上,本文基于植物蛋白调节脂质代谢展开分析,整理体内外降脂作用效果和其与氨基酸组成的相关性以总结植物蛋白作用特点,从肠道内吸附作用、提高/抑制相关酶活力、调节相关基因表达、改善肠道微生态环境几个途径对其降脂机理进行总结,并对植物蛋白作为一种优质的食品加工原辅料未来的开发方向进行展望,以期为植物蛋白基功能食品的开发和饮食干预降脂提供一定参考。
1. 植物蛋白概述
植物蛋白对人体生理代谢以及饮食结构的调节发挥着重要作用,与生命各项活动密切相关[22]。如图1所示,植物蛋白已广泛应用于食品工业各领域,其优质的加工特性使其可作为产品原料、营养补充剂、乳化剂、食用涂层等应用于多种产品中[23],如:植物蛋白肉[24]、功能性多肽[25]、复合纳米颗粒[26]、植物蛋白膜等[27]。除加工领域外,植物蛋白还具有多种健康益处,与动物蛋白相比,植物蛋白的摄入量与降低心血管疾病死亡率相关,并且以植物蛋白代替动物蛋白食用可降低癌症和心血管疾病相关死亡率,替代红肉和加工肉蛋白食用具有延长寿命的潜力[28],同时也具有降脂、降血压、抗肿瘤、抗微生物、抗炎等多种功效[6,22]。植物蛋白资源丰富、营养价值优良、可持续性强,以植物蛋白替代动物蛋白开发植物蛋白类产品是应对当前人口增长、资源紧缺、环境危机的一种有效解决方式。近年来,植物蛋白逐渐被开发为人类饮食中动物蛋白的替代品,植物汉堡、植物全切肉、植物香肠等植物蛋白肉类产品逐渐进入大众视线[29]。在科学研究方面,植物蛋白营养特性中调节脂质代谢紊乱的相关研究受到广泛关注并积累丰富的研究基础,成为研究热点。
2. 脂质代谢紊乱与防治方法
脂质代谢是人体重要且复杂的代谢之一,是脂质在生物体内消化、吸收、合成、分解的过程。当物质的摄入、代谢失去平衡时就可能引发脂质代谢紊乱,是定性许多代谢性疾病的评判标准,主要表现为甘油三酯(triglyceride,TG)、TC、LDL-C的升高和高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)的降低等,是诱发多种并发症如:肥胖、高脂血症、高血压、冠状动脉粥样硬化、2型糖尿病、非酒精性脂肪肝(non-alcoholic fatty liver disease,NAFLD)、代谢综合征等慢性代谢疾病的危险因素,也是防治以上疾病的重要指标[30]。
基因和饮食习惯被认为是与脂质代谢紊乱密切相关的两大诱因,随着人民生活条件的提升,膳食结构中高热量、高脂肪、高糖食物的比例不断增加,饮食习惯已成为主要诱发因素。因能量摄入过剩产生一系列脂质代谢异常导致的慢性疾病,严重威胁着人们的身体健康和正常生活。根据《中国居民营养与慢性病状况报告2020》显示,我国超过一半的成年居民存在超重或肥胖的情况[31]。仅在十年内,中国NAFLD患者人数快速增长至近30%[32]。预测至2030年,中国将成为全球NAFLD患病率增长最快的国家,患病人数将超过3亿人[33]。为应对当前情况,药物治疗、饮食干预、体育运动等方式均被提出缓解或治疗肥胖和NAFLD等脂质代谢异常并发症[34],奥利司他、西布曲明、盐酸劳卡色林等抗肥胖药物已广泛运用于治疗中[35],但其具有的头痛、头晕、失眠、呕吐等不良反应和潜在的副反应严重影响着使用范围和患者依从率。
目前,饮食干预成为应对脂质代谢紊乱的一个有效方式,除饮食上限脂减糖外,食源多糖、多酚、多肽等功能因子广泛作为膳食补充剂和功能食品被使用。值得注意的是越来越多研究人员开始关注植物蛋白调节脂质代谢的研究,膳食植物蛋白和相关功能食品逐渐成为一种干预脂质代谢紊乱的有效方法。
3. 植物蛋白对脂质代谢紊乱的防治作用
3.1 体外降脂效果
在细胞层面上验证植物蛋白的降脂效果常采用HepG2细胞脂质堆积模型,基于细胞的相关代谢表征及基因、蛋白等的表达开展研究。如:研究发现植物乳杆菌发酵大麦麸皮中的蛋白质能抑制HepG2细胞的脂质沉积,显著上调三种调控脂肪酸氧化基因的表达量,并改善高脂引起的氧化应激[36]。Zhang等[37]研究表明小麦胚芽蛋白可以显著降低HepG2细胞的胆固醇水平,蛋白质没有进入细胞,但它可以促进胆固醇摄取和刺激细胞内胆固醇转化为胆汁酸,促进胆固醇向胆汁酸的转化,推动胆汁酸转运出细胞,以降低细胞内胆固醇水平。
除此之外,通过测定蛋白质体外胆酸钠吸附能力、胆固醇胶束溶解度抑制能力、胰脂肪酶抑制能力等也可评价其降脂潜力。肠道内,食物中活性成分与胆酸盐结合可抑制小肠对胆酸盐的重新吸收,加速胆固醇的分解代谢,从而起到降胆固醇的效果。同时,抑制胆固醇胶束溶解度,可促使胆固醇不断转化为胆汁酸以维持动态平衡,从而降低血液中胆固醇含量。研究发现,藜麦蛋白质对胆酸盐的吸附速度较快,吸附60 min可达到吸附平衡量[38]。苦荞蛋白在样品浓度为30 mg/mL时,肠期消化产物对胆酸钠的吸附作用明显强于苦荞蛋白,并且苦荞蛋白及其体外模拟消化终产物对胆固醇在胶束溶液中溶解的抑制效果最好,胃阶段消化产物抑制效果最差[39]。Kumar等[40]研究发现,使用胃蛋白酶及胰蛋白酶水解米糠蛋白获得的产物具有显著降低体外胆固醇胶束溶解度能力及结合胆汁酸能力,可能由于消化后生成的活性肽发挥了改善脂质代谢作用。Jia等[19]研究发现可溶性豆腐消化性水解物具有抑制胆固醇胶束溶解的效果,可能通过抑制小肠腔内的胶束溶解以抑制肠道吸收来部分降低血浆胆固醇。胃肠中70%的膳食脂肪均由胰脂肪酶负责水解,降低该酶的活性可减少消化器官中膳食脂肪的分解和吸收,进而改善肥胖和高脂血症等疾病[41]。大豆蛋白和大豆蛋白多糖共提物均显示出胰脂肪酶抑制活性,大豆蛋白明显高于大豆蛋白多糖共提物,具有较强的体外降脂活性[42]。蛋白质体外胆酸钠吸附能力、胆固醇胶束溶解度抑制能力、胰脂肪酶抑制能力是机体消化和吸收过程中调控脂质代谢的物理化学作用,均具有调控脂质代谢的潜力,但因蛋白质在消化过程中会分解为多肽和氨基酸,且涉及复杂的生理过程,体外降脂能力不能完全反映其在人体内的真实效果。
3.2 体内降脂效果
植物蛋白具有一定调节脂质代谢的作用,其中针对大豆蛋白降脂特性的相关研究已得到广泛报道,并已陆续开发出相关功能产品并提出相应饮食建议[24,43]。此外,大米蛋白、燕麦蛋白、苦荞蛋白等多种植物蛋白已有研究表明对脂质代谢有一定调节作用,效果如表1所示。植物蛋白的膳食习惯差异对其降脂效果也存在一定影响。研究发现,早上和晚上摄入大豆蛋白会导致微生物群多样性的增加,早上摄入大豆蛋白对微生物群的影响可能相对强于晚上[44]。与酪蛋白相比,小鼠在幼年期给予小麦胚芽蛋白可抑制成年期高脂饮食诱导的肥胖及相关疾病的发展[45]。以10%、20%、30%的大豆蛋白添加量喂养高脂饮食小鼠,增加蛋白质与碳水化合物的比例可以减轻小鼠的肝脏脂肪变性[46]。随着消费者对植物蛋白的消费喜爱升级,植物蛋白类产品市场需求将不断扩大,开展替代蛋白、动植物双蛋白、精准营养功能产品的研发将是未来食品的重要研究方向。同时,植物蛋白与其他降脂策略的组合对脂质代谢紊乱相关疾病的治疗也具有重要研究意义,可为患者提供最佳治疗策略[8],如大豆蛋白降低胆固醇的机制不同于他汀类药物,他汀类药物和大豆蛋白有望产生系统作用降低胆固醇水平[47]。
表 1 不同植物蛋白对脂质代谢的作用效果Table 1. Effects of different plant proteins on lipid metabolism蛋白类型 血脂 平均体重/体重增量 其他指标 参考文献 大豆蛋白 TC↓*、TG↓、LDL-C↓*、HDL-C↑* 25.9%↓* 附睾脂肪↓*、肾周脂肪↓*、血清瘦素↓*、β-羟基丁酸↑* [48] 大米蛋白 TC↓*、TG↓、LDL-C↓*、HDL-C↓ 17.39%↓* 肝脏总脂质↓*、肝脏TC↓*、肝脏TG↓*、粪便总脂肪↑*、粪便TG↑* [49] 苦荞蛋白 TC↓*、TG↓*、HDL-C↓* 无显著差异 肝脏TC↓*、粪便胆固醇总中性甾醇↑*、酸性甾醇↑* [50] 燕麦蛋白 TC↓**、TG↓、LDL-C↓**、HDL-C↓ − 肝细胞脂肪变性程度↓、粪便TC↑ [51] 小麦胚芽蛋白 TC↓*、TG↓、HDL-C↓ 4.8 g↑ 肝脏TC↑、肝脏TG↓、肝脏总脂肪↓、粪便TC↑、粪便胆汁酸↑* [52] 藜麦蛋白 TC↓、TG↑、LDL-C↓、HDL-C↑* 11.25 g↓* 肝脏TC↓*、肝脏总胆汁酸↑* [38] 豌豆清蛋白 TC↓*、TG↓*、LDL-C↓、HDL-C↓ 5 g↓* 腹股沟脂肪↓*、附睾脂肪↓*、肠系脂肪↓*、血清瘦素↓* [53] 米糠蛋白 TC↓、TG↓*、LDL-C↓*、HDL-C↑ 1.7 g↓ 肝脏TC↓*、肝脏TG↑、肝脏游离胆固醇↑*、粪便TC↑、
粪便TG↑、粪便总胆汁酸↑*[54] 苦瓜蛋白 TC↓、TG↓**、LDL-C↓*、HDL-C↑* 2.5 g↓ 肾周脂肪↓**、肝脏TC↓、TG↓** [55] 人参蛋白 TC↓*、TG↓*、HDL-C↓ 5.09 g↓ − [56] 红松松仁分离蛋白 TC↓*、TG↓*、LDL-C↓*、HDL-C↑* − 肝脏TC↓、TG↓ [57] 甘薯sporamin蛋白 TC↓*、TG↓*、HDL-C↑* 6 g↓* 腹部脂肪↓*、脂肪系数↓* [58] 马铃薯蛋白 TC↓*、HDL-C↓* 12 g↓ 肝脏总脂肪↓*、肝脏TC↓*、粪便总胆汁酸↑*、粪便TC↑* [59] 花生蛋白 TC↓*、TG↓* 31 g↓* 肝脏TC↓* [60] 注:*表示与高脂模型组有显著性差异,P<0.05;**表示与高脂模型组有极显著性差异,P<0.01;“−”表示无指标。 3.3 植物蛋白氨基酸组成与降脂效果相关性
不同来源的蛋白质提供的氨基酸不同,其特性和对人体功能的影响也各不相同[61],这与其结构和组成有关(图2)。氨基酸不仅是合成蛋白质的重要原料,还参与多种途径,某些氨基酸可能直接参与代谢调节。已有多个研究证实氨基酸组成与降脂效果具有一定相关性,例如:食用甘氨酸和精氨酸含量较高的蛋白质有助于降低血清胆固醇浓度[62];精氨酸的补充和低亮氨酸与精氨酸的比值与增加胰岛素敏感性和降低胆固醇的效果有关[63]。徐向英[51]选取了4个氨基酸组成不同的燕麦品种提取蛋白质来喂食高血脂模型大鼠,精氨酸含量高的燕麦蛋白降低血清TC的效果好,而低甲硫氨酸和赖氨酸的燕麦蛋白可能会增加血清TC[64]。另外,肠道内鼠杆菌、真杆菌和乳酸杆菌含量与血清TC浓度呈负相关,三种细菌的丰度增加与谷氨酸、半胱氨酸、缬氨酸和丝氨酸呈正相关,蛋白质不仅以氨基酸和小肽的形式在肠道内发挥作用,且可以氨基酸代谢物的形式在大肠中对胆固醇代谢产生影响[65]。Bjørnshave等[66]研究发现赖氨酸经发酵以后可产生肉毒碱等物质,而肉毒碱的摄入能够导致氧化三甲胺(trimetlylamine oxide,TMAO)或者三甲胺(trimethylamine,TMA)的产生,可能导致机体脂质积累的增加;王东红[55]发现苦瓜蛋白中分离得到的降脂活性肽中赖氨酸与丝氨酸的含量较高,可能与其降血脂活性有关,可见关于赖氨酸含量与调节脂质代谢的说法不一。
除此之外,蛋白质在经过消化后会被分解为肽,肽的降脂活性与氨基酸疏水性具有一定相关性,例如:Takeshita等[67]采用计算辅助肽阵列分析筛选对胆汁酸高亲和力的肽,发现大豆多肽的胆汁酸亲和能力与疏水性氨基酸有关;Datta等[68]研究发现通过系统地使用苯丙氨酸(疏水性氨基酸)取代多肽中现有的疏水性氨基酸,可以提高其与脂质结合的能力,增强其调节脂质代谢的潜力。综上,植物蛋白在调控机体脂质代谢中的作用能力与蛋白及其消化代谢产物的氨基酸组成、结构相关。
4. 植物蛋白降脂机理
4.1 肠道内吸附作用
多数研究认为,蛋白质或消化产生的肽类物质可在肠道内通过疏水相互作用与胆汁酸结合,并破坏由胆固醇、磷脂与胆汁酸形成的胶束,以增加胆汁酸、脂类的粪便排泄,从而阻断胆汁酸的肝肠循环、抑制胆固醇和脂质的吸收,进而调节机体胆固醇代谢[69]。在破坏肠道内胶束稳定性方面,研究发现荞麦蛋白上消化道体外模拟消化液具有很强的胆汁酸结合活性,其中对脱氧胆酸的结合活性高于胆酸和鹅去氧胆酸,由于胆汁酸被结合而胆固醇的利用增强,有利于血清胆固醇保持健康水平[70]。Liu等[52]发现小麦胚芽蛋白对胆固醇胶束溶解度的抑制效果较好,具有抑制胆固醇吸收的效果。在增加粪便脂质排泄方面,Morita等[59]发现摄食大豆蛋白导致粪便中胆汁酸的排泄增加,血清TC水平降低。燕麦蛋白可通过提高粪便总脂质、TC和胆汁酸的排泄量,明显降低血浆LDL-C和肝脏TC水平[71]。梁婷婷[72]研究表明植物蛋白主要是通过促进粪便中胆固醇的排泄量的增加以降低血清中胆固醇水平。综上,植物蛋白可通过肠道内吸附作用,影响脂质的吸收和排泄以发挥脂质代谢调控作用。
4.2 提高/抑制相关酶活力
部分研究表明,植物蛋白可以通过提高肝脂酶活性,以促进肝脏脂质分解,减少肝脏脂褐质积累[16]。如:大豆蛋白在消化过程中会被消化酶分解成肽类物质,从胃蛋白酶水解物中分离的肽(Ile-Ala-Val-Pro-Gly-Glu-Val-Ala)具有抑制3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methyl glutaryl coenzyme A reductase,HMG-CoA)的活性[73],而HMG-CoA还原酶是一个主要的限制控制胆固醇合成速率的酶,酶活力的抑制可阻碍机体胆固醇的合成,减少胆固醇的沉积和重吸收。另外,研究发现苦瓜蛋白能提高肉毒碱棕榈酰转移酶IA(carnitine palmitoyl transferase 1A,CPT1A)酶的活性,CPT1A酶活力的提高可加速脂肪酸在细胞水平的氧化,从而降低肝脏和血清中TG的水平[55]。胆固醇7α-羟化酶(cholesterol 7α-hydroxylase,CYP7A1)是胆固醇转化为胆汁酸的限速酶,大米蛋白喂养组大鼠CYP7A1活力和基因表达水平显著升高,因此可促进胆固醇转化为胆汁酸而降低机体胆固醇含量,以达到降血脂的功效[74]。
除此之外,胰脂肪酶、胰胆固醇酯酶作为控制脂质代谢的潜在靶点,抑制胰脂肪酶活性可降低小肠吸收脂肪的效率,以抑制脂肪的吸收利用;抑制胰胆固醇酯酶的活性,可以有效抑制胆固醇酯的水解,进而抑制人体对膳食胆固醇的吸收。研究表明,苦荞蛋白及其体外模拟消化产物在样品浓度为1~5 mg/mL范围内对胰胆固醇酯酶的抑制作用呈现一定的浓度依赖性[39]。以胃蛋白酶酶解的勐库茶叶蛋白肽对胰脂肪酶和胆固醇酯酶有良好的抑制作用,具有抑制机体吸收脂肪和胆固醇的潜力[75]。综上,部分植物蛋白可以通过提高/抑制代谢途径中的关键酶活力以抑制脂质的合成或促进脂质分解,从而减轻高脂饮食导致的脂质代谢紊乱。
4.3 调节相关基因表达
食物中的蛋白质经消化后降解成小分子多肽,可调节肝细胞内脂质代谢相关基因的表达,参与相关代谢途径调节脂质代谢紊乱。例如:松仁蛋白可通过提高糖尿病小鼠过氧化物酶体增殖剂活化受体α(peroxisome proliferator activated receptors α,PPARα)的mRNA表达水平,调节过氧化物酶体增殖剂活化受体(peroxisome proliferator activated receptors,PPAR)介导的脂质代谢以改善高脂血症,另外其对花生四烯酸代谢途径也具有重要影响[76]。关于豌豆蛋白的研究中也可见相似结果,膳食豌豆蛋白可能通过激活PPAR途径和降低脂肪酸合成酶(fatty acid synthase,FAS)、甾酰辅酶a去饱和酶-19和脂肪酸去饱和酶的表达来改善胰岛素抵抗和脂质水平[53]。也有研究表明以豌豆蛋白饲喂的小鼠牛磺酸、27-羟基胆固醇和3β,7α-二羟基-5-胆酸酯表达量上调,甘胆酸盐下调,其中牛磺酸表达上调可以激活肠道肝X受体(liver X receptor,LXR)、法尼醇受体(farnesoid X receptor,FXR)信号通路,抑制胆固醇吸收,降低血清TC浓度[77]。膳食大豆蛋白显著降低FXR、胆固醇调节元件结合蛋白2(sterol-regulatory element binding proteins,SREBP2)的表达,抑制胆固醇和脂类的合成[72]。综上,膳食植物蛋白可降低肝脏中与脂质代谢相关基因的表达,激活相关通路,促进脂质的分解,抑制脂类的合成与吸收,以达到降脂的效果。
4.4 改善肠道微生态环境
4.4.1 改善肠道微生物组成
蛋白质作为饮食中至关重要的宏量营养素,对肠道微生物群的组成和代谢具有重要影响[78],肠道菌群可参与宿主脂质吸收与转运、脂质合成与氧化、白色脂肪棕色化等过程[79],与肥胖、2型糖尿病和高脂血症等脂质代谢紊乱等慢性疾病的发生发展密切相关[80]。脂质代谢失调会降低肠道菌群多样性并改变细菌的表达和代谢途径,植物蛋白可通过提高肠道菌群多样性、改善有益菌的丰度、降低F/B值调节脂质代谢。如图3所示,膳食植物蛋白可以增加肠道菌群的多样性,如Zhu等[15]以高植物蛋白饲养处理ApoE基因敲除小鼠,发现处理后肠道微生物细菌多样性升高,物种丰富度也增加。Tong等[65]以多种植物蛋白与动物蛋白高胆固醇饲料饲喂小鼠,发现其肠道微生物中燕麦和豌豆组的物种多样性最为丰富,其次是水稻和大豆,均显著高于动物蛋白组。
高脂饮食会导致肠道内微生物组成发生改变,主要表现为乳酸杆菌和双歧杆菌等有益菌含量的明显减少[81],而膳食植物蛋白具有促进有益菌生长的作用,可推动胆固醇向胆汁酸的转化并使其随粪便排出[16]。Butteiger等[82]补充大豆蛋白3周,在金色叙利亚仓鼠模型中观察到双歧杆菌科、梭状芽孢杆菌科和去铁杆菌科显著增加,拟杆菌门显著减少。陈贵堂等[83]研究发现以花生蛋白饲喂大鼠后,肠道内双歧杆菌大量增殖,有益菌具有绝对优势,同时也抑制了肠杆菌和产气荚膜梭菌的增殖。王涛等[84]发现高大豆蛋白组中理研菌科和颤螺旋菌科的相对丰度较高,理研菌科属于拟杆菌门的成员,可通过产生短链脂肪酸(short chain fatty acids,SCFAs)来改善小鼠的肥胖与脂质代谢紊乱。
健康人肠道菌群由1000多个种型组成,分为6个细菌门:厚壁菌门、拟杆菌门、变形菌门、梭杆菌门、放线菌门和疣微菌门,其中厚壁菌门和拟杆菌门在健康成年人肠道中占比超过90%,两者数量的变化被认为与高脂与健康相关[78]。作为肠道健康指标,较低的F/B(厚壁菌门Firmicutes/拟杆菌门Bacteroidetes)比例代表着更健康的肠道微生物环境。Tong等[65]在牛肉组中观察到厚壁菌门的相对丰度最高,而在燕麦组中最低,且燕麦组的F/B比例最低。梁婷婷[72]观察到植物蛋白组的拟杆菌门/厚壁菌门比值(B/F)分别为0.59,0.41,0.32,0.29,高于高脂对照组,植物蛋白中燕麦蛋白的B/F最高。喂食白肉蛋白质的大鼠比喂食其他蛋白质的大鼠具有更高的厚壁菌门,更低的拟杆菌门微生物,而与其他组相比,大豆蛋白组拟杆菌门丰度较高[85]。综上所述,植物蛋白可通过影响肠道微生物丰度与组成改善因高脂饮食导致的微生物变化,且向健康肠道微生物组成靠近,膳食不同植物蛋白对微生物菌群的影响存在较大差异。
4.4.2 影响肠道代谢产物组成
肠道菌群具有消化食物成分、合成必需维生素、支持肠道功能的作用,并可通过小分子的代谢物(如SCFAs、胆汁酸、氨基酸等)与宿主进行相互作用,参与人体健康调节[86]。大量研究表明,植物蛋白通过改善肠道代谢产物调节脂质代谢主要是通过以下3种途径,如图3所示:肠道微生物发酵蛋白质生成SCFAs,SCFAs可抑制FAS的活性,降低血清TG与TC水平,同时SCFAs可以作为调节因子来调节脂质代谢,并通过FXR及G蛋白偶联胆汁酸受体5(takeda G protein-coupled receptor 5,TGR5)在胆汁酸合成、脂类代谢和葡萄糖调节方面发挥重要的作用[87];肠道内乳酸菌、双歧杆菌等益生菌能够产生胆盐水解酶,将初级胆汁酸转化为次级胆汁酸,加速胆汁酸的转化有利于胆固醇的降解排出,从而降低血清胆固醇含量。同时,胆汁酸在肠道中还可通过乳化作用促进小肠中脂质的有效水解和吸收,并参与调控肝脏脂质代谢信号通路[79];抑制TMAO的生成,其含量与胆固醇代谢调节密切相关,被认为是与高血脂症呈直接相关的风险因子[88]。TMAO由其前体TMA氧化产生,肠道中厚壁菌门中的梭菌目(Clostridium)是主要生成TMA的微生物,植物蛋白摄入减少厚壁菌门的比例有利于抑制TMAO的生成[16]。TMA主要来源于肠道微生物分解动物蛋白中的胆碱和肉碱物质,摄食植物蛋白可通过减少其原料含量而降低TMAO的生成[89]。
多项研究结果可证明以上途径科学性,如:摄食大豆蛋白,不仅可降低血清中TC水平,而且还可以使粪便中SCFAs和胆汁酸的排泄增加[59],以减少脂质吸收与积累,同时SCFAs作为调节因子调节脂质代谢。Tong等[65]以多种植物蛋白替换高脂饮食中的酪蛋白喂养小鼠,结果表明豌豆组的总SCFAs含量最高,主要成分为醋酸盐、丙酸盐和丁酸盐,其中丁酸盐能减轻脂肪细胞和巨噬细胞相互作用诱导产生的炎症和脂肪分解作用[90]。添加植物蛋白质的饲粮组的粪便TC和总胆汁酸含量分别比对照组高19%~43%和10%~46%[54],促进脂质排出体外,从而降低血脂和体内脂质积累。膳食大豆蛋白与对照组相比,抑制了肠道中氯化胆碱生成TMA和TMA生成TMAO的过程,以减少TMAO的生成[91]。综上所述,植物蛋白可通过影响肠道微生物菌群代谢物组成影响脂质代谢。
5. 结论与展望
上述研究表明,植物蛋白可通过肠道内吸附作用、提高/抑制相关酶活力、调节相关基因表达、改善肠道微生态环境有效调节脂质代谢紊乱。因此植物蛋白是一种极具应用价值的功能食品原料,可参与饮食干预与健康调控。
目前,植物蛋白面临着精深加工不足、利用度不高、资源大量浪费的问题。针对植物蛋白的物理、化学、生物改性技术受到广泛关注,通过适当的改性可提高植物蛋白的加工适用性。未来可基于植物基蛋白产品研发不断创新加工技术,如利用超声、微射流、超高压等物理技术,发酵、酶解、糖基化、乙酰化等生物化学技术实现植物蛋白改性,提高其凝胶、乳化、起泡等加工属性,同时可结合3D打印、微胶囊、纳米乳化等蛋白加工新技术,开发特色新型植物基蛋白产品。开发植物蛋白的营养特性可促进植物蛋白作为营养强化剂的广泛应用,利用蛋白及其水解产物(肽)载运能力强、易吸收、益生元的特点,实现功能成分的加工、贮藏及载运吸收稳定性,提高其生物利用度,开发功能性健康产品,并可进一步开展植物蛋白组成与结构、食品加工形式、植物蛋白与动物蛋白搭配及比例、食用方式(时间和形式等)等基于饮食干预形式对机体脂质代谢或其他健康作用的调控机制研究,为植物蛋白的进一步研发提供理论基础。
-
表 1 不同植物蛋白对脂质代谢的作用效果
Table 1 Effects of different plant proteins on lipid metabolism
蛋白类型 血脂 平均体重/体重增量 其他指标 参考文献 大豆蛋白 TC↓*、TG↓、LDL-C↓*、HDL-C↑* 25.9%↓* 附睾脂肪↓*、肾周脂肪↓*、血清瘦素↓*、β-羟基丁酸↑* [48] 大米蛋白 TC↓*、TG↓、LDL-C↓*、HDL-C↓ 17.39%↓* 肝脏总脂质↓*、肝脏TC↓*、肝脏TG↓*、粪便总脂肪↑*、粪便TG↑* [49] 苦荞蛋白 TC↓*、TG↓*、HDL-C↓* 无显著差异 肝脏TC↓*、粪便胆固醇总中性甾醇↑*、酸性甾醇↑* [50] 燕麦蛋白 TC↓**、TG↓、LDL-C↓**、HDL-C↓ − 肝细胞脂肪变性程度↓、粪便TC↑ [51] 小麦胚芽蛋白 TC↓*、TG↓、HDL-C↓ 4.8 g↑ 肝脏TC↑、肝脏TG↓、肝脏总脂肪↓、粪便TC↑、粪便胆汁酸↑* [52] 藜麦蛋白 TC↓、TG↑、LDL-C↓、HDL-C↑* 11.25 g↓* 肝脏TC↓*、肝脏总胆汁酸↑* [38] 豌豆清蛋白 TC↓*、TG↓*、LDL-C↓、HDL-C↓ 5 g↓* 腹股沟脂肪↓*、附睾脂肪↓*、肠系脂肪↓*、血清瘦素↓* [53] 米糠蛋白 TC↓、TG↓*、LDL-C↓*、HDL-C↑ 1.7 g↓ 肝脏TC↓*、肝脏TG↑、肝脏游离胆固醇↑*、粪便TC↑、
粪便TG↑、粪便总胆汁酸↑*[54] 苦瓜蛋白 TC↓、TG↓**、LDL-C↓*、HDL-C↑* 2.5 g↓ 肾周脂肪↓**、肝脏TC↓、TG↓** [55] 人参蛋白 TC↓*、TG↓*、HDL-C↓ 5.09 g↓ − [56] 红松松仁分离蛋白 TC↓*、TG↓*、LDL-C↓*、HDL-C↑* − 肝脏TC↓、TG↓ [57] 甘薯sporamin蛋白 TC↓*、TG↓*、HDL-C↑* 6 g↓* 腹部脂肪↓*、脂肪系数↓* [58] 马铃薯蛋白 TC↓*、HDL-C↓* 12 g↓ 肝脏总脂肪↓*、肝脏TC↓*、粪便总胆汁酸↑*、粪便TC↑* [59] 花生蛋白 TC↓*、TG↓* 31 g↓* 肝脏TC↓* [60] 注:*表示与高脂模型组有显著性差异,P<0.05;**表示与高脂模型组有极显著性差异,P<0.01;“−”表示无指标。 -
[1] AHNEN R T, JONNALAGADDA S S, SLAVIN J L. Role of plant protein in nutrition, wellness, and health[J]. Nutrition Reviews,2019,77(11):735−747. doi: 10.1093/nutrit/nuz028
[2] TAN M, NAWAZ M A, BUCKOW R. Functional and food application of plant proteins–a review[J]. Food Reviews International,2023,39(5):2428−2456. doi: 10.1080/87559129.2021.1955918
[3] ZHAO H, SONG A, ZHENG C, et al. Effects of plant protein and animal protein on lipid profile, body weight and body mass index on patients with hypercholesterolemia:A systematic review and meta-analysis[J]. Acta Diabetologica,2020,57:1169−1180. doi: 10.1007/s00592-020-01534-4
[4] APPEL L J. The effects of protein intake on blood pressure and cardiovascular disease[J]. Current Opinion in Lipidology,2003,14(1):55−59. doi: 10.1097/00041433-200302000-00010
[5] LIU C K, CHEN C A, LEE T Y, et al. Rice protein prolamin promotes anti-leukemia immunity and inhibits leukemia growth in vivo[J]. Food and Chemical Toxicology,2018,112:435−440.
[6] YANG S H, TAO G, YANG L, et al. Dietary phytochemical and metabolic disease prevention:Focus on plant proteins[J]. Frontiers in Nutrition,2023,10:1089487. doi: 10.3389/fnut.2023.1089487
[7] 葛莎莎. 基于“肠道菌-胆汁酸-肝代谢”轴的蒙药五味清浊散防治高脂血症的作用机制研究[D]. 北京:中国中医科学院, 2022. [GE S S. A study on the mechanism of action of Mongolian medicine Wuwei Qingzhuo San in preventing and treating hyperlipidemia based on the "gut bacteria bile acid liver metabolism" axis [D]. Beijing:Chinese Academy of Traditional Chinese Medicine, 2022.] GE S S. A study on the mechanism of action of Mongolian medicine Wuwei Qingzhuo San in preventing and treating hyperlipidemia based on the "gut bacteria bile acid liver metabolism" axis [D]. Beijing: Chinese Academy of Traditional Chinese Medicine, 2022.
[8] PERDOMO C M, COHEN R V, SUMITHRAN P, et al. Contemporary medical, device, and surgical therapies for obesity in adults[J]. The Lancet,2023,401(10382):1116−1130. doi: 10.1016/S0140-6736(22)02403-5
[9] 朱成姝, 阮梅花, 刘晓, 等. 2023年营养健康领域发展态势[J]. 生命科学, 2024, 36(1):21-29. [ZHU C S, RUAN M H, LIU X, et al. The development trend of nutrition and health in 2023[J]. Life Sciences, 2024, 36 (1):21-29.] ZHU C S, RUAN M H, LIU X, et al. The development trend of nutrition and health in 2023[J]. Life Sciences, 2024, 36 (1): 21-29.
[10] HØIE L H, MORGENSTERN E C A, GRUENWALD J, et al. A double-blind placebo-controlled clinical trial compares the cholesterollowering effects of two different soy protein preparations in hypercholesterolemic subjects[J]. European Journal of Nutrition,2005,44:65−71. doi: 10.1007/s00394-004-0492-0
[11] LIN Y, MOURATIDOU T, VEREECKEN C, et al. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents:the HELENA cross-sectional study[J]. Nutrition Journal,2015,14:1−11.
[12] BEYNEN A C. Comparison of the mechanisms proposed to explain the hypocholesterolemic effect of soybean protein versus casein in experimental animals[J]. Journal of Nutritional Science and Vitaminology,1990,36(SupplementII):S87−S93. doi: 10.3177/jnsv.36.SupplementII_S87
[13] 郭丽娜. 燕麦品种品质及其降血脂功效研究[D]. 北京:中国农业科学院, 2014. [GUO L N. Study on the quality and hypolipidemic effect of oat varieties[D]. Beijing:Chinese Academy of Agricultural Sciences, 2014.] GUO L N. Study on the quality and hypolipidemic effect of oat varieties[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
[14] RONIS M J, BADEAUX J, CHEN Y, et al. Rice protein isolate improves lipid and glucose homeostasis in rats fed high fat/high cholesterol diets[J]. Experimental Biology and Medicine,2010,235(9):1102−1113.
[15] ZHU S S, ZHAO Y W, LIU L D, et al. High plant protein diet ameliorated hepatic lipid accumulation through the modulation of gut microbiota[J]. Molecular Nutrition & Food Research,2023,67(24):2300515.
[16] 徐琪乐, 陈文, 米生权, 等. 植物蛋白通过肠道菌群调节脂质代谢研究进展[J]. 生命科学,2022,34(8):1035−1045. [XU Q L, CHEN W, MI S Q, et al. Research progress on plant proteins regulating lipid metabolism through gut microbiota[J]. Life Sciences,2022,34(8):1035−1045.] XU Q L, CHEN W, MI S Q, et al. Research progress on plant proteins regulating lipid metabolism through gut microbiota[J]. Life Sciences, 2022, 34(8): 1035−1045.
[17] NAGATA Y, TANAKA K, SUGANOT M. Further studies on the hypocholesterolaemic effect of soya-bean protein in rats[J]. British Journal of Nutrition,1981,45(2):233−241.
[18] FU H L, SHAN D D, LI J X, et al. Potential functionality of β-conglycinin with subunit deficiencies:soy protein may regulate glucose and lipid metabolism[J]. Food & Function,2022,13(23):12291−12302.
[19] JIA H, TIAN L M, ZHANG B C, et al. The soluble fraction of soy protein peptic hydrolysate reduces cholesterol micellar solubility and uptake[J]. International Journal of Food Science & Technology,2019,54(6):2123−2131.
[20] ZHU W W, TANG C H. Mild preheating improves cholesterol-lowering benefits of soy protein via enhancing hydrophobicity of its gastrointestinal digests:An in vitro study[J]. Food Hydrocolloids,2022,124:107282. doi: 10.1016/j.foodhyd.2021.107282
[21] HOIE L H, SJOHOLM Å, GULDSTRAND M, et al. Ultra heat treatment destroys cholesterol-lowering effect of soy protein[J]. International Journal of Food Sciences and Nutrition,2006,57(7-8):512−519. doi: 10.1080/09637480601009059
[22] 胡苗苗, 杨海霞, 曹炜, 等. 植物蛋白质资源的开发利用[J]. 食品与发酵工业,2012,38(8):137−140. [HU M M, YANG H X, CAO W, et al. Development and utilization of plant protein resources[J]. Food and Fermentation Industry,2012,38(8):137−140.] HU M M, YANG H X, CAO W, et al. Development and utilization of plant protein resources[J]. Food and Fermentation Industry, 2012, 38(8): 137−140.
[23] 江连洲, 田甜, 朱建宇, 等. 植物蛋白加工科技研究进展与展望[J]. 中国食品学报,2022,22(6):6−20. [JIANG L Z, TIAN T, ZHU J Y, et al. Research progress and prospects of plant protein processing technology[J]. Chinese Journal of Food Science,2022,22(6):6−20.] JIANG L Z, TIAN T, ZHU J Y, et al. Research progress and prospects of plant protein processing technology[J]. Chinese Journal of Food Science, 2022, 22(6): 6−20.
[24] 王丹, 李河, 周松华, 等. 超高压预处理紫苏蛋白与大豆蛋白复配蛋白肉的工艺条件优化[J]. 中国调味品,2024,49(1):18−24. [WANG Dan, LI He, ZHOU Songhua, et al. Optimization of process conditions for ultra-high pressure pretreatment of perilla protein and soy protein complex protein meat[J]. Chinese Seasoning,2024,49(1):18−24.] WANG Dan, LI He, ZHOU Songhua, et al. Optimization of process conditions for ultra-high pressure pretreatment of perilla protein and soy protein complex protein meat[J]. Chinese Seasoning, 2024, 49(1): 18−24.
[25] 刘芳, 韩伟, 郭超, 等. 米糠蛋白提取、改性及在食品加工中的应用[J/OL]. 食品与发酵工业:1−11[2024-04-24]. doi:10.13995/j.cnki.11-1802/ts.038343. [LIU Fang, HAN Wei, GUO Chao, et al. Extraction, modification, and application of rice bran protein in food processing[J/OL]. Food and Fermentation Industry:1−11[2024-04-24]. doi:10.13995/j.cnki.11-1802/ts.038343.] LIU Fang, HAN Wei, GUO Chao, et al. Extraction, modification, and application of rice bran protein in food processing[J/OL]. Food and Fermentation Industry: 1−11[2024-04-24]. doi: 10.13995/j.cnki.11-1802/ts.038343.
[26] 刘炯娜, 张丹, 蒋雨心, 等. 核桃蛋白-低聚半乳糖复合纳米颗粒的制备及其Pickering乳液性质[J]. 精细化工, 2024, 41(7):1590-1598,1614. [LIU J N, ZHANG D, JIANG Y X, et al. Preparation of walnut protein galactooligosaccharide composite nanoparticles and properties of pickering lotion[J]. Fine Chemicals, 2024, 41(7):1590-1598,1614.] LIU J N, ZHANG D, JIANG Y X, et al. Preparation of walnut protein galactooligosaccharide composite nanoparticles and properties of pickering lotion[J]. Fine Chemicals, 2024, 41(7): 1590-1598,1614.
[27] QI W J, TONG X H, WANG M M, et al. Impact of soybean protein isolate concentration on chitosan-cellulose nanofiber edible films:Focus on structure and properties[J]. International Journal of Biological Macromolecules,2024,255:128185. doi: 10.1016/j.ijbiomac.2023.128185
[28] BUDHATHOKI S, SAWADA N, IWASAKI M, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort[J]. JAMA Internal Medicine,2019,179(11):1509−1518.
[29] 袁钦杰, 桑森鑫, 吴峰华, 等. 植物蛋白肉产品、生产方法及消化率的研究现状[J]. 粮食与油脂,2023,36(12):13−16,21. [YUAN Q J, SANG S X, WU F H, et al. The current research status of plant protein meat products, production methods, and digestibility[J]. Grain and Oils,2023,36(12):13−16,21.] YUAN Q J, SANG S X, WU F H, et al. The current research status of plant protein meat products, production methods, and digestibility[J]. Grain and Oils, 2023, 36(12): 13−16,21.
[30] 杨柯, 段云天, 池鑫宇, 等. 基于网络药理学和分子对接预测何首乌改善脂质代谢紊乱作用机制及调脂作用研究[J]. 中国新药杂志,2023,32(11):1143−1154. [YANG K, DUAN Y T, CHI X Y, et al. Research on the mechanism and lipid regulating effect of polygonum multiflorum in improving lipid metabolism disorders based on network pharmacology and molecular docking prediction[J]. Chinese Journal of New Drugs,2023,32(11):1143−1154.] YANG K, DUAN Y T, CHI X Y, et al. Research on the mechanism and lipid regulating effect of polygonum multiflorum in improving lipid metabolism disorders based on network pharmacology and molecular docking prediction[J]. Chinese Journal of New Drugs, 2023, 32(11): 1143−1154.
[31] 李斌. 中国居民营养与慢性病状况报告(2020年)[J]. 营养学报, 2020, 42(6):521. [LI B. Report on the nutrition and chronic disease status of Chinese residents (2020)[J]. Journal of Nutrition, 2020, 42 (6):521.] LI B. Report on the nutrition and chronic disease status of Chinese residents (2020)[J]. Journal of Nutrition, 2020, 42 (6): 521.
[32] FAN J G, KIM S U, WONG V W S. New trends on obesity and NAFLD in Asia[J]. Journal of Hepatology,2017,67(4):862−873. doi: 10.1016/j.jhep.2017.06.003
[33] ESTES C, ANSTEE Q M, ARIAS-LOSTE M T, et al. Modeling nafld disease burden in china, france, germany, italy, japan, spain, united kingdom, and united states for the period 2016-2030[J]. Journal of Hepatology,2018,69(4):896−904. doi: 10.1016/j.jhep.2018.05.036
[34] 刘英语, 吴酉芝, 张冠亚. 食源性多糖缓解脂质代谢异常的研究进展[J]. 食品研究与开发,2023,44(17):210−217. [LIU Y Y, WU Y Z, ZHANG G Y. Research progress on the relief of lipid metabolism abnormalities by foodborne polysaccharides[J]. Food Research and Development,2023,44(17):210−217.] LIU Y Y, WU Y Z, ZHANG G Y. Research progress on the relief of lipid metabolism abnormalities by foodborne polysaccharides[J]. Food Research and Development, 2023, 44(17): 210−217.
[35] 赵悬. 橄榄苦苷改善肝脏脂质代谢紊乱的作用机理研究[D]. 江门:五邑大学, 2023. [ZHAO X. A study on the mechanism of olive bitter glycoside in improving liver lipid metabolism disorder[D]. Jiangmen:Wuyi University, 2023.] ZHAO X. A study on the mechanism of olive bitter glycoside in improving liver lipid metabolism disorder[D]. Jiangmen: Wuyi University, 2023.
[36] 伍雪梅. 植物乳杆菌发酵大麦麸皮提取物对HepG2脂质沉积的缓解作用研究[D]. 镇江:江苏大学, 2022. [WU X M. A study on the alleviating effect of barley bran extract fermented by Lactobacillus plantarum on HepG2 lipid deposition[D]. Zhenjiang:Jiangsu University, 2022.] WU X M. A study on the alleviating effect of barley bran extract fermented by Lactobacillus plantarum on HepG2 lipid deposition[D]. Zhenjiang: Jiangsu University, 2022.
[37] ZHANG Y Z, GUAN X, GUO J X, et al. Lowing effect of wheat germ protein (WGP) on cholesterol level in hypercholesterolemic HepG2 cell[J]. Journal of Biobased Materials and Bioenergy,2019,13(2):269−273. doi: 10.1166/jbmb.2019.1845
[38] 徐霞. 藜麦蛋白质及多肽对高脂血症小鼠降脂作用及其降脂产品开发研究[D]. 成都:成都大学, 2020. [XU X. Research on the lipid-lowering effect of quinoa protein and peptides on hyperlipidemic mice and the development of lipid-lowering products[D]. Chengdu:Chengdu University, 2020.] XU X. Research on the lipid-lowering effect of quinoa protein and peptides on hyperlipidemic mice and the development of lipid-lowering products[D]. Chengdu: Chengdu University, 2020.
[39] 刘靖. 苦荞蛋白对脂质代谢的调控作用及其作用机制研究[D]. 成都:成都大学, 2022. [LIU J. The regulatory effect and mechanism of tartary buckwheat protein on lipid metabolism[D]. Chengdu:Chengdu University, 2022.] LIU J. The regulatory effect and mechanism of tartary buckwheat protein on lipid metabolism[D]. Chengdu: Chengdu University, 2022.
[40] KUMAR V, KURUP L V, TIKU P K. The modulatory effect of cholesterol synthesis by Oryza sativa derived bioactive peptide fractions:An in vitro investigation[J]. International Journal of Peptide Research and Therapeutics,2021,27:245−251.
[41] 苗志国. 金华猪与长白猪脂肪代谢和消化功能发育差异的研究[D]. 杭州:浙江大学, 2009:100−116. [MIAO Z G. A study on the differences in fat metabolism and digestive function development between Jinhua pigs and Landrace pigs[D]. Hangzhou:Zhejiang University, 2009:100−116.] MIAO Z G. A study on the differences in fat metabolism and digestive function development between Jinhua pigs and Landrace pigs[D]. Hangzhou: Zhejiang University, 2009: 100−116.
[42] CHEN F, LIN L Z, ZHAO M M. Co-extraction of soy protein and polysaccharide with lipid-lowering activity:Characterization of functional property, nutritional property and colonic fermentation property through a metabolomics approach[J]. Food Hydrocolloids,2023,138:108472. doi: 10.1016/j.foodhyd.2023.108472
[43] ANDERSON J W, BUSH H M. Soy protein effects on serum lipoproteins:a quality assessment and meta-analysis of randomized, controlled studies[J]. Journal of the American College of Nutrition,2011,30(2):79−91.
[44] TAMURA K, SASAKI H, SHIGA K, et al. The timing effects of soy protein intake on mice gut microbiota[J]. Nutrients,2019,12(1):87. doi: 10.3390/nu12010087
[45] HIGUCHI Y, HOSOJIMA M, KABASAWA H, et al. Rice endosperm protein administration to juvenile mice regulates gut microbiota and suppresses the development of high-fat diet-induced obesity and related disorders in adulthood[J]. Nutrients,2019,11(12):2919. doi: 10.3390/nu11122919
[46] JI A D, CHEN W, LIU C, et al. Soy protein compared with whey protein ameliorates insulin resistance by regulating lipid metabolism, AMPK/mTOR pathway and gut microbiota in high-fat diet-fed mice[J]. Food & Function,2023,14(12):5752−5767.
[47] KOHNO M. Soybean protein and peptide as complementation medical food materials for treatment of dyslipidemia and inflammatory disorders[J]. Food Science and Technology Research,2017,23(6):773−782.
[48] JIANG S S, JI S S, TANG X L, et al. A comparison study on the therapeutic effect of high protein diets based on pork protein versus soybean protein on obese mice[J]. Foods,2022,11(9):1227. doi: 10.3390/foods11091227
[49] YANG L, CHEN J H, LÜ J, et al. Rice protein improves adiposity, body weight and reduces lipids level in rats through modification of triglyceride metabolism[J]. Lipids in Health and Disease,2012,11(1):1−10. doi: 10.1186/1476-511X-11-1
[50] ZHANG C N, ZHANG R, LI Y M, et al. Cholesterol-lowering activity of Tartary buckwheat protein[J]. Journal of Agricultural and Food Chemistry,2017,65(9):1900−1906. doi: 10.1021/acs.jafc.7b00066
[51] 徐向英. 燕麦蛋白提取、性质以及降血脂活性研究[D]. 郑州:河南工业大学, 2012. [XU X Y. Extraction, properties, and lipid-lowering activity of oat protein[D]. Zhengzhou:Henan University of Technology, 2012.] XU X Y. Extraction, properties, and lipid-lowering activity of oat protein[D]. Zhengzhou: Henan University of Technology, 2012.
[52] LIU C, SUN Y, YANG L, et al. The hypolipidemic and antioxidant activity of wheat germ and wheat germ protein in high-fat diet-induced rats[J]. Molecules,2022,27(7):2260.
[53] LIU N, SONG Z, JIN W H, et al. Pea albumin extracted from pea (Pisum sativum L.) seed protects mice from high fat diet-induced obesity by modulating lipid metabolism and gut microbiota[J]. Journal of Functional Foods,2022,97:105234. doi: 10.1016/j.jff.2022.105234
[54] ZHANG H J, WANG J, LIU Y L, et al. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets[J]. Food & Function,2016,7(6):2747−2753.
[55] 王东红. 苦瓜蛋白降脂活性成分纯化及功效评价[D]. 烟台:烟台大学, 2014. [WANG D H. Purification and efficacy evaluation of lipid-lowering active ingredients from bitter gourd protein [D]. Yantai:Yantai University, 2014.] WANG D H. Purification and efficacy evaluation of lipid-lowering active ingredients from bitter gourd protein [D]. Yantai: Yantai University, 2014.
[56] 徐云凤, 赵雨, 幺宝金, 等. 人参蛋白对高脂血症模型大鼠的降血脂作用[J]. 中药新药与临床药理,2011,22(2):138−141. [XU Y F, ZHAO Y, YAO B J, et al. The lipid-lowering effect of ginseng protein on hyperlipidemia model rats[J]. New Traditional Chinese Medicine and Clinical Pharmacology,2011,22(2):138−141.] XU Y F, ZHAO Y, YAO B J, et al. The lipid-lowering effect of ginseng protein on hyperlipidemia model rats[J]. New Traditional Chinese Medicine and Clinical Pharmacology, 2011, 22(2): 138−141.
[57] 杨丽娜. 红松松仁分离蛋白的制备及降血脂功能研究[D]. 哈尔滨:东北林业大学, 2009. [YANG L N. Preparation and lipid-lowering function study of isolated protein from pine nuts of Pinus koraiensis[D]. Harbin:Northeast Forestry University, 2009.] YANG L N. Preparation and lipid-lowering function study of isolated protein from pine nuts of Pinus koraiensis[D]. Harbin: Northeast Forestry University, 2009.
[58] 熊志冬. 甘薯sporamin蛋白抑制脂肪细胞生成及降血脂作用研究[D]. 北京:中国农业科学院, 2009. [XIONG Z D. A study on the inhibitory effect of sweet potato sporamin protein on adipocyte formation and lipid-lowering effects[D]. Beijing:Chinese Academy of Agricultural Sciences, 2009.] XIONG Z D. A study on the inhibitory effect of sweet potato sporamin protein on adipocyte formation and lipid-lowering effects[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009.
[59] MORITA T, OH-HASHI A, TAKEI K, et al. Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet[J]. The Journal of Nutrition,1997,127(3):470−477. doi: 10.1093/jn/127.3.470
[60] JACQUES H, LEBLANC N, PAPINEAU R, et al. Peanut protein reduces body protein mass and alters skeletal muscle contractile properties and lipid metabolism in rats[J]. British Journal of Nutrition,2010,103(9):1331−1339.
[61] MADSEN L, MYRMEL L S, FJÆRE E, et al. Links between dietary protein sources, the gut microbiota, and obesity[J]. Frontiers in Physiology,2017,8:1047.
[62] 马青, 陈石良. 大豆蛋白降血脂作用的实验研究 [J]. 食品科技, 2003(2):15−6, 19. [MA Q, CHEN S L. Experimental study on the lipid-lowering effect of soy protein [J]. Food Technology, 2003(2):15−6, 19.] MA Q, CHEN S L. Experimental study on the lipid-lowering effect of soy protein[J]. Food Technology, 2003(2): 15−6, 19.
[63] MICZKE A, SULIBURSKA J, PUPEK-MUSIALIK D, et al. Effect of L-arginine supplementation on insulin resistance and serum adiponectin concentration in rats with fat diet[J]. International Journal of Clinical and Experimental Medicine,2015,8(7):10358.
[64] GUDBRANDSEN O A, WERGEDAHL H, LIASET B, et al. Dietary proteins with high isoflavone content or low methionine-glycine and lysine-arginine ratios are hypocholesterolaemic and lower the plasma homocysteine level in male Zucker fa/fa rats[J]. British Journal of Nutrition,2005,94(3):321−330. doi: 10.1079/BJN20051496
[65] TONG L T, XIAO T, WANG L, et al. Plant protein reduces serum cholesterol levels in hypercholesterolemia hamsters by modulating the compositions of gut microbiota and metabolites[J]. Iscience,2021,24(12):103435. doi: 10.1016/j.isci.2021.103435
[66] BJØRNSHAVE A, HERMANSEN K. Effects of dairy protein and fat on the metabolic syndrome and type 2 diabetes[J]. The Review of Diabetic Studies:RDS,2014,11(2):153.
[67] TAKESHITA T, OKOCHI M, KATO R, et al. Screening of peptides with a high affinity to bile acids using peptide arrays and a computational analysis[J]. Journal of Bioscience and Bioengineering,2011,112(1):92−97. doi: 10.1016/j.jbiosc.2011.03.002
[68] DATTA G, CHADDHA M, HAMA S, et al. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide[J]. Journal of Lipid Research,2001,42(7):1096−1104. doi: 10.1016/S0022-2275(20)31599-6
[69] 陈菲. 大豆降脂成分的营养特性及其作为载体输送类黄酮潜力研究[D]. 广州:华南理工大学, 2023. [CHEN F. The nutritional characteristics of soybean lipid-lowering components and their potential as carriers for flavonoid delivery[D]. Guangzhou:South China University of Technology, 2023.] CHEN F. The nutritional characteristics of soybean lipid-lowering components and their potential as carriers for flavonoid delivery[D]. Guangzhou: South China University of Technology, 2023.
[70] MA Y, XIONG Y L. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests[J]. Journal of Agricultural and Food Chemistry,2009,57(10):4372−4380. doi: 10.1021/jf803670u
[71] TONG L T, GUO L, ZHOU X, et al. Effects of dietary oat proteins on cholesterol metabolism of hypercholesterolaemic hamsters[J]. Journal of the Science of Food and Agriculture,2016,96(4):1396−1401.
[72] 梁婷婷. 基于肠道微生态改善的植物蛋白脂质代谢调节机制[D]. 西安:陕西科技大学, 2018. [LIANG T T. The regulatory mechanism of plant protein lipid metabolism based on gut microbiota improvement[D]. Xi'an:Shaanxi University of Science and Technology, 2018.] LIANG T T. The regulatory mechanism of plant protein lipid metabolism based on gut microbiota improvement[D]. Xi'an: Shaanxi University of Science and Technology, 2018.
[73] PAK V V, KOO M S, KASYMOVA T D, et al. Isolation and identification of peptides from soy 11S-globulin with hypocholesterolemic activity[J]. Chemistry of Natural Compounds,2005,41:710−714. doi: 10.1007/s10600-006-0017-6
[74] YANG L, HAN G, LIU Q H, et al. Rice protein exerts a hypocholesterolemic effect through regulating cholesterol metabolism-related gene expression and enzyme activity in adult rats fed a cholesterol-enriched diet[J]. International Journal of Food Sciences and Nutrition,2013,64(7):836−842. doi: 10.3109/09637486.2013.804038
[75] 叶灏铎, 苗建银, 李龙星, 等. 勐库大叶茶蛋白降血脂肽的酶解制备及活性分析[J]. 食品工业科技,2022,43(9):212−221. [YE H D, MIAO J Y, LI L X, et al. Enzymatic hydrolysis preparation and activity analysis of lipid-lowering peptides from Mengku Daye tea protein[J]. Food Industry Technology,2022,43(9):212−221.] YE H D, MIAO J Y, LI L X, et al. Enzymatic hydrolysis preparation and activity analysis of lipid-lowering peptides from Mengku Daye tea protein[J]. Food Industry Technology, 2022, 43(9): 212−221.
[76] 刘迪迪. 松仁蛋白分离与生理功能分析及对糖脂代谢调节作用[D]. 哈尔滨:哈尔滨工业大学, 2022. [LIU D D. Isolation and physiological function analysis of pine nut protein and its regulatory effect on glucose and lipid metabolism[D]. Harbin:Harbin Institute of Technology, 2022.] LIU D D. Isolation and physiological function analysis of pine nut protein and its regulatory effect on glucose and lipid metabolism[D]. Harbin: Harbin Institute of Technology, 2022.
[77] 肖天真. 豌豆蛋白和猪肉蛋白调节血清胆固醇水平差异形成机制研究[D]. 北京:中国农业科学院, 2021. [XIAO T Z. A study on the mechanism of differential regulation of serum cholesterol levels by pea protein and pork protein[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021.] XIAO T Z. A study on the mechanism of differential regulation of serum cholesterol levels by pea protein and pork protein[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
[78] IJAZ M U, AHMED M I, ZHAO F, et al. Beef, casein, and soy proteins differentially affect lipid metabolism, triglycerides accumulation and gut microbiota of high-fat diet-fed C57BL/6J mice[J]. Frontiers in Microbiology, 2018, 9: 383030.
[79] 徐嘉琦, 林以宁. 肠道菌群调控肥胖症脂质代谢机制的研究进展[J]. 药学研究,2023,42(7):489−494. [XU J Q, LIN Y N. Research progress on the mechanism of gut microbiota regulating lipid metabolism in obesity[J]. Pharmaceutical Research,2023,42(7):489−494.] XU J Q, LIN Y N. Research progress on the mechanism of gut microbiota regulating lipid metabolism in obesity[J]. Pharmaceutical Research, 2023, 42(7): 489−494.
[80] 王晨, 钟赛意, 邹宇晓. 膳食纤维经肠道微生态途径调节脂质代谢作用的研究进展[J]. 食品科学,2019,40(3):338−347. [WANG C, ZHONG S Y, ZOU Y X. Research progress on the regulation of lipid metabolism by dietary fiber through the gut microbiota pathway[J]. Food Science,2019,40(3):338−347.] WANG C, ZHONG S Y, ZOU Y X. Research progress on the regulation of lipid metabolism by dietary fiber through the gut microbiota pathway[J]. Food Science, 2019, 40(3): 338−347.
[81] WANG B T, KONG Q M, LI X, et al. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference[J]. Nutrients,2020,12(10):3197. doi: 10.3390/nu12103197
[82] BUTTEIGER D N, HIBBERD A A, MCGRAW N J, et al. Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in golden syrian hamsters[J]. The Journal of Nutrition,2015,146(4):697−705.
[83] 陈贵堂, 赵霖, 鲍善芬, 等. 不同植物蛋白质对大鼠肠道菌群的影响[J]. 中国食品学报,2006(6):238−242. [CHEN G T, ZHAO L, BAO S F, et al. The effects of different plant proteins on the gut microbiota of rats[J]. Chinese Journal of Food Science,2006(6):238−242.] doi: 10.3969/j.issn.1009-7848.2006.01.050 CHEN G T, ZHAO L, BAO S F, et al. The effects of different plant proteins on the gut microbiota of rats[J]. Chinese Journal of Food Science, 2006(6): 238−242. doi: 10.3969/j.issn.1009-7848.2006.01.050
[84] 王涛, 季珊珊, 汤鑫磊, 等. 大豆和猪肉来源的高蛋白饮食对肥胖小鼠的干预作用及肠道菌群的影响[J/OL]. 食品科学技术学报, 2024:1−13[2024-12-02]. doi:10.1151.ts.20240125.1932.002. [WANG T, JI S S, TANG X L, et al. The intervention effect of a high protein diet derived from soybeans and pork on obese mice and the impact on gut microbiota [J/OL]. Journal of Food Science and Technology, 2024:1−13[2024-12-02]. doi:10.1151.ts.20240125.1932.002.] WANG T, JI S S, TANG X L, et al. The intervention effect of a high protein diet derived from soybeans and pork on obese mice and the impact on gut microbiota [J/OL]. Journal of Food Science and Technology, 2024: 1−13[2024-12-02]. doi: 10.1151.ts.20240125.1932.002.
[85] ZHU Y Y, LIN X S, ZHAO F, et al. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria[J]. Scientific Reports,2015,5(1):15220. doi: 10.1038/srep15220
[86] 李颂, 王泽宇, 向沙沙, 等. 基于体外肠道微生物消化预测不同工艺大叶茶的健康作用[J]. 食品与发酵工业, 2024, 50(21):76-85. [LI S, WANG Z Y, XIANG S S, et al. Predicting the health effects of different processed large leaf teas based on in vitro gut microbiota digestion[J]. Food and Fermentation Industry, 2024, 50(21):76-85.] LI S, WANG Z Y, XIANG S S, et al. Predicting the health effects of different processed large leaf teas based on in vitro gut microbiota digestion[J]. Food and Fermentation Industry, 2024, 50(21): 76-85.
[87] 屠晓婷, 卜淑蕊. 短链脂肪酸在非酒精性脂肪性肝病和胰岛素抵抗中的作用及进展[J]. 肝脏,2023,28(12):1521−1524. [TU X T, BU S R. The role and progression of short chain fatty acids in non-alcoholic fatty liver disease and insulin resistance[J]. Liver,2023,28(12):1521−1524.] TU X T, BU S R. The role and progression of short chain fatty acids in non-alcoholic fatty liver disease and insulin resistance[J]. Liver, 2023, 28(12): 1521−1524.
[88] 朱瑞娇. 氧化三甲胺对小鼠糖脂代谢影响的初步研究[D]. 哈尔滨:哈尔滨工业大学, 2022. [ZHU R J. Preliminary study on the effect of trimethylamine oxide on glucose and lipid metabolism in mice[D]. Harbin:Harbin Institute of Technology, 2022.] ZHU R J. Preliminary study on the effect of trimethylamine oxide on glucose and lipid metabolism in mice[D]. Harbin: Harbin Institute of Technology, 2022.
[89] CANYELLES M, TONDO M, CEDÓ L, et al. Trimethylamine N-oxide:a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. International Journal of Molecular Sciences, 2018, 19(10):3228.
[90] MCNABNEY S M, HENAGAN T M. Short chain fatty acids in the colon and peripheral tissues:A focus on butyrate, colon cancer, obesity and insulin resistance[J]. Nutrients,2017,9(12):1348.
[91] WANG C C, DUAN X F, LI X Y, et al. Trimethylamine N-oxide generation process was influenced by the proportion and source of macronutrients in the diet[J]. Food Science and Human Wellness,2024,13(2):649−658. doi: 10.26599/FSHW.2022.9250054